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We report on a theoretical and experimental study of time-optimal construction of arbitrary single-qubit
rotations under a single strong driving field of finite amplitude. Using radiation-dressed states of nitrogen vacancy
centers in diamond we realize a strongly driven two-level system, with driving frequencies four times larger than
its precession frequency. We implement time-optimal universal rotations on this system, characterize their
performance using quantum process tomography, and demonstrate a dual-axis multiple-pulse control sequence
where the qubit is rotated on time scales faster than its precession period. Our results pave the way for applying
fast qubit control and high-density pulse schemes in the fields of quantum information processing and quantum

metrology.
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I. INTRODUCTION

Two-level systems are the prototypical realization of a
quantum bit (qubit), and as such, coherent control of their state
is a key element in novel quantum devices and applications.
Two important measures of qubit control techniques are the
time it takes to complete a desired rotation, and the ability
to perform arbitrary state rotations within a given realization.
Reduced manipulation times allow for an increased number of
operations to be performed within the system coherence time,
a critical requisite of quantum information processing [1] and
quantum sensing [2]. Similarly, the ability to perform universal
single-qubit rotations [3,4] can reduce the complexity of
quantum computing algorithms as opposed to utilizing only
a minimal set of single-qubit gates [5,6]. Universal rotations
are also useful in pulsed quantum sensing schemes [7], as they
allow for systematic pulse error compensation using composite
pulses [8,9] or multiple-axis decoupling techniques [10—12].

Generally, the rotation time of a qubit’s state depends
on the strength of the fields applied to it. Obtaining shorter
manipulation times therefore requires stronger driving fields,
eventually leading to the strong driving regime. In this regime
the qubit is driven by an external field whose coupling energy
is comparable to, or exceeds, the energy level splitting of the
qubit itself. The traditional method of applying an oscillatory
field at the qubit’s resonance frequency results in complex dy-
namics under strong driving, due to the counter-rotating term
of the oscillating field. This term can be neglected for weak
driving according to the rotating wave approximation [13,14],
but for strong fields it plays a crucial role in the system
dynamics [15,16]. Therefore, different control schemes have
been considered for this regime, including usage of ancillary
energy levels [4], two independent orthogonal fields [17,18],
or single-field anharmonic pulses.

Considering the approach of anharmonic pulse sequences
it was shown, with tools of optimal control theory, that the
fastest way to steer a qubit on the Bloch sphere from one
state to another, using a single driving field of finite amplitude
|B(t)] < Bmax, 18 abang-bang control [19,20], i.e., rectangular
pulses alternating between the extremal values of the driving
field £ Bnax- This approach was recently applied also to the
Landau-Zener problem, for finding the “quantum speed limit,”
the minimal time required to transfer a system between any
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two states [21]. However, these studies considered only the
problem of steering the system state between two points on
the Bloch sphere, rather than generating a prescribed rotation
operator. Thus, for example, these results cannot be applied
for achieving w-flips around an arbitrary rotation axis. The
challenge of generating any desired unitary operator was
previously studied only for weak driving [22] or under the
assumption of infinitely strong driving fields [23].

In this work we present a theoretical and experimental
study of time-optimal universal qubit rotations in the strong
driving regime. We derive the necessary conditions that must
be satisfied by a pulse sequence in order to be time optimal,
and through numerical optimization design pulses for the
important cases of 7 /2 and 7 rotations around arbitrary axes in
the Bloch sphere’s equatorial plane. Then, we experimentally
apply these control sequences on radiation-dressed states of
electron spins in nitrogen-vacancy (NV) centers in diamond.
This approach enables us to realize a strongly driven two-level
system with excellent controllability and superior coherence
properties with respect to bare NV spin. Finally we use this
system to apply a dual-axis multiple-pulse sequence with an
unprecedented interpulse delay of two spin precession periods.

