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Abstract

This thesis derives analytically and calculates the existence and appearance
of screw dislocations in a mesoscopic smectic A liquid crystal sample.

Screw dislocations have first been observed experimentally by Goodby
et al (1989), a short time after Renn and Lubensky (1988) published their
theoretical work describing the twist grain boundary phase, which involves
such screw dislocations and is analogous to the Abrikosov vortex phase.

The theoretical basis of this work is the de Gennes analogy (1972) between
the free energies of superconductors and the smectic A phases. This analogy
enabled to implement the Bogomol’nyi method, for flat two-dimensional infi-
nite superconductors at the dual point, on infinite long cylindrical smectic A
samples lying in an external twist field, which is parallel to the cylinder axis.
For such systems the minimization of the energy is topological. Moreover, for
a cylinder of finite mesoscopic radius it is possible to obtain an expression for
the energy which includes the number of the screw dislocations. This enables
to determine the exact number of the screw dislocations in equilibrium as a
function of the applied external twist field.

The value of the external field needed for the entrance of the first disloca-
tion is calculated for a specific set of system parameter values and presented
in a matching figure. It is also shown that the result obtained is valid for a
finite area of parameter values.



Glossary

General

U-Complex order parameter

p-Phase of the order parameter
Yo-Equilibrium value of the order parameter
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Superconductors
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A-Mean field penetration depth
¢-Coherence length
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fs-Superconductor free energy density
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B-Magnetic flux density

B -Critical magnetic flux density
A-Vector potential

¢-Magnetic flux

¢Po-Quantum fluxoid

a, f-Landau mean field energy parameters
e-Electron charge

c-Speed of light

h-(Planck constant)/(2m)



m-Mass
n-Number of vortices (integer)
o-Surface energy

Liquid crystals

Fsa-SmA free energy

Fematic-Nematic free energy

G ehotesteric-Cholesteric Gibbs free energy

r, g-Landau mean field energy parameters

Ar-Twist mean field penetration depth

& -Perpendicular coherence length

C-de Gennes SmA perpendicular energy parameter

C)|-de Gennes SmA parallel energy parameter

K4, Ky, K3-The Frank Oseen splay, twist and bend energy parameters
h-Chiral field

P-Pitch

l,-Pitch length

ko-Wave number of the cholesteric field

p-Density

¢s-SmA density wave number

p-Phase of the SmA density

N-SmA layer direction

n-Director

on_ -Projection of a slightly tilted director on the perpendicular direction to
the director’s direction

V -Two dimensional nabla that lies in the perpendicular direction to the
director’s direction

u-SmA layer displacement

T-Twist flux density

D, a-Twist flux through a SmA sample

®; p-Little Parks twist flux

0-Penetration depth of a finite size sample

R-Sample radius

[-Number of screw dislocations (integer)



Chapter 1

Introduction

The transition of a nematic to a smectic A phase in liquid crystals is in many
properties similar to the transition of a normal metal to the superconducting
phase. This similarity was first pointed out by de Gennes back in 1972, when
he proposed to describe the smectic A phase by a complex scalar order param-
eter like Landau and Ginzburg did 20 years before in their phenomenological
theory for superconductors. This enabled de Gennes to present a thermody-
namic equation that describes the smectic A to nematic phase transition by
considering their relevant free energies. In this thesis this analogy was used
to further develop the understanding of liquid crystals.

In 1988 Renn and Lubensky showed that this analogy can be expanded.
They found an analogous phase to the Abrikosov phase in superconductors.
It is the "Twist Grain Boundary Phase ” (TGB). Soon after experimental
evidence for the existence of the TGB phase followed. In their work Renn
and Lubensky showed that the TGB phase is an energetically stable phase
that includes topological defects inside a sample. They found that it lays
between the smectic A and the cholesteric phases. This is in perfect analogy
to superconductors of the second kind; when inserted in a strong magnetic
field it leads to the creation of vortices in the sample. The cholesteric phase
can be compared to a normal metal that is exposed to a magnetic flux. The
smectic A is then the equivalent to the Meissner phase.

However, the reason for the existence and creation of vortices in super-
conductors was not clear until E.Akkermans and K.Mallick showed (1999)
that they can be analytically derived from the Ginzburg-Landau free energy.
This could be derived for very small (mesoscopic) disclike superconductor
samples at a special integrable point. The question addressed in this thesis
is whether it is possible to do a similar analytical derivation to show the
existence of topological defects in smectic A samples from the de Gennes free
energy. For that purpose we shall try to follow the footsteps of E.Akkermans



and K.Mallick while applying it to liquid crystals.

1.1 Introduction to superconductivity

Superconductors can be described phenomenologically by the Ginzburg-Landau
equations (1950). It is a macroscopic description of a phenomena which is
in essence a quantum phenomena and thus can describe very easily quantum
macroscopic effects. Landau and Ginzburg figured out that the transition to
superconductivity is a second-order transition and thus described it in the
framework of Landau’s "mean field theory”. This theory is based on the as-
sumption that the phase transition to a superconductor involves a transition
to a more ordered phase. In order to describe this transition they defined a
complex order parameter ¥ = |U|e™. If U = ( it points out the existence of
a superconducting phase. It is then possible to write a mean field expression:

fo= futaluf? + St (1)

Since ¥ is complex, whereas the energy must remain real, f, is expanded in
powers of |¥|. Furthermore a second order type transition forces even powers.
In contrast, for ¥ = 0 the phase is normal. The equilibrium energy must
be finite, therefore at least one extra term in fourth power has to be added.
The equilibrium value of W is attained by minimizing the free energy. The
phase transition is a function of the temperature. This property is included
by defining a o< (7" — T,) at the vicinity of the transition temperature 7. It
is also assumed that 3 is positive and independent of the temperature at T..
As a result when T > T, = « > 0, the minimization of f, with respect to
U yields ¥ = 0 which means that the phase is normal. On the other hand
for T < T. the minimization of f, leads to |¥U|> = 2 = -5 =0 As the
temperature decreases below the critical temperature, the order parameter
varies continuously from 0 to a positive finite value. When a magnetic field
is introduced, its energy must be added to the free energy in the following
way:

B, B
= fn U124+ St 4+ =—. 1.2
fo= futalUP + SJwjt = (12)
If the equilibrium value of |¥| is substituted into (1.2), it leads to fs —
fn= _2—%2 + g—;. It is therefore understood that the critical magnetic field

—a? _ —B?

corresponds to 55 = B The contribution to the energy due to spatial
variation of the magnitude of the order parameter is also considered. It is




also introduced in even powers.

BQ

8m

2
fs=fn—l—oz|\If]2+§]\I/|4+h—]V\If\2+ (1.3)
2 2m*
The order parameter is therefore spatially dependent W — W(r). Still equa-
tion (1.3) does not describe one very important property of superconductors.
It is the Meissner effect, which states that the magnetic field in a supercon-
ductor ceases to be a thermodynamic variable. Instead, it is determined by
the system parameters in order to minimize its energy. In fact, the lowest
energy is obtained when the order parameter phase is such that it expels
the magnetic field completely from the superconductor. The Meissner effect
is included by introducing the magnetic vector potential into the equation.
However, since the free energy is a real quantity it is also necessary to keep it
gauge invariant. This is exactly the reason why the order parameter is a com-
plex quantity. The fourth term in the energy expression is therefore changed
to 5= (AW — €4)?|¥|?, where ¢ is the phase of the order parameter. It
will be shown that the gradient of this phase is connected to the existence of
supercurrents in the sample. This term is inserted to the free energy com-
bined with the gradient term of the magnitude of ¥, resulting in the general
compact form of all gauge invariant theories. Finally the Ginzburg-Landau
free energy is:

2 BQ
+ —

81

fo= Fotolu + D+

[—mv _ ¢ A] U
C

The star sign over the electron charge stands for ’effective’. At the time, Lan-
dau and Ginzburg were not aware of superconducting pairs which according
to BCS theory suggests e* = 2e. However, (1.4) is more general than a theory
for superconductive metals alone. It is also important to understand that m*
appearing in (1.4) is not the electron mass of inertia. The electron mass of
inertia has no effect on the system. The mere word 'super’ suggests that there
exists no mass of inertia in the system. This parameter just sets the right
gauge for the free energy, at a place where mass was the correct dimension
needed. A further advantage rises from the inclusion of a mass parameter
since it yields a similarity between the first Ginzburg-Landau equation and
the Schrodinger equation.

