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Controlling the dark exciton spin eigenstates by external magnetic field
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We study the dark exciton’s behavior as a coherent physical two-level spin system (qubit) using an
external magnetic field in the Faraday configuration. Our studies are based on polarization-sensitive intensity
autocorrelation measurements of the optical transition resulting from the recombination of a spin-blockaded
biexciton state, which heralds the dark exciton and its spin state. We demonstrate control over the dark exciton
eigenstates without degrading its decoherence time. Our observations agree well with computational predictions
based on a master equation model.
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I. INTRODUCTION

Reliable quantum two-level systems (TLS) are the building
blocks for quantum information processing (QIP). Solid
state quantum bits (qubits) that can also be well controlled
are required for QIP to become a viable technology. An
important prerequisite of a solid state qubit is that it has
a long coherence time, in which its quantum state is not
randomized by spurious interactions with its environment
[1,2]. Semiconductor quantum dots (QDs) confine charge
carriers into a three-dimensional nanometer scale region, thus
acting in many ways as isolated “artificial atoms,” whose
properties can be engineered. They are also compatible with
modern microelectronics, making them particularly attractive
as solid state qubits. Many efforts have been devoted to prepare,
control, and measure the quantum states of charge carriers
in QDs [3–7]. One of the more studied TLS in QDs is their
fundamental optical excitation, which results in a QD confined
electron-hole (e-h) pair. Since light interacts very weakly with
the electronic spin, the photogenerated e-h pair has antiparallel
spin projections on the incident light direction [8]. Such an e-h
pair is called a bright exciton (BE). The coherent properties
of the BE have been extensively studied [9–11]. The main
advantages of the BE qubit are its accessibility to coherent
control by light and its neutrality, which results in insensitivity
to vicinal electrostatic fluctuations. The main disadvantage is
in its short radiative lifetime (∼1 ns). In contrast, dark excitons
(DEs)—formed by e-h pairs with parallel spin projections, are
almost optically inactive [12,13]. Due to small BE-DE mixing,
induced by the QD deviation from symmetry, DEs may still
have some residual optical activity [14,15]. However, their
radiative lifetimes are orders of magnitude longer than that of
the BEs [16]. DEs, like BEs, are neutral and therefore have a
long spin coherence time [16]. Recently it was demonstrated
that the DE can be optically initiated in a coherent state by
an ultrashort resonant optical pulse [17], and that its quantum
state can be coherently controlled and reset using short optical
pulses [16,18], thus making it an attractive matter spin qubit.

In this work we present further experimental study of
the DE as a coherent TLS under an external magnetic field
and demonstrate full control over its eigenstates. Even at

zero magnetic field, due to the short range e-h exchange
interaction [19], the DE spin states are not degenerate. The
spin eigenstates are the symmetric |S2〉 and antisymmetric |A2〉
coherent superpositions of the DE spin up (|+2〉) and spin
down (|−2〉) states [20]. At nonvanishing external magnetic
fields, however, when the Zeeman splitting is larger than the
exchange interaction, the eigenstates become the |+2〉 and
|−2〉 spin states.

Our experimental data are corroborated by a theoretical
model which produces excellent agreement with measured
photoluminescence (PL) intensity correlations under various
magnetic fields and optical excitation intensities. This agree-
ment shows that the externally applied field controls the DE as
a qubit, without reducing its inherently long coherence time.
The paper is organized as follows: In Sec. II we outline the
relevant theory, in Sec. III we describe the experiments, present
the measured data and compare it with the theory. A summary
and conclusions are presented in Sec. IV.

II. THEORY

A. The dark exciton and the spin blockaded biexciton

At zero magnetic field, due to the short range
e-h exchange interaction, the DE eigenstates are the
symmetric |S2〉 = 1/

√
2[|+2〉 + |−2〉] and antisymmetric

|A2〉 = 1/
√

2[|+2〉 − |−2〉] coherent superposition of the
spin up (|+2〉) and spin down (|−2〉) states, where the
antisymmetric state is lower in energy [16]. These states are
schematically described in Fig. 1. The DE can be optically
excited, thereby generating a spin blockaded biexciton XX0

T3

[21]. This biexciton is comprised of two electrons in a singlet
configuration at their ground level (total spin projection
zero), and two holes with parallel spins forming a triplet
(total spin projection ±3), occupying the ground and second
hole levels [21]. Likewise, as first demonstrated here, the
lower and higher eigenstates of the XX0