II. TIME-OPTIMAL SYNTHESIS OF
UNIVERSAL ROTATIONS

We consider a general two-level system, or a manifold of
a more complex system, driven by a single external field. It is
described by the time-dependent Hamiltonian

H() = Shoio, + 110 (1)

where w; is the energy level splitting, or the spin precession
frequency, €2(¢) is the applied driving field bounded by
|2(2)] < Qmax, and o; are the Pauli matrices, where X is the
direction of the applied external field. The time evolution
operator U (t) represents the rotation induced by the control
sequence £2(¢), and evolves in time according to

ihU®t) = HOU (1), 2)

with U(0) = Ix». In this formalism, the problem of generating
a time-optimal rotation can be regarded as that of steering
the operator U(t), which lies in SU(2), in minimal time
onto the desired rotation Ugy,. We solve this problem in a
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FIG. 1. (Color online) Time-optimal pulse sequences for gener-
ating /2 and 7 rotations (top and bottom panels, respectively),
for Qu.x = 4w;. Colors represent different types of pulses: posi-
tive/negative bangs and drift. Black arrows mark the globally optimal
7 rotations, corresponding to pure bang-bang controls.

two-step process of reduction and selection. First, we apply
Pontryagin’s minimum principle (PMP) [24,25] which gives
the necessary conditions that a control 2(¢) must satisfy in
order to be optimal, thus reducing substantially the number
of optimal control candidates. Second, we select from these
candidates the control sequences which satisfy the problem,
i.e. generate the desired rotations, and choose the one which
does so in minimal time. We outline these steps below and
present the resulting time-optimal controls.

First, using Pontryagin’s minimum principle we prove in the
Appendix that time-optimal control sequences consist only of
bang periods, in which Q(#) = £Qp,x and the qubit rotates
about an axis w2 £ QmaxX, and drift periods, where Q(t) = 0
and the qubit simply precesses around the z axis. Remarkably,
any desired single-qubit operator may be constructed in this
way. This result substantially reduces the number of candidate
sequences for optimal control. Finding the optimal sequence
therefore amounts to selecting the correct number, ordering
and length of the bang and drift periods. While this is
still a challenging problem to solve analytically, it can be
approached by numerical optimization on an n-dimensional
space, where n is the assumed number of bang or drift periods
and the optimization variables represent their durations. These
durations are bounded, as the dynamics under bang or drift

controls are periodic, with T, = 27/vVw? + Q2 or T; =
27 /w;, respectively. Since each pulse may either be a positive
bang, a negative bang, or a drift, the optimization is repeated
3 x 2"~! times to explore all unique pulse sequences [26].
Using this method we verified up to n = 12 that three pulses
or less are sufficient to construct any rotation operator, in the
strong driving regime Q,x = w1, in agreement with the ansatz
made in [21].

We then set to calculate the pulse sequences that generate
time-optimal 77 /2 and 7 rotations around different axes in the
x-y plane (Fig. 1). In the case of = pulses we note the following:
(a) for Qnax > o) the duration of the longest control sequence
approaches m/w;, corresponding to half a precession cycle
of the spin inserted between two §-like m/2 rotations; (b)
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the shortest control sequence consists of two opposite bang
periods and lasts exactly 27 /v @7 + Q2. independent of the

max?
ratio of Q. to w;. These two results are consistent with
previous studies of infinite-amplitude fields [23] and shortest

possible spin flips [19,20].

III. EXPERIMENTAL SYSTEM

We use radiation-dressed states of the electron spin of
nitrogen-vacancy (NV) centers in diamond [27] to realize
a strongly driven two-level system, and to implement the
control sequences described above. This approach of using
dressed states as an effective two-level system can be applied
to many different physical systems, and it offers, among
other advantages which will be explained below, a high
degree of controllability of the system and extended coherence
times [28]. The scheme is based on resonant microwave
radiation interacting with the NV center electron spin, thereby
creating a dressed two-level system whose energy level
splitting is determined by the coupling energy of the dressing
field. A second magnetic field, orthogonal to the resonant
microwave field, is used to manipulate the state of the dressed
qubit on its Bloch sphere.