— (1.4)

1.2 The Ginzburg-Landau equations

As the free energy is defined, Ginzburg and Landau have proceeded in the
conventional way to derive the physical properties of the system, which is



by using the method of variation and demanding the action to be in its

extremum.
51:/ {%&H %*&/J +8—A<SA} (1.5)

where F = [ fdV . Since [ is to be in its extremum for every A, each of
the integrand terms must be separately equal to zero. Because of the even
powers of the free energy, the variation with ¥ or U* will give similar complex
conjugate equations, therefore only the second term with U* is considered.
It yields an equation for the order parameter

_ 2 B_o

o/dv[w]aqf = /dt{a\y+2aqj (U U0 + (1.6)
1 0 |[he eA\_ |7 0 (VxA?, __.
2m* O~ <Zv_ c )\Ij T o your.

The complex form of the order parameter is inserted in order to calculate
the derivative of the term inside the absolute sign. The last term drops and
the following integral is obtained:

Cc C

/dV[ ’ 2;*(—ihv _ Ay - Ay

The second term can be handled by means of integration by parts and then
followed by using the Gauss theorem on VoU*  keeping in mind that in
variation calculus the variation on the boundary is zero d¥* |poundary= 0.
Since the result of minimization should stand for every dU* the integrand
has to vanish. This leads to the equation for the order parameter, which is
the first differential Ginzburg-Landau equation

*

A
ec W + oW + Gl¥ W = 0. (1.8)

(—ihV —

2m*

The similarity to the Schrodinger equation is striking. But in contrast to the
latter, the Ginzburg-Landau equation includes the non linear term 3|¥|?W
making equation (1.8) difficult to solve.

The variation of the vector potential yields the second Ginzburg-Landau
equation.

- L9 g A 0 (VX AP
0= / Sx0A / o aA GV T I ga s oA
A
_ /dV{2—m*[ C V) (-iny - “)w (1.9)
- SV - GCA)\IJ*(—ihV)\IJ]cSA 4 AV X A;(TV X OA),



The vector identity V(A -B) = B(V x A) — A(V x B) was used, so that the
last term becomes (V x A)(V X 6A) = V(0A(V x A)) +0A(V x (V x A)).
The method of integration by parts is followed by the use of V x V x A =
V xB = J and the Gauss theorem. Since the variation is zero at the
boundary, 1nsert1ng the boundary condition (ZLV *A)\If|n = 0 stating that
there is no current passing the surface perpendicularly, leads to

O:/dV[ ;;hc(qf*w TVT) + 6* 2A)0A. (1.10)

Since (1.10) has to be valid for every arbitrary vector potential, the integrand
must vanish. This leads to the second Ginzburg-Landau equation

* *2
¢ h*(\IJ*V\II A VA a0 W

. 2
= A. (1.11)
Equation (1.11) reminds of the quantum probability density current expres-
sion in the present of an electromagnetic field. It seems that the current
density is not gauge invariant, however a closer examination will show that
the vector potential is gauged by the first term of (1.11).

Let us now examine equations (1.8) and (1.11). If a superconducting
sample is placed into a weak magnetic field and |¥| = 1)y, where 1) is the
order parameter value in equilibrium with no spatial variations, then (1.11)
becomes

Vxj,=VxVxB=

(1.12)

Assuming that the sample lies in the upper infinite space (z > 0), a solution
for (1.11) would be B = Bye X, which is the Meissner effect. An exponential
decay of the magnetic field into the sample with a penetration depth of A is
evident. The penetration depth obliges A=2 = 47;3—% For the first Ginzburg-
Landau equation (1.8), a similar analysis can be done. If there is no current
nor a magnetic field, then it is possible to gauge the order parameter in a
way that it becomes a real scalar, so (1.8) becomes [12]

Ry
2m  dx?

+ al¥| + B|¥]* = 0. (1.13)

It is of interest to see how the order parameter |¥(z)| changes in the vicinity
of some spatial point. For that purpose it is expressed in the dimensions
of its equlllbrlum value, ¥ = 0. The following length scale is defined
E(T) = 52 *| r» so that

&[]

(1) 5 10+ [ = 0. (114)




From the above derivation, the equilibrium value of the order parameter
V2 = —45 = 0 was used. The length over which f changes is therefore ¢ (T).
This is the 'coherence length’.

When the equilibrium value of || is inserted into the 'penetration depth’
term, it is clear that its temperature dependence, which is contained in the «
parameter, is the same as for £. This suggests that it is of interest to define
the ratio between those two characteristic lengths of the material

k=2 (1.15)

This is the Ginzburg parameter. Its value at the vicinity of 7T, is a con-
stant. It depends on the inherent properties of the material from which the
superconductor is made of.

1.3 Typell superconductors and the Abrikosov
phase

Let us calculate the energy of a domain wall separating a superconductor from
a normal material [1] for a one dimensional setup like it was used above. In
this case the boundary conditions would be

|| =0 and B =
|| =1 and B =

z 9 2T Too (1.16)
as z — +09,

4

where B = \/Li corresponds to the critical magnetic field B = B, in dimen-

sionless units. For a gauge which sets 1 to be real, equations (1.8) and (1.11)

become (1.14) and (1.12) respectively. If (1.14) is multiplied with % and
integrated, then applying the above boundary conditions yields

el 1

B S pr (117

¢4(T)

Then for a material in which the Ginzburg parameter is smaller then
unity £ < 1 (meaning A < §), the following stands

dyl _ &
de /2
The normalized order parameter obtained from (1.18) is || = tanh(\””/—%).

The surface energy is given by the difference in energy between the super-
conducting state and the external magnetic field energy, which is calculated

(1 =[P (1.18)

9



in the following way:

=2 (5 By - Lurav (119

Ons = . i : :
For the magnetic field values B = 0, B, = \/LE and the expression obtained
for f it becomes: B oo

ZK
87 Jo

V2

The domain wall energy is dependent on . For k < \/Li it is positive, meaning
that there is a boundary separation between the phases. But, for the value
K = \/Lﬁ the boundary energy vanishes and for x > \/Li it becomes negative.
The meaning of a negative boundary energy is that the system would tend
to create many subdivisions of the bulk into subregions in order to decrease
the total energy. Magnetic flux is now allowed to pass through the divided
material.

Materials with Kk > % are known to be type II superconductors. A 'mixed
state’ is created when an external magnetic field is introduced. The order
parameter is mixed with the magnetic field, so that Meissner does not apply.
The value of the magnetic field inside the sample is calculated by averaging
the density of all flux lines passing through the sample.

The quantization of the magnetic flux that passes through the supercon-
ductor is another important feature appearing. To show it, ¥ = |¥|e¥ is
inserted into (1.11)and we obtain

[1 — tanh*(Z=)]dz. (1.20)

O-TLS

. 2eh, o 2e

j= TPV~ oA (1.21)
For simplicity as of now e* — 2e and m* — m shall be used. It is observed
that a connection between the gradient of the phase and the supercurrent
exists. If a hollow cylinder whose walls are thicker than the penetration
depth is considered, then |¥|?> — 92 = const. and j — 0 in the bulk region.
An integration around a closed loop inside the bulk is possible and we can

write: , 9 i
J e e

= = =— 1-— ¢ Adl]. 1.22

0 JQ{\‘W m[fvsod hc?é dlj (1.22)

The first integral is a loop integral over the the gradient of the phase. It does
not have to be zero since the phase is not a measurable physical quantity.
However, the order parameter is demanded to be single valued for a 27
circulation, so that the phase of the order parameter is allowed to change in
rates of 27mn.