T3
qubit are also the

antisymmetric |A3〉 = 1/
√

2[|+3〉 − |−3〉] and symmetric
|S3〉 = 1/

√
2[|+3〉 + |−3〉] coherent superpositions of the

spin up (|+3〉 ) and spin down (|−3〉), respectively.
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FIG. 1. (a) Schematic description of the energy levels and spin wave functions of the DE and the XX0
T3

biexciton as function of an externally
applied magnetic field in Faraday configuration. ↑ (⇓) represents spin up (down) electron (hole). The blue and purple solid (dashed) lines
represent the energies of the low and high energy eigenstates of the DE (biexciton), respectively. The spin eigenstates are written to the right
and left sides of the figure for zero and high field, respectively. Vertical arrows connecting the DE and biexciton eigenstates mark allowed
polarized optical transitions between the eigenstates at zero and high field. (b) Schematic representation of the changes that the external field
induces on the Bloch sphere of the DE qubit. Shown are three cases: (i) zero field, (ii) cross section of the sphere at arbitrary magnetic field, and
(iii) strong magnetic field. The eigenstates |A2〉, |S2〉 at zero field and |±〉2 at finite field, and the angle θB are defined in the text and in Eq. (3).
The eignestates are always at the poles of the sphere, north pole being the lower energy one. The pink dot represents the |+2〉 state, heralded
by detecting R polarized biexciton photon. The blue circle represents the counterclockwise temporal evolution of the DE state following its
heralding.

The DE and XX0
T3

form an optical “� system” since optical
transitions are allowed between the |+2〉 (|−2〉) DE state to
and from the |+3〉 (|−3〉) biexciton state by right (left) handed
circularly polarized light only. At zero magnetic field, the DE
and XX0

T3
eigenstates are therefore optically connected by

linear cross polarized optical transitions denoted as horizontal
(H) and vertical (V), where the H direction is chosen such

that it coincides with the polarization of the ground state BE
optical transition [21]. The system is schematically described
in Fig. 1(a).

The time independent Hamiltonian of the DE and the XX0
T±3

in the presence of a magnetic field in the Faraday config-
uration as expressed in the basis {|+2〉,|−2〉,|+3〉,|−3〉} is
given by

Ĥ = 1

2

⎛
⎜⎜⎝

−μB (ge − gh)B �ω2

�ω2 μB(ge − gh)B
2� + μBg2hB �ω3

�ω3 2� − μBg2hB

⎞
⎟⎟⎠. (1)

This Hamiltonian represents two decoupled Hamiltonians, one
for the DE and one for the XX0

T±3
, where μB = e�/2mec is

the Bohr magnetron, B is the magnitude of the magnetic field
(normal to the sample surface), ge and gh are the electron and
hole gyromagnetic ratios in the direction of the magnetic field,

and g2h is the gyromagnetic ratio of the two heavy holes in
triplet configuration. The sign convention for the gyromagnetic
factors is such that positive factors mean that electron (heavy
hole) with spin parallel (antiparallel) to the magnetic field
direction is lower in energy than that with spin antiparallel
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(parallel) [20]. We note that the triplet gyromagnetic ratio is not
a simple sum of the gyromagnetic ratios of the individual holes
[22]. The energy difference between the DE and the XX0

T±3

is �, and �ω2 and �ω3 are the energy differences between
the DE and XX0

T±3
eigenstates, respectively. All energies are

defined at zero magnetic field. From this Hamiltonian, one cal-
culates the energies and eigenstates of the system. Figure 1(a)
schematically describes the DE energy level structure, their
magnetic field dependence, and the optical transitions between
their eigenstates.

The externally applied magnetic field modifies the eigen-
states of both qubits [20]:

|+〉i = Ni+

[
|+i〉 +

(
βi

ωi

+
√

1 + β2
i

ω2
i

)
|−i〉

]
,

|−〉i = Ni−

[
|+i〉 +

(
βi

ωi

−
√

1 + β2
i

ω2
i

)
|−i〉

]
, (2)

where i = 2,3 Ni
± are normalization factors and β2 =

μB(ge − gh)B and β3 = −μBg2hB are the magnetic energies.
The energy difference between the two eigenstates is given by

their Zeeman splitting: �i(B) =
√

β2
i + (�ωi)2. If one defines

tan θ i
B = ( βi

�ωi
), Eq. (2) can be expressed more conveniently as

|+〉i = cos

(
π

4
+ θ i

B

2

)
|+i〉 + sin

(
π

4
+ θ i

B

2

)
|−i〉,

|−〉i = cos

(
π

4
− θ i

B

2

)
|+i〉 − sin

(
π

4
− θ i

B

2

)
|−i〉. (3)

Figure 1(b) presents an intuitive geometrical interpretation
for the angle θB and the DE Bloch sphere. Since in the
Faraday configuration the magnetic field direction is aligned
with the direction of the |+2〉 spin state, it follows that
π/2 − θB is the angle between the Bloch sphere eigenstate
axis and the direction of the magnetic field. Thus, as the
magnitude of the external field (B) increases θ i

B approaches
π/2 and the eigenstates gradually change their nature. Once the
Zeeman energies significantly exceed the exchange energies,
the eigenstates become the |±2〉 and |±3〉 spin states for the
DE and the XX0

T±3
, respectively.