A. Radiation-dressed states of NV centers

The NV center has a spin triplet (S = 1) ground state
[Fig. 2(a)]. It can be optically pumped into the m; = O state
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FIG. 2. (Color online) (a) Energy level structure of the NV center
ground state in the presence of axial magnetic field B, which lifts the
degeneracy between the m; = +£1 states. (b) Applying continuous
microwave excitation resonant with the m; = 0,—1 transition creates
new dressed states with an energy separation w,, determined by the
Rabi frequency of the dressing field. (c) Bloch sphere representation
of the electron spin in the my; = 0,—1 subspace. The continuous
driving field w, defines the new 7" axis of the dressed qubit basis, and
the second-order driving €2(¢) acts in an orthogonal direction, enabling
manipulation of the dressed states. (d) Experimental sequence:
initialization of the dressed spin by optical pumping and a microwave
7 pulse; manipulation of the dressed spin with the second-order field
Q(t), while the microwave field continuously dresses the spin; and
readout of the dressed spin projections by a microwave 7 pulse and
optical readout of the bare spin population.
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with a short laser pulse, and its population can be measured
by spin-dependent photoluminescence [29]. A magnetic field
of 540 G aligned to the NV z axis lifts the degeneracy of the
mg = £1 states and enables selective microwave excitation
of the my = 0,—1 transition at wg = (27)1.36 GHz. This
selectivity allows us to consider only the m; = 0,—1 states
of the NV center spin, corresponding to the |+z) and |—z2)
eigenstates of a pseudo-spin-% system, while the m; = +1
state is well out of resonance with any of the applied fields and
does not participate in the system dynamics.
We write the system Hamiltonian as

H(t) = Yhwoo, + hoy cos(wot)oy + 1iQmaxA(t)oz,  (3)

where the first term corresponds to the unperturbed Hamil-
tonian of the pseudo—spin—%, the second term describes the
resonant microwave field applied along the NV center x axis
(chosen arbitrarily) that creates the dressed qubit, and the third
term is the second-order magnetic field applied along the
z axis that allows manipulation of the dressed qubit states.
wy is the splitting between the two bare spin eigenstates
(my = 0,—1), w, is the Rabi frequency of the dressing field,
and Q. is the maximum amplitude of the second-order field
with A(z) its envelope function. In the interaction picture
of Hy = %ha)oaz and under the rotating wave approximation
(RWA) for w; < wyp, the Hamiltonian becomes

I:I(t) = %hwlax + %QmaxA(t)o'v (4)

Upon the rotation (x,y,z) — (z/,¥’,—x’), which represents
the transformation into the dressed-states basis [Figs. 2(b)—
2(c)], this Hamiltonian exactly manifests the prototypical
Hamiltonian of Eq. (1). It describes the dressed qubit, a
two-level system with energy level splitting hw;, whose
eigenstates correspond to the |+x) and |—x) states of the bare
NV electron spin in the rotating frame. The dressed qubit is
driven by a time-dependent transverse field 2,,,x A(¢). Thus, by
tuning the ratio between Q,,x and w; one can switch between
the weak and strong driving regimes, and study various
manipulation techniques using different envelope functions
A(t). Our experiments were conducted with the parameters
w; = (2m)1.5 MHz and Q,x = (27) 6 MHz, representing
a driving field four times stronger than the dressed spin’s
precession frequency.

Experiments on the dressed qubit consist of three stages:
arbitrary state initialization, pulsed manipulation, and to-
mographic state readout [Fig. 2(d)]. The dressed qubit is
initialized to |+z’) by optically pumping the spins into the
|+z) state (corresponding to m,; = 0) using a short laser pulse,
and then rotating them to |+x) by a (7), rotation induced with
a short pulse of the microwave field. Similarly, to measure the
dressed qubit’s 7’ projection we apply the same sequence in
reverse, i.., a (5 ), pulse followed by a laser pulse to readout
the my; = 0 population of the bare spins. By changing the
duration and rotation axis of the 7 pulses in either stage
we may initialize the dressed spin into different states or
measure different projections of it, thereby enabling arbitrary
initialization and complete state tomography of the dressed
qubit.
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B. Advantages of using the dressed spin

Using the radiation-dressed spin in this experimental study
of fundamental control in quantum systems offers several
distinct advantages over the bare spin system:

(a) The dressed spin is protected from spurious magnetic
noise via continuous dynamical decoupling [30-32]. In our
setup, we measured a tenfold improvement in the phase-
memory time 7, from 0.7 to 7 us.

(b) The dressed spin accurately manifests the Hamiltonian
[Eq. (1)], and specifically is insensitive to the alignment of the
second-order driving field €2(¢): any x or y components of this
field average to zero in the rotating frame under the RWA since
Qmax <K o, resulting in pure transverse driving of the dressed
spin and eliminating dynamical energy shifts that may cause
unwanted coupling between its states.

(c) The dressed spin is a better representation of a true
two-level system than the bare system, which may include
additional energy states. This is particularly important for
the application of bang-bang control sequences, which are
intrinsically wideband and may therefore cause unwanted
coupling to these additional energy levels [33]. With this
analogy to a two-level system in mind, and for the sake of
brevity, henceforth we refer to the dressed spin simply as a
qubit or a spin.