10



On the other hand, the second integral is

2e 2e 2e 2e [0)

— ¢ Adl = — AdS=— [ BdS = —¢ =21r— 1.2

hc% hc/v 8 hc/ P =gy (%)
where ¢y = % is defined to be the quantum fluxoid, it is the 'London fluxoid’.
The total flux is quantized in multiples of single fluxoids

with n being an integer. n is named 'winding number’; its value will deter-
mine the amount of 'vorticity’ in the system. The reason why it is called
'vorticity’ will be clarified.

An important property of superconductivity is the breakdown of phase
symmetry. This can be understood if the Ginzburg-Landau free energy (1.4)
is examined. In a bulk in which |V| is constant, the term involving the
gradient of |¥| is in even powers and therefore at the minimum of the free
energy it should vanish. If the complex form of ¥ is inserted, it yields 0 =
L (W — 24)2| 0|2, 5o that Vi = 24 = 2m . This determines ¢ up to
a constant. A certain potential drives a constant change in the phase of the
order parameter and therefore breaks the symmetry. If the gradient is not
zero a supercurrent exists. However, current exists only up to the distance
of the penetration depth A. Beyond that, the magnetic field is depressed
strongly.

In order to keep a non zero magnetic field in coexistence with the order
parameter in a type Il superconductor, singular points of the order parameter
field ¥ — 0 within the bulk have to exist.Then a magnetic flux can exist. This
flux is quantized. This surprising observation was done first by Abrikosov
[Nobel prize 2003].

Around each such singularity there is a radius of £ in which the order pa-
rameter changes from zero to its equilibrium value and supercurrents flow in
proportion to the amount of the magnetic flux going through the singularity.
This is the reason that n is the ’vorticity’ of the system. Abrikosov also cal-
culated that it is energetically preferred, in an infinite sample (because the
magnetic field should be homogeneously distributed), that the flux should
be spread as much as possible, so that at every singular point the flux pass-
ing through it be only one quantum flux. This is preferred to concentrating
the same amount of quantized flux at one singular point. It is due to the
repulsion between the supercurrents. They should therefore also distribute
as distant as possible from each other. The appropriate distribution was
found to be a triangular lattice. This lattice/phase that appears in type II
superconductors is called the Abrikosov phase.
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To summarize it, a type Il superconductor in its mixed state is a triangular
lattice of singular points through which quantized magnetic flux lines pass,
enabling the coexistence of a mean magnetic field and the superconducting
order parameter.

1.4 A short review of the liquid crystal phases

Liquid crystals are systems which exhibit short range correlations in some
directions and long range order in other directions and have symmetries
intermediate between those of liquids and the crystals. Liquid crystals
are composed of anisotropic molecules, which can be modeled as rigid
rods or ellipsoids of revolution with lengths [ greater than their widths
a. Their orientational order is caused mostly by repulsive interactions.
At high temperature the axes of the molecules are randomly oriented
as well as their center of mass. This is the isomorphic phase [§].

Figure 1.1: Isomorphic Phase: This phase is characterized by molecules
whose interaction energy is much weaker than their thermal energy. Thus no
particular order is established, it is practically a normal liquid.

Nematic: As the temperature sinks, the first condensed phase which arises
is nematic. In that phase the molecules tend on average to have a
common symmetry axis specified by a unit vector n called the Frank
director, as of now the 'director’. However, their center of mass stay at
random so that they still compose an isotropic fluid in all directions.
The nematic phase breaks rotational isotropy but not translational
invariance [8]. In the de Gennes description, the nematic phase can
be treated as the equivalent to the state of a normal metal that is not
placed in an external magnetic field.
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Figure 1.2: Nematic Phase: This phase is characterized by the appearance
of the director. This is a unit vector in the mean direction of the molecules.
The molecules in the sample deviate only slightly from this direction and are
on average parallel to each other but their center of mass is still positioned
arbitrarily.

Cholesteric: When chiral molecules are added to a nematic liquid crystal,
a twisted /chiral nematic state results. In this state the local director
rotates in a helical pattern along a specific axis. We define the pitch p
to lie in the direction of that axis. Its size is the distance in which the
director undergoes one full rotation around this axis L, = z—g ko is the
wave number of the Frank director in the cholesteric phase. The size
of p depends on the concentration and degree of chirality of the chiral
molecules and is typically of the order of several thousand angstroms
[8]. In the description by de Gennes, the cholesteric phase can be
treated as the equivalent to the state of a normal metal exposed to an
external magnetic field.

Smectic A: Sometimes when the nematic/cholesteric is cooled, the molecules
condensate to a modulated phase called the Smectic A (SmA) phase.
In this phase the center of mass of the molecules are modulated to form
a layered system. The following density equation describes it [11].

p(r) = po + prcos(gsz — @) + - - - (1.25)

The Z direction is set to be the reference axis. It is aligned to the
layers direction, which is defined to be IN. The wave number of the
density modulation of the molecules is ¢, = 27”, where d is the distance
between consecutive layers. In SmA the director n is parallel to the

13



Figure 1.3: Cholesteric phase: This phase is composed of molecules which
contain chirality. We see in the figure that a global chiral axis is established;
this is the pitch. Along every location on the axis a perpendicular layer is
established in which the molecules are aligned along a local director. The
director rotates around the pitch in a helical pattern proportionally to the
strength of the pitch.

planes direction. Applying the above convention it sets the director to
lie in 2, n = (0,0,1). Since the centers of mass of the molecules are
modulated in the Z direction, the translational invariance is broken in
that direction. However, in the Z, ¢y directions still a two dimensional
isotropic liquid exists. In the de Gennes description, the SmA phase
can be treated as the equivalent to the state of a superconductor.

1.5 What is a topological defect?

Topological defects appear in coexistent phases, which include an order pa-
rameter as well as an external destructive field. A topological defect results
from the breakdown of some symmetry. When the order parameter describes
a superconductor, and a magnetic field is introduced those defects are vor-
tices. Intuition can be supported when we think about the effect produced
by a pointlike electron which introduces an infinite electric field.
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Figure 1.4: Smectic A Phase: The figure shows that the molecules in this
phase are ordered in density layers. The molecules are not free to move in a
three dimensional space, they are constrained to the x-y layer plane. Their
axes are aligned with a director that is perpendicular to the layers plane.
In the right figure a bird view is seen. It shows that in two dimensions the
molecules are scattered arbitrary.

1.5.1 Vortices

A vortex results from the breakdown of the phase symmetry, it allows to
introduce magnetic flux into the system.

1.5.2 Screw dislocations

In SmA, singularities are screw dislocations. A 27 rotation around the core
lifts the planes by an integer multiple of the plane separation distance d. It is
the breakdown of the modulated symmetry which also in SmA is expressed
through the phase of the order parameter. Screw dislocations introduce a
twist field into the SmA phase V| x ¢s0n;. They have the form of the
magnetic field V x A, their structure is of a staircase which lifts the planes
in an integer multiple m of the distance between planes d, after every 2w
rotation. m is the winding number. This is expressed in the following form
u=Lo(x,y) = L arctan(¥). u is the dislocation of a layer, for the follow-
ing expression of the layers spatial orientation z — u(x) = md. The screw
dislocations in SmA are analogous to vortices in superconductors.
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Figure 1.5: A Screw Dislocation in a layered material is a defect: It has a
core around which it twists and lifts the layers in a helical pattern having the
shape of a staircase. The radius of a dislocation is the radius beyond which
the molecules are relaxed to their origin directions in the samples.