In self-assembled InGaAs QDs, the out-of-plane g factors
of the electron and the heavy hole are known to be both positive
[20,23] with that of the electron larger than that of the hole.
As a result the lower energy eigenstate contains an increasing
contribution from the |+2〉 spin state, while the higher energy
contains an increasing contribution from the |−2〉 state, as the
magnetic field increases. The behavior of the XX0

T3
is similar,

because as we show below, the Zeeman splitting of the optical
transition from this state to the DE is opposite in sign to the
Zeeman splitting of the BE transitions.

As can be seen in Fig. 1, at the limit of high magnetic
field, the DE-XX0

T3
system forms two separate TLSs, in which

the DE spin up (|+2〉) and spin down (|−2〉) eigenstates are
optically connected to the spin up (|+3〉) and spin down
(|−3〉) eigenstates by a right (R) or left (L) hand circularly
polarized transition, respectively. The externally applied field
thus changes the polarization of the optical transitions between
the DE and XX0

T3
eigenstates from linearly cross polarized

transitions into elliptically cross-polarized ones as the field
increases and eventually the optical transitions become cross-
circularly polarized.

B. The dark exciton’s Bloch sphere

The state of a TLS (or a qubit) is conventionally described
as a point on the surface of a unit sphere (Bloch sphere). The
north pole of the Bloch sphere describes the lower energy
eigenstate and the sphere’s south pole describes the higher
energy eigenstate. The surface of the sphere describes all
possible coherent superpositions of the TLS eigenstates. Each
superposition is therefore uniquely defined by a polar angle
(ϕ) and an azimuthal angle (θ ):

|ψ〉 = cos

(
θ

2

)
|d〉 + e−iϕ sin

(
θ

2

)
|u〉, (4)

where |d〉 (|u〉) is the lower (higher) energy eigenstate at the
north (south) pole of the Bloch sphere. When a coherent
superposition of a given TLS is formed, the relative phase
between the two eigenstates evolves in time, due to the
energy difference between the two eigenstates � [8]. This
evolution can be described as a counterclockwise precession
around an axis connecting the Bloch sphere’s poles at a rate
�/�. The evolution is therefore described such that ϕ(t) =
ϕ(t = 0) − �

�
t , while θ (t) = θ (t = 0) remains unchanged as

shown in Fig. 1(b)(i), for the case in which a detection of
a R circularly polarized XX0

T3
-biexciton photon initiated the

DE in the |+2〉 coherent state. In this case θ (t = 0) = π/2,
ϕ(t = 0) = 0, and �/� = ω2.

The externally applied field induces changes on the DE
and XX0

T3
eigenstates as described by Eq. (3). These changes

can be described as geometrical “rotations” of their Bloch
spheres in space, such that the new direction of the sphere’s
axis is given by 1

�i
(βi,0,�ωi), where βi , ωi , and �i are defined

above. Thus, there is an angle θB
i = tan−1(βi/�ωi) between

the sphere’s axis in the presence of the external field and the
axis in the absence of the field, as described in Fig. 1(b)(ii).
Relative to the new axis the qubit spin state evolves in time
like

|ψ(t)〉 = cos

(
θ

2

)
|−〉i + e−iϕ (t) sin

(
θ

2

)
|+〉i . (5)

Here detection of a R polarized XX0
T3

-biexciton photon,
which initiates the DE in the |+2〉 coherent state, defines
that θ (t = 0) = π/2 − θB , ϕ(t = 0) = 0, and �/� = �2/�.
This situation is schematically described in Figs. 1(b)(ii) and
1(b)(iii).

C. Probing the dark exciton in an externally
applied magnetic field

For probing the DE precession and its dependence on
the externally applied magnetic field we used continuous
wave (cw) resonant optical excitation of the DE to the XX0

T3

biexciton. In the presence of such a cw resonance light field the
two TLSs are coupled and the time independent Hamiltonian
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FIG. 2. (a) Rectilinear polarization sensitive PL spectra of the QD at zero magnetic field. Solid black (red) line represents horizontal (H)
(vertical V) polarization. (b) The degree of rectilinear (black) and circular (orange) polarizations as a function of the emitted photon energy.
(c) Circular polarization sensitive PL spectra at B = 0.2 T. Red (black) line represents right (R) (left L) hand circular polarization. (d) The
degree of rectilinear (black) and circular (orange) polarizations as a function of the emitted photon energy at B = 0.2 T. Note that the Zeeman
splitting of the XX0