C. Harmonic driving of the dressed spin beyond the RWA

Here we demonstrate the dressed spin dynamics under
resonant harmonic excitation; i.e., 2(f) = Qunax cos(w;t). In
a frame rotating at w, this field is rewritten as the sum of
two terms, 2(7) = Quax[1 + exp(2iw;t)]/2. The first term is
fixed in the rotating frame, while the second rotates at twice
the precession frequency w;. At the weak driving regime,
Qmax K 01, the second term averages to zero—this is the
rotating wave approximation—and the resulting spin dynamics
are the familiar Rabi oscillations, occurring at a frequency
Qmax [Fig. 3(2)] [34].

However if we attempt to shorten the spin manipulation time
by increasing the field amplitude, the counter-rotating term
becomes non-negligible and the dynamics differ significantly
from the expected result in both the 7z’ projection of the spin
and its x’-y’ components [Figs. 3(b)-3(c)]. These results show
a clear signature of a strongly driven two-level system. It is
important to note that while the dressed spin does rotate on time
scales much shorter than its precession period in Fig. 3(c) for
Qmax/@1 = 1.5, the first “dip” of the oscillations that occurs at
t = 0.25 x (27 /w;) does not correspond to an actual spin flip;
i.e., the spin does not reach the south pole of the Bloch sphere.
It is only on the third dip, at t = 1.25 x (27 /w,), that the spin
actually reaches this state, demonstrating the inefficiency of
the harmonic driving method at such strong fields.

IV. DEMONSTRATION OF TIME-OPTIMAL CONTROLS
AND THEIR APPLICATION

A. Characterization of time-optimal 7 pulses

We implemented the driving scheme described in Sec. II
on an ensemble of NV centers using the dressed spin as the
prototype two-level system, and measured the performance of
the designed time-optimal 7 pulses. We first illustrate the spin
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FIG. 3. (Color online) Harmonic driving of the dressed spin at
increasing coupling strengths: (a) Quax/@w; = 0.16, (b) Quax/w) =
0.67, and (c) Qmax/@w1 = 1.5. Left panels show the z' component of
the spin (dots: experiment, thick dashed line: simulation, thin dotted
line: expected Rabi oscillations without the counter-rotating term) and
right panels show the spin trajectory in the x’-y’ plane (measurements
only, time flows from dark to bright colors). An exponential decaying
envelope was fitted to the measurements and applied to the simulation
results for comparison purposes.

dynamics under such pulses in detail. For a bang-bang control
sequence bounded by Q. = 4w, the qubit is rotated on
time scales faster than its precession frequency w,; [Fig. 4(a)].
The measured state trajectory on the Bloch sphere under this
sequence [Fig. 4(b)] fits the predicted behavior well: the first
bang rotates the qubit from the north pole |+z’) to the equator,
failing to pass through the desired south pole |—z’) due to the
nonvanishing free precession w;. The second bang, of opposite
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FIG. 4. (Color online) (a) and (b): Measurement of the spin z’
component and its full state trajectory, respectively, under a bang-
bang sequence (red dots: experiment, black dashed line: simulation,
blue solid line: pulse sequence in units of 2,,,,; arrows denote the flow
of time). (c) Real and imaginary parts of the measured process matrix
for 7, pulse (empty bars show the ideal matrix). (d) Measured gate
fidelities of 7w pulses around different axes in the x'-y’ plane. Average
fidelity obtained was 0.93 + 0.01.
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sign, compensates for this effect and completes the 7 pulse by
rotating the qubit exactly to |—z').

A complete characterization of universal spin-flip se-
quences was carried out using quantum process tomogra-
phy [35]. Figure 4(c) shows the measured process matrix for a
7 pulse around the x axis, with an average gate fidelity [36] of
0.92. 7 flips around different axes in the x-y plane were also
characterized [Fig. 4(d)]. We measure an average gate fidelity
of 0.93 £ 0.01. The fidelity is limited by our technical ability
to deliver ideal bang-bang pulses, and does not represent a
fundamental limit of our spin control technique. These results
demonstrate our ability to perform universal qubit rotations at
time scales much shorter than the qubit’s precession period.
Achieving similar controllability using traditional harmonic
driving requires at least an order of magnitude slower dynamics
than the precession period in order to satisfy the RWA and to
maintain high fidelity.