1.6 The Frank Oseen free energy

1
Fnematic = é/Kl(V : ’I’L)2 + KQ('"/ -V x ’I’I,)2 + K3(’I’L x V x ’n)2. (126)

This expression describes the strain energy of a phase, composed of molecules
that have a director n, which are substituted to a mechanical stress. The
terms appearing in (1.26) are: splay, twist and bend (see picture 1.6). It
means that the strain energy tensor of such a samples bulk can always be
diagonalized to the above form.

When the SmA phase is in equilibrium bend, twist and splay are expelled
since they involve the increase of energy.
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Figure 1.6: The Frank Oseen terms: (1) The splay term is due to bending
of the layers around a core in a way that keeps the distance between them
constant. Each layer is bent relative to its distance from the core so that
the molecules have a radial orientation which is described mathematically by
a divergence term. (2) The twist term is due to a bend core which passes
through the layers perpendicularly and thus twists the layers around it. This
breaks the alignment of molecules perpendicular to layers. (3) The bend
term describes a bend around a core in a way that leaves the layers straight
and increases the distance between them proportionally to the distance from
the core. The molecules are then oriented tangentially.

1.6.1 The cholesteric free energy

In a cholesteric state, because of the form of the added chiral molecules, an
internal twist is introduced to the sample. This is expressed by adding an
energy term which minimizes the energy for a non zero twist. The Gibbs free
energy therefore becomes

Gchol = Frematic — kaO / dgx(n -V X 'I’l,) (127)

In equilibrium n = ne(y) = (sinkoy, 0, cos koy). ko = ko,y is the pitch
wave number that is set to lie along the y axis. The following chiral field is
defined h = kokyg.

1.7 The de Gennes free energy expression

In (1.25) we see that p; is the first harmonic of a modulated density and
that ¢ is an arbitrary phase. In the nematic phase p; = 0, this is the reason
for p; to be a logical choice for the de Gennes order parameter of the SmA
phase. The condensation of the SmA is in the orientation of the center of
mass of the molecules. The choice between the +Z molecule orientations
makes no difference, therefore a free energy describing the SmA phase may
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be expanded in even powers of p;. The fluctuations of the SmA layers are
also considered by changing ¢ — ¢(r) = —qsu(r) and p; — pi(r), here
u(r) is the spatial dislocation of the layers. De Gennes proposed to combine
those two features in order to define an order parameter for the SmA phase
U = p;(r)e**™). He obtained a complex scalar order parameter like it is used
by Ginzburg and Landau to describe the superconductor phase. The analogy
was further developed, since the expression describing the superconductor
free energy was also an expansion of even powers of the order parameter. It
is thus possible to follow a very similar process to analyze the properties of
the nematic to SmA transition. The free energy describing the transition is:

1 ) ) v
Fana = Foonste = [ 1102+ Groit+ i P e (171 41501))

(1.28)
The terms with ¢, and ¢ were added to describe the energy involved with
a spatial change of the order parameter in the perpendicular and parallel
direction accordingly. It was needed to differ between those terms since in
the parallel to the director’s direction, perpendicular to the layers, the energy
involved is different (usually higher) than in the perpendicular direction.
Those terms express the tendency of the SmA to remain in its modulated
order. The energy in (1.28) is typical for a second order transition since it
is composed of even power terms. It is also necessary to take into account
and add to (1.28) small fluctuations of the director from the Z direction.
Only fluctuations which are restricted to the & — Z plane are considered,
so that n = (sin#,0,cosf) ~ (én,,0,1) where on, = n — 2z is defined.
For small fluctuations, n, ~ 1 and én, = dn,z, without loss of generality.
Therefore the energy does not change in the Z direction. However, in order

to compensate C'| ( 9r2 4 ]%—3]2>, in a way that leaves it proportional to

the energy that is suited to the energy of the perpendicular direction to n, it
is needed to change the expression into the following:

ov,  Ov o
Cy (|%|2 + ’8_y|2) — C (V1 —igs0n, )P, (1.29)

where V| = (£, a%) and ¢ is the modulation density wave number. This
form of an energy functional is typical for a gauge invariant term, as well as for
superconductors. However, unlike in superconductors in SmA, the phase is
a completely real and measurable quantity. To analyze the SmA < nematic

transition, the Frank Oseen elastic free energy contribution is added, so that
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in general we obtain

1 ov o
Fona = 5/7"]\142—1-g\\lf|4+0||\g|2+0l|(vl—zqsdnL)\IJ|2+

1
+ §/K1(V n)?+ Ky(n-V xn)?+ Kz(nx V xn)? (1.30)

We see that for ¥ = 0 the SmA phase disappears, whereas if n = (0,0, 1)
the Frank expression disappears. The phase is determined by considerations
of minimization of the total energy. If only the twist part in Flenate 1S
considered, we get:

1 ov o
Foma = 3 /d%{r\\lﬂz + g!\PI‘* + CH’&P + CL|(V L —igson,)¥[*}
+ %/d3x{]{2(n -V xn)?}. (1.31)

This equation is very similar to the Ginzburg-Landau equation for supercon-
ductors and this is the reason for the comparison between those completely
different physical systems. We can compare ¥ to the superconductor order
parameter, 0n, can be compared to A the vector potential. The twist Frank
Oseen energy term can be compared to the magnetic inductance B =V x A,
and the parameters of those terms are compared respectively. However, there
are some differences: First there are two extra Frank Oseen terms which do
not exist in superconductors, second there is no Cj term in superconductors
because the m~! parameter appearing in superconductors is homogenous in
all directions. Third, asymmetries arise because n, and (n -V x n)? are
really two dimensional whereas A and B are three dimensional vectors. And
finally the phase of the order parameter in SmA is purely real whereas in
superconductors it is imaginary in general. Still there is much insight on the
nematic — SmA transition from the above analogy.

1.8 The TGB phase

To continue the analogy first made by de Gennes, Renn and Lubensky
proposed a theory for the existence of an analog to the Abrikosov state called
"Twist Grain Boundary’ (TGB), which lies between the Meissner SmA state
and the nematic phase. In this state the condensation of screw dislocations
(topologically similar to vortices) is possible. The TGB phase was observed
a short time later in an experiment by Goodby et al [14].
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1.8.1 Description of the TGB phase

The TGB phase is build out of small Smectic A grains, each of length [,. The
grains are ordered along a pitch and turn around it in a helixlike pattern.
The grains are separated from each other by a boundary which contains
parallel screw dislocation lines. The dislocation lines are aligned parallel to
the normal of the bordering grain layers. Inside the boundary the dislocations
are separated by a distance of [; from each other. Such boundaries exert
a mean twist on the following grain which turns their layer normal by an
angle of 2ma relative to the previous normal direction (i.e. the normals are
twisted by an angle of 2r«). The distance between two consecutive layers
is d, so that the amount of twisting between grains is determined through
the following formula 2w = 2arctan(d/2l;). If o ~ ﬁ is rational, there
would be two different grains with repeating slab normals, and therefore the
TGB phase would be a quasi crystalline, otherwise it is incommensurate.
For a given strength of external twist field K3 Ky, the angle created between
consecutive grains and thus between directors inside them along the pitch
is always smaller than the angle that would be created between directors
separated the same distance in a Cholesteric phase. For a pitch along the
y direction, the change of angle is presented as some function along the
same axis %(yy). Kskq is analogous to an external magnetic field H. The
magnetic flux density that penetrates a superconductor of the second kind is
also smaller than the magnetic flux density that penetrates a normal phase

which is surrounded by the same external field.