T3
line is opposite in sign to that of the negative, neutral, and positive excitons.

is given by

Ĥ =

⎛
⎜⎜⎜⎝

−
B(ge − gh) �ω2/2 �
R

�ω2/2 
B(ge − gh) �
L

�
R δ + 
Bg2h �ω3/2

�
L �ω3/2 δ − 
Bg2h

⎞
⎟⎟⎟⎠, (6)

where 
B = μBB/2, 
R(L) is the Rabi frequency for right
(left) hand circularly polarized light. The detuning δ of the
exciting laser energy from the resonant transition between
the DE and XX0

T3
biexciton is assumed to be zero in our

experiments. Equation (6) shows that the optical coupling
depends on the light polarization and the spin state of the
DE. A circularly polarized R (L) photon is absorbed in
proportion to the magnitude of the DE spin state projection
on the |+2〉(|−2〉) state. The XX0

T±3
biexciton then starts to

precess while it radiatively recombines into an excited DE
state. Detection of a right (left) hand circularly polarized
photon heralds the system in a well-defined DE state given
by |+2〉(|−2〉). The DE then precesses until a second photon
is absorbed, and the process repeats itself. Therefore, time
resolved intensity autocorrelation measurements of the XX0

T±3

spectral line in the circularly polarized basis provide a
straightforward experimental way for probing the dynamics
of the system [16]. In the absence of an external field and at
low resonant excitation intensities, such measurements show a
temporally oscillating signal at the frequency ω2. The visibility
of the oscillations in the degree of circular polarization can
be used as a measure for θ (t = 0) (where t = 0 is the time
of detecting the first polarized photon), and the phase of the
signal as a measure for ϕ(t = 0) [17].

III. SAMPLE, EXPERIMENT AND RESULTS

Our experiments used QDs grown by molecular beam
epitaxy (MBE) on a [001]-oriented GaAs substrate. One layer
of self-assembled InGaAs QDs was deposited in the center of
a one-wavelength microcavity sandwiched between an upper
and lower set of AlAs/GaAs quarter-wavelength layer Bragg
mirrors. The sample was placed inside a tube, immersed
in liquid helium, maintaining a temperature of 4.2 K. A
conducting coil outside the tube was used for generating an
external magnetic field along the tube axis, permitting this
way optical studies in Faraday configuration. A ×60, 0.85
numerical aperture microscope objective was used to focus
the excitation lasers on the sample surface and to collect the
emitted light. We used low intensity high above band gap
energy 445 nm diode cw laser light to photogenerate a steady
state population of DEs in the QD in a statistical manner [24].
In addition, by using a grating stabilized tunable cw diode
laser, we resonantly excited the DE population in one of the
QDs into a XX0

T3
population [16].

A. Polarization sensitive photoluminescence

Figure 2 shows polarization sensitive PL spectra of the
single QD under study. The PL was excited using 445 nm
nonresonant cw laser light. Figure 2(a) [Fig. 2(c)] presents
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the measured spectra in the two linear (circular) polarizations,
in the absence (presence of B = 0.2 T) external magnetic
field. Figure 2(b) [Fig. 2(d)] presents the obtained degrees
of linear (circular) polarizations as a function of the emitted
photon energy in the absence (presence of B = 0.2 T) external
magnetic field. In Fig. 2(a) the solid black (red) line represents
horizontal (vertical) polarization and in Fig. 2(c) the black
(red) line represents left (right) hand circular polarization.
Black (orange) lines in Figs. 2(b) and 2(d) represent the
degree of linear (circular) polarization. The various exciton
and biexciton lines are identified in Fig. 2(a).

Even in the absence of a magnetic field, one can clearly
observe in Figs. 2(a) and 2(b) that the BE spectral line is split
into two cross linearly polarized components. This splitting,
measured to be 27 ± 3 μeV is common to self-assembled
QDs. It results from the anisotropic e-h exchange interaction,
mainly due to the QD deviation from cylindrical symmetry
[20,25]. The DE degeneracy is also removed mainly due to
the short range e-h exchange interaction [20,25]. However,
since the splittings ω2 and ω3 are smaller than the radiative
linewidth, the linearly polarized components of the XX0

T3

biexciton line cannot be spectrally resolved. Therefore, only
one unpolarized spectral line is observed. An upper bound for
ω3 < 0.2 ns−1 corresponding to splitting of less than 0.82 μeV
is deduced directly from the degree of circular polarization
memory of the XX0

T3
biexciton line at zero magnetic field

[16]. At a sufficiently large magnetic field the line splits into
two components. The lower energy transition is R-circularly
polarized and the upper energy one is L-circularly polarized.
At a magnitude of 0.2 T, the splitting amounts to 13.6 ± 3 μeV
and it exceeds the measured linewidth of 11.4 ± 3 μeV in the
absence of external field.