B. Application of time-optimal control in quantum protocols

In addition to quantum information processing, fast
arbitrary-axis rotations also play a key role in ac magnetometry
sequences, aimed at detecting classical sources emitting ac
magnetic fields [2,37] or the fluctuating fields of nearby
spins [38,39]. One such sensing scheme is based on re-
peatedly applying 7 pulses to the sensing spin at regular
intervals [38,40], similar to pulsed dynamical decoupling
sequences [41,42]. This acts as a lock-in measurement, signifi-
cantly increasing the sensitivity of the spin to ac magnetic fields
at frequencies matching the interpulse delay. Keeping this
delay fixed and increasing the number of 7 pulses improves
the sensitivity and narrows the frequency response function.
However two deteriorating mechanisms compete with this
improvement: (a) the total sequence time increases linearly
with the number of pulses while the coherence time improves
only sublinearly [11,43], exposing the spin to decoherence;
(b) errors in the 7w pulses accumulate and decrease the overall
signal fidelity.

The effect of pulse error accumulation can be mitigated
by implementing multiple-axis control over the spin and
by symmetrizing the pulse sequence [10-12] [Fig. 5(a)].
Figure 5(b) shows the performance of dual-axis XY4-N and
XY8-N sequences, implemented using the time-optimal 7
pulses which were characterized above, compared to a single-
axis sequence implemented with the same pulses. A substantial
suppression in the pulse error accumulation is indicated by the
slower decay coherence as the number of 7 pulses is increased.
Furthermore, the interpulse delay t in these sequences was set
to only two precession periods of the spin, representing a
regime of high pulse density which is unreachable with weak
harmonic driving techniques.

V. SUMMARY AND OUTLOOK

In this work we studied, both theoretically and experimen-
tally, the time-optimal construction of arbitrary single-qubit
rotations under a single strong driving field of finite amplitude.
We showed that arbitrary time-optimal rotations of two-level
systems are constructed as a series of bang pulses and drift
periods, and that under a strong driving field a combination of
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FIG. 5. (Color online) Demonstration of ac magnetometry se-
quences using two-axis control in the strong driving regime.
(a) CPMG-N: a fixed-axis 7, pulse is applied N times at regular
intervals; XY4-N and XY8-N: the sequences m.-m,-m,-m, and
T =TUy=TT =TT =TT, ~T, T, ~TTx, T€Spectively, are applied N times. At the
beginning and end of each sequence a (7/2), pulse is applied.
(b) Measured coherence as a function of the total number of m
pulses, under different decoupling sequences (symbols: experiment,
dash lines: exponential decay fits). In all cases the interpulse delay
was two precession periods (4w /wy).

three such pulses can be used to obtain general rotations on
the Bloch sphere. This result is general to any driven two-level
system and may be applied to different physical realizations
such as quantum dots, donors in semiconductors, trapped ions,
and superconducting flux qubits.

Importantly, our result allows for designing arbitrary rota-
tions, or single-qubit gates, rather than just steering the state
of the system from one point on the Bloch sphere to another,
which is a crucial requirement for implementations of quantum
information processing or quantum metrology. As an example,
being able to apply m rotations around different axes on the
Bloch sphere is a requisite for universal dynamical decoupling
sequences [11], as we demonstrated in our study. This new
regime of high-density pulse sequences, where pulses are
shorter than the qubit’s precession period and their spacing also
approaches this time scale, can enable, for instance, quantum
sensing of high-frequency fields or efficient suppression of
wideband decoherence processes.

Finally, in our study we used the dressed spin as a
prototypical two-level system with several key advantages: it
benefits from longer coherence times compared to the bare spin
of the NV center, it is a more accurate and robust realization of
a true two-level system, and it offers better controllability over
the system parameters and the driving field. Most importantly,
it allows a straightforward and technically easy approach
to a strongly driven quantum system, thus enabling funda-
mental research of different manipulation techniques in this
regime.
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APPENDIX: NECESSARY CONDITIONS ON
TIME-OPTIMAL UNIVERSAL CONTROLS

‘We provide here a complete proof that time-optimal control
sequences, for the problem presented in the main text, consist
only of bang pulses (2 = +Qx) and drift periods (€2 = 0).
A similar proof can be found in Ref. [19] of the main text. We
begin by parametrizing the time-evolution operator U () using
three Euler angles,

UW.0.¢) = exp (Livo,) exp (3i60,) exp (Jigo.). (A1)

and define the state vector x(¢) = ((¢),0(¢),¢(t)). From
Egs. (1) and (2) we find the equations of motion for this vector,

1/} = w; — 2cos Y coth,
0 = —Qsiny,
¢ = Qcosycsch.