1.8.2 The Renn and Lubensky covariant free energy

It is not possible to explain the TGB phase through the de Gennes expression
of the free energy because it assumes only small deviations of the director
from a specific spatial direction through out the whole sample, say 2. There-
fore, Renn and Lubensky have suggested a generalized free energy expression
that can deal with larger deviations of n, and in fact does not have one spatial
mean reference direction, but different ones with different directions chang-
ing spatially. Here we shall try to explain the main features of the Renn and
Lubensky new covariant free energy expression. A specific system is studied,
in which a SmA sample is placed in a way that its equilibrium director N
lies along the Z direction and the pitch of an external twist field is p = py.
For such a specification the force exerted on the director turns it around the
pitch but leaves it in the z, 2 plane. It is assumed that no other force fields
exist in different spatial directions. All other vibrations are also disregarded
as they are on average negligible. Under those assumptions, the director will
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Figure 1.7: The TGB Phase in this picture follows a pitch which lies in the
x axis direction. It is composed of SmA grains with inter-layer distance of
d. The angle between consecutive grains of SmA is A© = 27ra. The grains
length is ¢, along the pitch. Between grains an array of parallel screw dislo-
cations reside perpendicular to the bordering layer planes. The dislocations
in each array are separated by /.

always lie in the 2, 2 plane. It is then possible to use the following form for
the director n(y) = (sinf(y), 0, cos6(y)), where for the time being it is not
known how 6(y) behaves. In a pure cholesteric the function 6(y) is simply
equal to koy, where kg is a constant which determines the strength of the
pitch. For such a directional constellation in an intermediate zone between a
cholesteric and a SmA Phase, the only non zero term of the Frank functional
is the twist term. It is assumed that no other contributions arise from the
bend and the splay terms. The following free energy is obtained:

ov L e
FSmA = /d3.1'{7“’q/’2 + g‘@ﬁ + C”‘aﬁ + CJ_’(VJ_ — ZC]S(STLJ_)\IJ‘Q} +
1
+ §/d3x{K2(n -V xn—ko)? — koki}. (1.32)
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This is the form of the free energy that Renn and Lubensky used. It differs
from the de Gennes form since a % appears ahead of the twist term. This
means that K, is twice as big in this formulation. We see that in fact the
Frank elastic term is two-dimensional and that it is dependent on just its
spatial location along the ¢y axis since n behaves similarly. This can be

written in the following manner:
3 2, 94 ov , RN 2
Fspa = | &x{r|V]" + 5\‘If| + C”‘E' + CL (V1 —igqsdny )V)*} +

+ %/d%{KQ(vye — ko)? — kok3}. (1.33)
However, the third and fourth term considering variation in the order pa-
rameter in the perpendicular and parallel directions to the director can not
stay formulated as they are in the case of large variations in the angle of the
director. It has to be defined in a way that will be corrected spatially and
corresponding to the relative change in the direction of the director. This is
the purpose of the following covariant form of the free energy expression by
Renn and Lubensky:

FRL = /d3l’{[<0 — CL)TLZ‘TL]‘ + CL&]][(V — ZC]SI’I)Z\D(V — iqsn)j\II*] +
1
+ PP+ gy\m‘*} + §/d3x{K2(Vy9 — ko)? — kok2}. (1.34)

This free energy can be understood in the following way: Instead of using
on, = n — z which is good only for small fluctuations of the director around
the 2 direction, it is needed to define the spatial equilibrium direction and
to make everything relevant to it. First of all, it is important to mention
that the order parameter has a slightly different form in this expression.
Instead of taking only the first harmonic of the density vector, Renn and
Lubensky took all its harmonic parts beginning from the first. Still it is clear
that those harmonics play a role only for a SmA phase and are zero in the
nematic phase and therefore are proper candidates for the order parameter.
For i=j [(C) — C1)nmn;+C16;;] — C and V — 2. The energy expression we
obtain is the regular de Gennes energy expression for variations in the parallel
direction. However, in this case changes of n can not be disregarded. These
variations might be large which means that the assumption cosf ~ 1 is not
correct anymore. For i # j we have in general n;n; = sinf(y)cosf(y), which
describes the amount of perpendicular energy C'; and parallel energy Cj to be
taken for the energy expression. In the cholesteric phase ¥ = 0 and V,0 = ko,
so that the energy density is f = —%k’gk’g = —Z—z. It can be compared to the
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cholesteric field h, = 4/ ]“QQ—TQ. This is the twist field strength equivalent to the
critical magnetic field strength which breaks down the Meissner phase.

equilibrium energy density of a SmA f = — in order to find the critical
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Chapter 2

Unique solutions of the free
energy for an infinite
two-dimensional
superconductor

We return to superconductors reviewing the work of Akkermans and Mallick
[2], in which they proposed an analytical way of obtaining directly from the
Ginzburg-Landau free energy the existence of vortices. This was done by
showing that the free energy points out solutions with inherent singularities
of the order parameter in a two-dimensional infinite system and for a special
point called the 'dual Point’, whose definition will be explained in the second
section of this chapter.

2.1 General dimensionless (GGinzburg-Landau
free energy

First, for a better understanding of the physical properties of the free energy
we show that it is possible to write it in a dimensionless form using only the
Ginzburg parameter k. The Ginzburg-Landau free energy density (1.4) can
be written in the following way:

2 B2

+ 3 (2.1)

V- v

f:a0+a2|\lf|2+a4|\11|4—|—a1 he

Then o« = CL27§ = a4 and % = ay. As a result the correlation length is

£ = % It compares the second term, which expresses the equilibrium of
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the order parameter, with the the forth term, which expresses the spatial
variation of the order parameter. The dimensions of the correlation length
imposes that all terms have the dimensions of length. After dividing the free

energy by |as|, the dimensions of [‘Z—;MV\PP}, [[¥|?] must be the same and

thus the correlation square must be the compensation for the V? term, which
is one over length square The following properties have also been used: The
flux quantum is ¢° = 26, the equilibrium of the order parameter is )2 = |2aa2|
and and in the superconductlng phase @ < 0 = ay = —|ag|. All lengths
are measured proportionally to the penetration length, v/2X. The magnetic
density is measured in units of the quantum flux two-dimensional density
(because the systems we study will be two- dimensional in character and the

flux lines are perpendicular to it), so that By = = > (%AP = The

- 27r7"2 47r)\2
1

gradient is measured in Vo = .
The dimensionahty of the vector potential is obtained from V x A = B,

and . X A= %. We obtain VOAQ = By = A() \/_ABO \i;(io.
The penetration depth can be expressed as function of the parameters of
the free energy. Like for the correlation length it can be derived from the

comparison of the relevant terms, Jg and a | [—z M} \If{ both related to the

2
magnetic field. The comparison of thelr dimensions is 873)\2 = al( )2A3¢0,

which by inserting vy leads to \? = (gz)Zal‘TzQ'. However, since a; was
determined to be %, as an artificial gauge for convenience it can be freely
changed to set \? = (22)2(11‘?;2‘. This will enforce the description of the

dimensionless magnetlc field to be B”? — %B’Q, and the energy to be of its
half size, which doesn’t matter as the energy is a relative number.

The dimensionless free energy can now be written by inserting ¥ = 1)1,
A=AAy, V=V'Vyand B = B'Bj.The apostrophe denotes a dimension-
less unit. Finally, in order to obtain a dimensionless energy expression it is
divided Wlth , then we obtain the following

F / F= [av [5IBE+ R - 1p 47 -iap] . 22)

This is the dimensionless free energy, and since all variables are dimensionless
we shall as of now (including (2.2)) drop all apostrophes. f is the dimension-
less energy density and x? = ’2—; is the square Ginzburg parameter, and the
integration is over the volume V. As we can see, the energy is composed of
a sum (k > 0) of three squared terms, so that it is either zero or positive.
Both Ginzburg-Landau equations are derived by the method of variation.
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The dimensionless equations are

(V —iA)* = 2% (1 = [9]?)
V x B=2j (2.3)

with the current density

j = Im(Y"V) — [*A. (2.4)

The same boundary condition as in chapter 1 is used, naturally there is no
current normal to the boundary of the superconductor (because it is sur-
rounded with an insulator)

(V —iA)], = 0. (2.5)

2.2 A special case of the free energy expres-
sion

The Ginzburg-Landau equations and expression (2.2) are valid for any sys-
tem dimension. They are, however, non linear and therefore we do not know
generally how to solve them to find their equilibrium. There is only one
known exception. In this section we show that for two-dimensional systems
and for the value Kk = LQ called the dual point (because it is the Ginzburg
parameter value separating a type I superconductor from type II supercon-
ductor), it is possible to derive an expression of the free energy which can be
minimized.