We note that the measured Zeeman splitting of the XX0
T±3

line is opposite in sign to those of the X+1, the X−1, and the X0

excitonic lines. It follows from simple considerations that the
expected Zeeman splitting of the charged and neutral excitonic
spectral lines is proportional to the sum of the hole and electron
g factors (gh + ge). Therefore, the R polarized part of these
spectral lines is expected to be higher in energy than the L
polarized part. This is indeed what we experimentally observe.
Since the XX0

T±3
line splits in proportion to g2h + ge − g∗

h

(where g∗
h is the g factor of an excited hole), it follows that the

sign of g2h − g∗
h must be negative. Moreover, the magnitude

of this term in this particular QD is larger than that of the
electron g factor. These observations are in agreement with
the energy level diagram of Fig. 1(a). The dependencies of the
Zeeman splitting of the various spectral lines on the g factors
are summarized in Table I.

TABLE I. The measured Zeeman splitting of various spectral
lines. The DE splitting was measured from a similar dot from the
same sample.

Measured at
Line Zeeman splitting 0.2 T in (μeV)

X0
√

(�ω0)2 + [μB (ge + gh)B]2 30 ± 3
X−/X+1 μB (ge + gh)B 13.6 ± 3
XX0

T3
−μB (g2h + ge − g∗

h)B 13.6 ± 3
X0

D μB (ge − gh)B 3.6 ± 1

B. Time resolved intensity correlation measurements

In order to probe the precession of the DE, we excite
the sample with low intensity 445 nm cw laser light. This
nonresonant excitation photogenerates the QD confined BE
and DE in a statistical manner. The BE recombines radiatively
within about 1 ns, while the DE remains in the QD until it
decays radiatively or an additional charge carrier enters the
QD, whichever comes first. The rate by which additional
carriers enter depends linearly on the power of the (blue) laser
light (Pb). One can tune Pb such that the average time between
consecutive arrivals of carriers to the QD is comparable to
the radiative lifetime of the DE [16]. An additional circularly
polarized cw laser light, resonantly tuned to the DE-XX0

T±3

transition is then used for probing the DE precession [26].
In Figs. 3(a)–3(c) we present measured and fitted intensity

autocorrelation functions at zero applied magnetic field. As
defined, the functions are normalized to unity at t → ∞. Two
measurements in two vastly different powers of the blue laser
are presented together in Fig. 3(a) to clearly demonstrate the
reduction of the DE lifetime resulting from the increase in
the nonresonant excitation power. The DE lifetime decreases
significantly as the nonresonant blue light (Pb) power increases
as a result of the increase in the flux of carriers accumulating
in the QD. All other experimental conditions, in particular the
intensity of the resonant laser (Pr ), were kept the same. The
measured data points (dots) are overlaid by our model best fits
[continuous lines in Figs. 3(b) and 3(c)] using the parameters
listed in Table II convoluted with the system temporal response
function [12]. The temporal oscillations in the correlation func-
tion resulting from the precession of the DE [16] are clearly
observed as well. The inset to Fig. 3(a) shows the Fourier
transform of the measured and calculated correlation functions
under weak blue excitation. From these measurements we
calculate a precession frequency of 417 ± 3 MHz, which cor-
responds to a precession period of 2.39 ± 0.03 ns and a natural
splitting of 1.7 ± 0.02 μeV between the two DE eigenstates.
This splitting, in the absence of magnetic field, is due to the
short range e-h exchange interaction [14,20]. The measured
full width at half maximum of the DE frequency at this
intensity is 25 MHz and it increases with the excitation power
of both the blue and red laser. This power induced broadening
is a consequence of the polarization oscillation decay, induced
by the resonant cw excitation. Much longer polarization decay
times are measured under pulsed excitation [16].

C. Comparison between the measurements
and the theoretical model

To model our measurements, we added to the Hamiltonian
presented in Eq. (6) a vacuum state and a charge state as shown
in Fig. 4, which schematically describes the various states of
the system and the transition rates between these states. For the
sake of simplicity, we only included one additional auxiliary
charged state in our model. This charge level represents all
states which do not participate in the optical transitions,
such as a singly positive or negative charged QD. With this
degree of simplicity, however, we had to estimate the various
proportionality constants to Gb by which the charged state
is connected to other states by the blue laser excitation (see
Fig. 4). These nonresonant optical charging and discharging
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FIG. 3. (a) Intensity autocorrelation measurements g(2)(τ ) of the emission line XX0
T3

without magnetic field. Blue (red) line represents
low (high) intensity nonresonant excitation with blue light Pb = 0.1 μW (Pb = 0.55 μW) and low intensity resonant excitation with red light
(Pr = 3.5 μW). Inset shows the Fourier transform of the low intensity measurement (blue filled line) and the fitted model calculations (solid
black line), revealing DE precession frequency of 417 ± 3 MHz corresponding to a 2.39 ns precession period. (b) and (c) The color matched
measurements in (a) for a limited temporal window [marked by dashed vertical lines in (a)]. The measured data points (dots) are overlaid by
our model simulations convoluted by the temporal response of the detectors (solid lines).