(A2)

We now apply Pontryagin’s minimum principle
(PMP) [24,25] which gives the necessary conditions that a
control () must satisfy in order to be optimal, thus reducing
substantially the number of optimal control candidates. The
principle states the following: given a state vector x which
satisfies a dynamical system x(¢) = f(x(¢),2(¢);t), where
Q(t) is a bounded control, we construct the Pontryagin
Hamiltonian

Hp(x(1),p(1), po,Q2(1);1) = p - X + po.

Here p(¢) is the costate vector, satisfying the adjoint equation
p = —90Hp/0x, and p, is a nonnegative constant chosen such
that p(#) and p( do not vanish together at all times (nontriviality
condition). According to the PMP, a necessary condition for
a control Q(¢) to be optimal is to maximize the Pontryagin
Hamiltonian Hp(?) at all times. Additionally Hp must vanish
at the final time (transversality condition). For time-optimal
problems in which Hp has no explicit time dependence, it can
be shown to be constant and equal to zero at all times under
optimal control [44].

Using Eqs. (A2) we construct the Pontryagin Hamiltonian
for our problem,

Hp(X,p, po,S2) = —S2(py cos ¢ cotd + prsinyy
— p3cos Y esc) + prwi + po,

(A3)

(A4)

with the costate vector p(¢) = (p1(¢), pa(t), p3(¢)). We find that
Hp is linear in €2, and we define its coefficient &(x,p;7) =
0Hp/0Q2. At times where ®(¢) is nonzero the Pontryagin
Hamiltonian is indeed a linear function of €2, and it obtains its
maximum at the edges of the allowed control range,

—Qmax d(r) < 0. (AS)

Q@) = {

However when vanishes ®(¢) identically—on a so-called
singular arc—Hp becomes independent of 2 and the maxi-
mization principle cannot be used to constrain it. Nevertheless
we now show, based on the nontriviality and transversality
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conditions, that on a time interval where ®(¢) is identically
zero, the control 2(¢) must be zero as well. To this end, we
write explicitly ® as

0Hp

02
= p1cos iy cotd + pssiny — p3cos iy csch. (A6)

D(x,p; 1)

We also write the equations for the costate vector p(t) =
(p1(t), p2(t), p3(t)) as derived from p = —3d H /90X,

p1 = Q(—pjsinyr cot@ + prcosyr + p3sinyrcsch), (A7)

P2 = Q(—pj cos Y csc 0 + pysiny

+ p3 cos ¥ csch cot ), (A8)

p3 =0. (A9)
We now set () =0 in Eq. (A6), and find that p; can be
written as

p1 = —patany tan6 + pzsecH. (A10)

Also on a singular arc the Hamiltonian (A4) has the form
Hp = piw; + po, and since it is an integral of the problem,
p1 must be constant on singular arcs. Substituting Eq. (A10)

PHYSICAL REVIEW B 89, 245311 (2014)

into Eq. (A7) and setting p; = 0 we obtain

Qpasecy =0, (A11)

so that either 2 =0 as required, or p, = 0. Assuming the
latter, we then must also have p, = 0 on the singular arc, and
we find from substituting Eq. (A10) into Eq. (A8) and setting
p2=p2=0,

—Qp;3cosyrsecHd = 0. (A12)

Again this means that either 2 =0 as required, or that
either cos ¥ or p3 vanish identically on the singular arc. We
contradict the latter two possibilities:

(1) If cosy = 0 on some time interval then ¥ must be
constant on that interval. This contradicts Eq. (A2) which, for
cos ¥ = 0, has the form ¥ = w; # 0.

(2) If p3 =0 then by Eq. (A10) we have p; = 0, since
we also assumed p, = 0. This means that the costate vector p
vanishes entirely, and the Hamiltonian (A4) is simply Hp =
po. However based on the transversality condition, Hp must
vanish on an optimal control, so pp = 0, and we find thatp = 0
and pg = 0 in contradiction to the nontriviality condition.
This completes the proof that €2(¢) = 0 on singular arcs, i.e.,
for () = 0.
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