A sample of a superconductor can be considered to be an effective two-
dimensional superconductor if the thickness of its cross section in the di-
rection of the applied magnetic field is small enough that neither the order
parameter nor the magnetic potential change through it. For such a sample,
all gradients perpendicular to the surface are zero and the only integrations
of interest are in two dimensions. Let us derive the free energy expression
that is suitable for a two-dimensional system lying in the £ — ¢ plane and for
a k at the dual point:

Fo— [aaggisp+ 5uf - 12+ (2.6)

+ (vx - ZAx)qu}(vx - ZAx)qu) + (Vy - ZAy)¢(vy - ZAy)qu)}

The overline denotes a complex conjugate term. The following is defined
D,, = 0,, —iA,, ; m = x,y, then

P [aal§lBE + 3008 - 17+ DuDT+ DD (2)
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The Bogomol'nyi method provides an additional definition D = D, + ¢D,,.
When B is inserted into the second term we obtain:

Fo— [aays+ i - 12 - BuP - 1) +

+ [DYP® +i{ Dy Dytp — Dyp Do)} (2.8)

The calculation of the curl of the current in two dimensions yields
V x j = =B|Y|* +i{DpyDyp — Dy D)}

F= /dA B(B + ¥ = 1)* + |D¢|2} + /v X [j + AJdQ. (2.9)

The Stokes formula is used to obtain

F= /8Q dA [%(B + > = 1)* + |Dw\21 + jgg[j + A] - dl. (2.10)

This is the Bogomol'nyi free energy expression. In this case the bulk part of
the expression is the sum of just two positive terms. The minimum value for
the bulk free energy corresponds to zero, which is yielded only if both positive
terms vanish simultaneously and independently. In a two-dimensional system
we have two variables of the order parameter. In conclusion, we have two
equations for two variables. The Bogomol’'nyi equation for the current is

V x j = =B¢[> + i{ Dyt Dyyp — Dyt Dyip} (2.11)
and jm = [m(WVmW - W)‘QAm ym=x,y

which are the current terms in two dimensions.

2.3 The Bogomol’nyi identities and vortices
as their solution

For an infinite superconducting disc at the boundary, r — oo, the current
j — 0 and ¥* — 1 and the boundary integral of (2.10) becomes

]{ G+A-dl— ¢ [L+A]-dL (2.12)
00 o0 ¥
This is the expression of the London fluxoid. It is quantized and equal to

2mn, for n which is the winding number of ¢). An extremum for F is obtained
when the bulk term is equal to zero

Dy = 0
B = 1-— [ (2.13)

27



These are the Bogomol'nyi identities, when they are valid, the free energy
is equal to F' = 2mn. The Bogomol'nyi identities can also be expressed
differently. The first identity is written as follows,

(8, +i8,) — i(Ay +iA,)] 1) =0 (2.14)

then the following are defined d = 9, + id, and also A = A, +i4,. They
become the complex conjugates of 0 = 0, —i0, and A = A, — iA, and the
first identity becomes [5 —iAJp = 0. The complex conjugate of that identity
therefore is 0 = —iA. Tt is multiplied from the left with ) and the second

identity is multiplied by . This yields

Yoy = Ay
VoY = —iApl? (2.15)

The left hand side of these equations can be written in the following manner

B -0 = AP
ol — G0y = —iAlP. (216)

Then they both are divided with [)|?. Their derivative is

90In [|* —90Iny = DA
00 [Y|? —00Iny = —idA. (2.17)

The right hand side of both equations are —B with an added term of +iV - A
or —iV - A. Further we observe that 90 = V2, so that adding both equations
yields

V2In|y|* = —2B. (2.18)

As a final step, the second Bogomol’'nyi identity is inserted. The result that
is obtained is an independent equation for |¢|?

V2 In [yl = 2(|6P - 1). (2.19)

This equation is known to be the Liouville equation, and there are solutions
to it which can admit singularities in the order parameter field. For super-
conductors they are vortices. The number of quantum flux is given by the
winding number n. The energy on the other hand is given by the same wind-
ing number ' = 27n. However, the energy expression does not tell what
should be the number n and it is a parameter which is determined by the
system independently. Since there is the possibility that n is zero, the above
is not even sufficient to show that vortices at all exist in the system. Still the
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derivation shows analytically that the existence of vortices is theoretically
possible, and therefore its importance. This result is another very important
feature of the Ginzburg-Landau free energy for infinite superconductors.

It was shown by E.Akkermans and K.Mallik [2] that if the proper energy
considerations are added to a system that has a boundary, it is possible
to determine an exact number different from zero for the existing vortices.
Herewith they showed that the existence of a boundary fixes a finite number
for the winding number n. The objective of this thesis is to show the same
features for liquid crystals SmA samples.
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Chapter 3

A smectic A cylinder of infinite
length and infinite radius

To this point we have described what is known previous to this work. This
is the starting point for this thesis.

The system we consider is a SmA sample with the shape of a very long
cylinder with its axis along the 2 direction. Here, we examine the case of a
cylinder with an infinite radius. It has to be mentioned, however, that such
a system cannot be physical if it contains screw dislocations. Sethna [21] has
claimed that an infinite system containing screw dislocations would create
infinite slopes to the SmA layers. However, we shall use the results of this
chapter only for finite samples. Therefore, we can ignore the problem men-
tioned by Sethna. For this chapter, we shall use an infinite model containing
screw dislocations to get some analytical results.

We start with the de Gennes free energy (in the Renn and Lubensky
formulation).

ov
Fans = [ da{r|UP + S04 Gy 2P+ Col(V s — g5 ) UP) +

+ %/d?’x{KQ(n -V x n)?} (3.1)
This energy form is only justified within the limitation of a director n making
small vibrations around its equilibrium direction, which we define to be the
Z direction. The geometry of the problem is therefore one in which we have
layers of SmA arranged along the Z direction. This is a quasi two-dimensional
geometry, since along the Z direction there are no variations other than the
SmA constant density modulation. It is already included in the definition
of the SmA order parameter (i.e. ¢s is constant and the order parameter is
independent on it). This means that in the Z direction the order parameter
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is a single valued constant, and that it depends only on its (Z, §) coordinates.
Therefore it is a case of an infinite two-dimensional system.

3.1 The dimensionless free energy

In order to understand better the properties of the cholesteric — SmA
transition, the free energy (3.1) can be rewritten as a function of only one
dimensionless parameter which shall be defined.