rates, marked by upward and downward vertical blue arrows
are proportional to the nonresonant excitation rate Gb. They
were deduced from a set of power dependent measurements at
zero magnetic field. The various rates used in our model are
defined in Table II.

We then solved the system’s master equation, which
includes a Lindblad dissipation part in addition to the Hamil-
tonian

d

dt
ρ(t) = − i

�
[H,ρ(t)]

+
∑

k

(
Lkρ(t)L

†

k − 1

2
ρ(t)L

†

kLk − 1

2
L

†

kLkρ(t)

)
,

(7)

where Lk represents the various non-Hermitian dissipation
rates. The various parameters used as input to the model are
listed and referenced in Table II. Gb in Fig. 4 represents the rate
by which electrons and holes are equally added noncoherently
to the QD by the nonresonant blue laser excitation and it is
therefore proportional to the power of blue laser (Pb). Since
the DE radiative lifetime is very long, Gb essentially defines

the DE lifetime, and the probability to find a DE in the QD.
Therefore Gb can be deduced directly from the decay of the
autocorrelation measurements to its steady state (see Fig. 3).
Likewise 
R(L) was set proportional to the square root of
the R (L) circularly polarized red laser power Pr , as deduced
from the power needed to saturate the PL under excitation
with this source. At saturation the co- (cross-)circular intensity
autocorrelation signal exhibits no oscillations, while the lower
the power is, the more oscillations are observed. This feature
facilitated quite sensitive fitting of 
R(L) so that the observed
and calculated number of oscillations match.

We use the quantum regression theorem [27] to solve the
master equation and thus to describe the temporal evolution
of the system. From the numerical solution we calculated the
polarization sensitive intensity autocorrelation measurement
of the XX0

T±3
line, where detection of the first photon sets the

initial system conditions, and the time by which the second
photon is detected defines the time by which the system
evolution is calculated [28]. The calculations were repeated for
various blue light and resonance excitation intensities, and as
a function of the magnitude of the externally applied magnetic
field.

TABLE II. Physical values used in model calculations. g factors for the electron and hole were taken from Ref. [23] and slightly modified
to best fit our measurements (see Table I).

Parameter Symbol Value Unit Obtained by

XX0
T3

lifetime 1/γxx 0.7 ns Measured
DE lifetime 1/γx 1000 ns Measured
XX0

T3
precession rate ω3 2π/6.25 rad/ns Measured lower bound

DE precession rate ω2 2π/2.39 rad/ns Measured
Electron g factor ge 0.72 ± 0.12 dimensionless Measured from different dot
Hole g factor gh 0.41 ± 0.15 dimensionless Measured from different dot
Triplet hole g factor g2h −0.578 ± 0.01 dimensionless Measured Zeeman splitting
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FIG. 4. Schematic description of the levels used in our model.
The DE-XX0

T3
biexciton form a � system, with circularly po-

larized selection rules for optical transitions. Upward red arrows
represent resonant excitation and curly downward arrows represent
spontaneous emission. The charge level represents all states which
do not participate in the optical transitions, in particular singly
positive or negative charge. The nonresonant optical charging and
discharging rates, marked by upward and downward vertical blue
arrows, are proportional to the nonresonant excitation rate Gb. They
were deduced from a set of power dependent measurements at zero
magnetic field. The various rates are defined in Table II.

Figure 5 shows co-circular polarization sensitive intensity
autocorrelation measurements of the emission from the XX0

T±3

biexciton line under weak nonresonant (Pb) and resonant (Pr )
excitation powers, for various externally applied magnetic
fields. Here as well, the measured data points (dots) are
overlaid by our model simulations (dashed lines), convoluted
by the detectors temporal response.

FIG. 5. Measured (symbols) and calculated (lines) circularly
copolarized intensity autocorrelation functions [g(2)(τ )] of the emis-
sion from the XX0

T3
under weak nonresonant and resonant excitation

condition for various externally applied magnetic fields in Faraday
configuration. The solid lines present the best fitted calculations
convoluted with the temporal response of the detectors. The curves
are vertically shifted for clarity and the zero for each measurement is
marked by a color-matched horizontal line.