The last term in (3.1),which denotes the twist, is rewritten so that it
manifests the idea that the director is allowed to vibrate only slightly (r -
V xn)? — (VL x dny)? Because no forces are applied in the 2 direction,
the term Cj|ZL[? is a constant of the energy and is dropped. Let us now
write the energy expression the way we did it for superconductors:

FSmA = /dgx{ag\‘lf|2+a4]\11]4+CLI(VL—iqsénL)\I/FﬂL
1
+ K(Vix o)’} (3.2)

Where the following: as = r, a4 = g, a1 = C| have been used. At this
point the perpendicular coherence length £, of (3.2) can be defined. It is the
first characteristic length of the energy and denotes the length over which the
SmA order parameter changes in the (x,y) plane. &, is obtained by comparing
the perpendicular gradient term with the first term in the energy functional
(3.2). This sets £, = /C./|r|]. To obtain a dimensionless expression for
(3.2), the order parameter is written in units of its equilibrium value ¥ =

Yo = ,/%w. All lengths are measured in units of v/2)\. The units of the

gradient are then expressed as follows: V9 = ﬁ And the units of the

density wave vector become ¢V = ﬁ When inserted into (3.2), they yield:

a? ailas| 1 ,
£ o= B -y -1+ Ao~ ign e +
Ky 1
+ Wﬁ(leq;&u)? (3.3)

f is the energy density. ¢., V', denote a dimensionless density wave number
and gradient. When the last term in (3.3) is multiplied and divided by ¢’2, it
is then analogous with the second term of the energy density expression for

superconductors. Clearly g;0n is then the equivalent to the vector potential
A.
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The expression turns out to be dimensionless when it is divided by 2 /\2 2,
which has the dimensionality of energy. The penetration length which is tfle
second characteristic length is defined in a way similar to that of a supercon-
ductor. This is possible due to the analogy between the expressions of their
free energy. The appropriate terms are compared in the energy expression
and yield: \? = afﬁff] =3 ng;éﬂ A denotes the distance over which a change
in direction perpendicular to the director field in the SmA can occur. For
this expression, the director would tilt away from its equilibrium direction
at the boundary only due to an external applied twist field. Therefore, it is
named twist penetration length and will be denoted A\y. Two characteris-
tic lengths have been identified, the correlation length and the penetration
length. Since their temperature dependence is equal (they depend on the
same mean ﬁeld temperature parameters) we can define a dimensionless pa-
rameter kK = L. This is the Ginzburg parameter which is temperature inde-
pendent and therefore a characteristic constant describing the material. The
dimensionless energy expression is then rewritten to express that it depends
only on the Ginzburg parameter.

= (PP~ 17+ S(Vi X g, P+ (Ve —igdni )P (3.4)

Expression (3.4) is the dimensionless free energy density, describing the phase
transition between the SmA phase and the nematic phase. Since from this
point further we shall only discuss dimensionless equations, all apostrophes
are dropped. The second term of (3.4) is the energy from the twist field
which will be denoted by 7(r) = V| X ¢s0n . The third term is of the form
of a generalized momentum for the SmA order parameter. If instead of a
nematic a cholesteric phase was existent, the twist term of the free energy
expression would have been changed to 7(r) —gsko. In this case, the system is
in equilibrium when it exhibits a finite twist and for ¢ = 0. But in the smectic
phase, 1 # 0, and a twist induces the increase of energy. Therefore, the twist
vanishes at equilibrium at distances larger than the twist penetration length.
There is an energy competition between the twist energy and the smectic
energy. We can think of the nematic phase as analogous to a metal and of
the Smectic phase as analogous to a superconductor; the cholesteric phase
would then be analogous to a metal exposed to an applied magnetic field.
It seems that for a large enough twist field a second order phase transition,
which turns the SmA to a cholesteric phase, should occur This is, however,
only partially correct when k < —=, but for values of k > —2 we shall expect a
type II SmA phase similar to type II superconductors. A type II SmA phase
should contain topological defects similar to the appearance of vortices in
superconductors.
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3.2 Bogomol’nyi equations and a topological
solution

We recognized that equation (3.4) is exactly similar to equation (2.2) and
that the second term in (3.4) can be compared to the magnetic field term in
(2.2), but only when the systems are two-dimensional. This means that
in contradiction to the magnetic field term in the Ginzburg-Landau free
energy for superconductors, the twist field term in the Ginzburg-Landau
free energy for SmA must have a two-dimensional symmetry. For x = -
at the 'dual point’, the procedure from chapter 2 to obtain the Bogomol'nyi
identities can be used but only as long as the twist field is in the direction
of the cylinder axis. Under this condition, the system in question is a two-
dimensional Ginzburg-Landau system at the 'dual point’, and it is possible
to separate the free energy into a bulk and a boundary integral:

F:/ng E(T+|¢|2—1)2+|D¢|2} +f§[j+qsam] L (35)

The bulk is composed of two independent positive defined terms which vanish
for the minimization of the free energy. They vanish when the following liquid
crystals Bogomol'nyi identities stand:

Dy = 0
IT(x)] = 1-[¥f (3.6)

Then it is also possible to obtain the Liouville equation for the SmA order
parameter

V2 Infyf? = 2(|6f - 1). (3.7)

As discussed in the previous chapter, the Liouville equation admits solu-
tions with singularities. When the order parameter vanishes and nematogen
molecules can jump’ to a different layer the existence of a screw dislocation
is also enabled.

3.3 Interpretation of the solution

In the previous section we have seen that the free energy of a SmA can be
written as a sum of a bulk term and a boundary term. The minimization of
this free energy requires the bulk term to disappear. The condition for the
vanishing of the bulk leads to the Liouville equation for the order parameter
field. The solutions of the Liouville equation describe an order parameter
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field which contains singularities. The second part of the free energy is a
boundary term and as such it varies correspondingly to the specifically de-
fined boundary conditions.

First a simple case is analyzed, the case of a boundary which lies at infinity
i.e. there is no boundary. To minimize the free energy of such a system, some
simple assumptions are made that allow to calculate the boundary integral:

1. We assume that at infinity the order parameter relaxes to its equilib-
rium value (¢p = 1).

2. We assume that at infinity no currents exist (j = 0).

Under those conditions we can write:

7{ [+ geom] - dl = f[} Hz# 4 geony] - dl = é Vgl dl=21l.  (38)

This expression is similar to the London fluxoid in superconductivity, it ex-
presses the quantization of twist flux inside of a SmA. For a superconductor
the flux is quantized because the superconductor order parameter is made to
be single valued. This is also the case for the SmA order parameter, as the
order parameter must have a physical interpretation. There is one remark
that must be added: In contrast to the phase of the superconductor order
parameter which is not a measurable (only differences of the phase can be
measured), the phase of the SmA is an absolute measurable quantity, but
this does not alter the fact of quantization. The result of a quantized flux
inside a SmA sample is the lifting of layers in a stepwise way, in units of layer
separation distances. If we follow a plane circulating a screw dislocation with
flux strength 27¢, then after one circulation there is a lift to a plane which
is ¢ x d higher or lower from the plane beginning with (see 1.5). d is the
distance separating consecutive SmA planes.

hy=ho+dx/{ (39)

To conclude the case of no boundary for a two-dimensional SmA at the
’dual point’(k = \/Lﬁ), it is possible to divide the free energy to a bulk and
an edge integral (the Bogomol'nyi method). Minimization of the free energy
is achieved by applying the Bogomol'nyi equations on the bulk terms which
makes them disappear. It also leads to the Liouville equation for the order
parameter field, which solutions are known to have families of topological
dislocations. On the other hand, because the boundary is at infinity, we can
treat the boundary integral as a fluxoid and we obtain that the free energy
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is topological and depends on the integer number ¢ counting the amount of
flux quanta existing in the system

F = 2n. (3.10)

This case shows that the free energy is dependent on the amount of screw
dislocations. However, it does not reveal how many such dislocations exist
in a system, since ¢ is an independent number. Furthermore there is no
indication in this result why a system should prefer a certain number ¢ of
screw dislocations over another, or what physical considerations effect it.

For superconducting billiards the answer to those questions were provided
by E. Akkermans and K. Mallick [2]. In the next chapter it will be shown
how to apply their method to SmA samples.
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Chapter 4

A mesoscopic SmA cylinder

In this chapter it is shown that when a SmA system has a boundary, the
choice of appropriate boundary conditions leads to a selection mechanism for
the number of screw dislocations. This is the case of a system in the form of
an infinite long cylinder with a finite radius length R.