FIG. 6. Measured (symbols) and calculated (lines) circularly
copolarized intensity autocorrelation functions [g(2)(τ )] of the emis-
sion from the XX0

T3
line under various externally applied magnetic

fields in Faraday configuration, under quasiresonant excitation. The
solid lines present the best fitted calculations convoluted with the
temporal response of the detectors. The curves are vertically shifted
for clarity and the zero for each measurement is marked by a
color-matched horizontal line.

The specific DE-biexciton resonance that we discussed so
far is such that an electron is added to the first level and
a heavy hole is added to the second level thereby directly
exciting the XX0

T±3
biexciton. The use of this resonance is not

very convenient for two reasons: (a) The oscillator strength of
the resonance is relatively weak due to the different parities
of the electron and heavy-hole envelope functions. (b) The
width of this resonance is relatively narrow, since it is set by
the radiative recombination lifetime of the state (700 ps). As
a result, excitation to this resonant is very sensitive to the
detuning from resonance, which becomes highly sensitive to
the externally applied magnetic field. We therefore repeated
the measurements using a DE-biexciton resonance in which, as
before, the electron is added to the first level but the heavy hole
is added to the fourth level. This excited biexciton state has
significantly larger oscillator strength, since the electron and
hole envelope wave functions are of same parity. Moreover,
this excited biexciton state relaxes nonradiatively, by a spin
conserving process in which a phonon is emitted, to the
XX0

T3
ground state. The process occurs within 70 ps (see

Supplementary Information of Ref. [12]). As a result, the
width of the resonance is significantly broader than that of
the XX0

T3
, and consequently its excitation is less sensitive

to detuning and to variations in the externally applied field.
These advantages make the experiments less demanding, while
hardly affecting our conclusions regarding the influence of the
externally applied field on the DE as a qubit.

Figure 6 shows co-circular polarization sensitive intensity
autocorrelation measurements of the XX0

T±3
emission line

for various magnetic field intensities, under fixed weak
nonresonant (Pb) and quasiresonant (Pr ) excitation powers.
The measured data points (dots) are overlaid by our model
simulations (dashed lines). For these simulations the excited
biexciton levels were added to the model, together with
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FIG. 7. (a) Measured (points) and fitted (solid lines) polarization sensitive correlation functions of the co- (blue) and cross- (red) circular
polarization intensity autocorrelation at B = 8 mT. Solid lines are the results of our numerical model best fitted calculations convoluted with
the temporal response of the detectors. (b) Measured [blue dots obtained from (a)] and calculated (orange line obtained from the calculations
without the convolution with the detector response) time resolved DCP. The dashed black line represents the best fitted analytical expression
[Eq. (11)] to the numerical model. The upper inset shows the visibility of the polarization oscillations as a function of the angle θB . The
dashed black line describes the expected dependence as deduced from the numerical calculations. The solid orange line describes the analytical
expression following Eq. (12). The lower inset shows the polarization decay time (TD) of the DCP as a function of the angle θB .

their nonradiative, spin preserving relaxation channels. The
observed reduction in the visibility of the oscillations as
the magnetic field increases is observed in both resonant
and quasiresonant excitations. The source of this reduction
is explained in Fig. 1(b) as resulting from the field induced
changes in the DE qubit eigenstates. For example, at a field of
B = 0.2 T the DE splitting was calculated in Fig. 1 to be 4 μeV,
which is larger than the measured zero magnetic field splitting
of 1.7 μeV. Hence, as expected, no oscillations are observed,
and the system can be described as two separated TLSs.

In Fig. 7(a) we present as an example, the measured
(points) and best fitted model calculations (convoluted with the
detector response, solid lines) polarization sensitive intensity
autocorrelation functions of the XX0

T±3
line at B = 8 mT for the

quasiresonant excitation case. The blue (red) color represents
co- (cross-)circular polarizations of the first and second
detected photon. From the two autocorrelation functions
g

(2)
‖ (τ ) and g

(2)
⊥ (τ ), the temporal response of the degree of

circular polarization (DCP) D(τ ) can be readily obtained:

D(τ ) = g
(2)
‖ (τ ) − g

(2)
⊥ (τ )

g
(2)
‖ (τ ) + g

(2)
⊥ (τ )

. (8)

In Fig. 7(b) we present D(τ ), obtained from Fig. 7(a), where
data points present the measured value and the orange dashed
line represents the DCP obtained from the best fitted numerical
model without convolving the detector response function.

The DCP can be also obtained analytically, using the
following considerations: Recalling that the DCP is given by

D(τ ) = |〈+2 |ψ(τ )〉|2 − |〈−2 |ψ(τ )〉|2
|〈+2 |ψ(τ )〉|2 + |〈−2 |ψ(τ )〉|2 (9)

and substituting |ψ(τ )〉 using Eqs. (3) and (5) one obtains

D(τ ) =
[

cos2

(
�2τ

2�

)
− sin2

(
�2τ

2�

)
cos (2θB)

]
. (10)

Equation (10) describes the temporal evolution of the DCP
assuming that the first detected photon is R polarized [ϕ(τ =
0) = 0 in Eq. (3)], the radiative decay is instantaneous, and
the coherence of the DE is infinitely long. The fact that
the biexciton precesses and has a finite radiative lifetime
(τR = 700 ps) adds a prefactor Av = 0.84 to Eq. (10). This
prefactor was deduced directly from the polarization memory
measurements. Assuming, in addition, that the DCP decays
exponentially with a characteristic time TD , due to the optical
re-excitation and the decoherence of the DE, transforms
Eq. (10) into

D(τ ) = AV

[
cos2

(
�2τ

2�

)
− sin2

(
�2τ

2�

)
cos (2θB)

]
e−τ/TD .

(11)

From Eq. (11) the visibility of the DCP oscillations and
its dependence on the magnetic field can be straightforwardly
calculated for the case τ  TD:

V (θB) = [D(θB)max − D(θB)min]/2 = A
′
v(1 + cos 2θB)/2

= A
′
v cos2 θB, (12)

where D(θB)max and D(θB)min are obtained from Eq. (11) for
�2τ
2�

= 0 and �2τ
2�

= π , respectively, and A
′
v < Av includes

corrections due to the exponential decay of the DCP.
The best fitted numerical model to the data of each of the

measurements, presented in Fig. 6, represents the measured
evolution of the DE after the quantified finite temporal
response of the experimental setup was considered. Therefore,
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to the best numerical model fits, those without the convoluted
spectral response of the system, we fitted the analytical
expression of Eq. (11), as shown in Fig. 7(b) by the dashed
black line.

The observed decay of the DCP (TD) has two main
contributions. The first one results from the actual decoherence
of the DE spin qubit due to its interaction with the nuclei spins
T2. The second one results from the spontaneous nature of
the XX0

T±3
radiative recombination and its re-excitation using

cw light field. In order to estimate T2, the second contribution
should be reduced to a minimum. Using weak pulsed excitation
rather than cw, we previously showed that the coherence time
of the DE has a lower bound of about 100 ns [16].

The obtained visibilities and DCP decay times are summa-
rized in the upper and lower insets to Fig. 7(b), respectively.
As expected, the increase in the magnetic field does not affect
the coherence of the DE as clearly seen in the lower inset
to Fig. 7(b). Clearly the decay of the DCP (TD) is almost
field independent. Moreover, since the obtained TD of about
8 ns is about an order of magnitude shorter than that measured
under pulsed excitation in Ref. [16], one can safely deduce that
the dominant mechanism, which defines the DCP oscillations
decay time TD in our measurements, is the resonantly exciting
laser field.

In contrast, the upper inset to Fig. 7(b) shows that the
visibility of the DCP oscillations depends on the externally
applied field. This dependence is readily understood from
Fig. 1(b)(ii) and Eqs. (11) and (12), as resulting from the
magnetic field induced changes of the eigenstates of the DE
qubit. Symbols in the upper inset represent the measured
visibility (derived from the first valley and second peak of the
modeled DCP). The expected dependence from the numerical
model is represented by a dash black line and that expected
from Eq. (12) is represented by a solid orange line. The slight
difference between the full numerical model and the simple

analytical one is the absence of the effect of other levels (such
as the XX0

T3
biexciton) in the analytical model.

IV. SUMMARY AND CONCLUSIONS

In summary, we present an experimental and theoretical
study of the quantum dot confined dark exciton as a coherent
two level system subject to an externally applied magnetic
field. Experimentally we used polarization sensitive intensity
autocorrelation measurements of the optical transition which
connect a XX0

T3
biexciton state with the dark exciton state.

Detection of a circularly polarized photon from this transition
heralds the dark exciton and its spin state. By applying
an external magnetic field in the Faraday configuration, we
measured the Zeeman splitting of various lines and accounted
for our measurements by determining the g factors of the
electron, the hole, and that of two holes in a triplet spin state.
We then used the external field as a tuning knob for varying
the dark exciton eigenstates. We showed that this external
control knob does not affect the long coherence time of the
dark exciton. Theoretically we were able to describe all our
measurements using a Lindblad type master equation model
with a minimal number of free fitting parameters. Ultimately
our work provides a better understanding of the fundamentals
of quantum dot excitations and may enable their use in future
technologies.
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