The cylinder axis is set to lie in the 2 direction, parallel to the direction
of the SmA layers. This symmetry sets the SmA order parameter to be two-
dimensional. Our theory is only valid when the radius is limited between a
maximum and a minimum size. We shall call such a system a mesoscopic
system. The solution of the problem of finite size samples however can not
be similar to the infinite case, since for such systems the Bogomol'nyi bound
does not exist (the boundary integral can not be expressed to be the fluxoid).

4.1 The boundary conditions

First it is necessary to set a few assumptions for a SmA system.

1. The radius is set to be %R > ¢ = Ar (a more precise inequality will
be given later).

2. The changes of the director are assumed to be small én; << 1. This
implies that only a small number of induced screw dislocations ¢ in the
system is allowed, and that the radius is not larger than R << Z—g

3. The assumptions above set a rough approximation for the allowed ra-
dius of the cylinder which we call the mesoscopic limit.

4. The existence of a material with kK = \/Li is assumed.
5. It is assumed that the SmA sample can accommodate a twist flux
. . 2
through it, that is bounded by: ®;p = q);—wf‘ = %.
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6. Induced screw dislocations, lie in the center of the sample.
7. There are no edge dislocations.

The second assumption is necessary since the de Gennes free energy is only
valid for small variations around the director’s mean direction. The fifth
assumption is unnecessary if the second is valid, it only states that for the
liquid crystal material chosen, the mean field theory is valid, and that the
applied twist field only produces small changes in the director. It will be
shown that this assumption is self contained in assumption number two.
The last assumption is plausible for the cylindrical geometry that was set
for the sample. As an example we shall study a sample that contains one
screw dislocation and an external surrounding twist field. For that case the
following stands:

1. The twist flux through the screw dislocation is in the direction of the
external induced twist.

2. The external twist field penetrates the edge of the sample up to a
distance of the penetration depth 4.

The second statement is the famous Meissner effect for the SmA phase. It is
simple to show that the Meissner effect is valid for any material that can be
described within the framework of the Ginzburg-Landau theory (see (1.12)).

It implies that the SmA sample induces edge currents that screen the ex-
ternal field out. Those screening currents flow in a direction that corresponds
to a circulation (according to the right hand rule), which is opposite to the
external twist field.

The first statement is obvious, and it implies that currents surrounding
the core of the twist dislocation flow in a direction that corresponds to a
circulation along the direction of the external twist field. Furthermore, the
center current as well as the edge current are tangential since the symmetry
of the system, the direction of the external twist field are cylindrical and
since it is assumed that the dislocation lies in the center. This assumption is
based on the observation that topological defects in superconducting billiards
at the dual point with radial symmetry will usually lie in the center [3]. In
conclusion, the edge and the bulk currents will flow in opposite directions.
Therefore we see that the existence of a sample corresponding to this theory is
conditioned with a minimum system radius which can absorb both currents.

Then a closed contour in the sample around the center with zero current
circulation (and in our case this implies zero current) must be found in the
sample. It is therefore possible to define a center bulk area and an edge
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area separated by direction of the currents that flow in them. A picture that
describes the above example is presented in figure (4.1). It shows a sample
containing a dislocation in its center and a twist field surrounding it.

Figure 4.1: In this figure we can see a sample of radius R on which an external
twist @ p is exerted. The external twist field is too strong to be screened out
by the edge currents, and a screw dislocation is introduced into the center.
It causes bulk currents around it that flow in an opposite direction to the
edge currents. The sample can be divided into a bulk and an edge according
to those currents. The separating contour I' between those regions is defined
to lie where the total circulation vanishes.

The core size of a topological defect is of the distance of the correlation
length. This is the distance over which it takes the order parameter to relax to
its equilibrium value in the bulk. Therefore, it is also the distance over which
currents flow around the screw dislocation core. It shows that assumption
number one is necessary to assure that the size of the sample will be large
enough to contain the complete core. In fact numerical calculations of (1.4)
for mesoscopic superconductor discs (see figure 4.2) have shown that a finite
inter area appears. In this part, the order parameter is almost equal to its
bulk value and the magnetic field disappears, hence no current circulation
exists.

The existence of a zero current contour led Akkermans and Mallick to
find a solution for the equilibrium of mesoscopic superconducting billiards
by separating the free energy to a bulk region €2y, and an edge €2y region.
The free energy can then be approximated by:

/ Fd = [ fodQ+ [ fo,d0 (4.1)
Q 951 Qo
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Figure 4.2: This graph shows a numerical calculation done for supercon-
ducting billiards with radius 10. It calculates the magnetic field and order
parameter within a sample that contains one vortex in its center. They [3]
used the complete form of the Ginzburg-Landau free energy expression 2.2
which is in complete analogy to expression 3.4. It is shown that in the vicinity
of R =5 the magnetic field vanishes and the order parameter relaxes to its
equilibrium value. Near the boundary of the sample the magnetic field rises
exponentially but the order parameter is decreased only moderately from its
equilibrium value. At the center of the vortex the order parameter vanishes.

This is an approximation, since the order parameter is only approximately
constant and equal to its bulk equilibrium value. This approximation also
assumes that correlations between the currents of the bulk and the edge do
not exist. However experimental data [3] has confirmed this approximation
to be very good.
Since the bulk is separated from the edge by a zero current contour j|r =
0, the method of the infinitesimal sample case can be applied, so that the
bulk energy is approximated to be the Bogomol'nyi bound. It is then given
by:
fa,dQY = 27l (4.2)

Q
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4.2 The edge free energy

The edge region energy F, is calculated from the general dimensionless free
energy expression:

fo, d = (43)
Q2
= / dQ) {%(le —1)%+ %(Vl X g5 )’ + (V1 — iqs5nL)¢|2} :
Qo

The expression for the order parameter ¥ = e’ is inserted into the last
term in order to decompose it:

fo,dS2 = (4.4)

Qo

[ a3 =17+ 9 x adn (9107 + 0V - g7

Since, according to the numerical calculation (see figure 4.2), the gradient of
the order parameter in the edge region is very small compared to the other
terms, it will be dropped.

Finally, the following is calculated:

| foud2 = (4.5)

= / ds {%(WP —1)%+ %(VL X q0m )? + Y3 (Voo — qsénL)Q} :
Qo

It is believed that it is possible to control in a specific system the edge
defects, so that they become relatively negligible, and (4.5) is a correct first
approximation, such that no added edge terms to the energy expression are
needed. This point will be discussed furthermore at section 5.3.

To calculate expression (4.5), it is necessary to set boundary conditions.
We choose to use the Little Parks method, applied to liquid crystals as a
good way to find suiting boundary conditions.

To apply the Little Parks method for liquid crystals in a simple way, a
convenient geometry of the twist field is defined with the following properties:
It is a twist field that has a pitch in every radial direction (of a plane), and
in all directions the twist wave vector is set to be of the same size of k. This
field shall be called the "radial twist” field, and its twist flux will be denoted
as @y p. The "double twist” phase by Kamien [16] is a phase exhibiting very
similar field properties to the "radial twist” field. It is a cholesteric phase
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with two perpendicular pitch axes so that in every radial direction it has a
pitch with a wave vector size that is a linear combination of them. The field
defined is slightly more symmetrical and thus easier to calculate. A double
twist phase would yield the same characteristics, but shift the numerical
results, the main results will hold. As long as a zero circulation contour is
established in the sample, the principle results will stand.

Such a "radial twist” field surrounding a SmA sample exerts a stress,
leading the sample to twist around its axis.

The following figure (4.3) presents the situation we have described.

Figure 4.3: The left figure shows the case of what we call a Little Parks field,
a twist field of radial pitch. On the right we show the resulting strain in a
SmA cylindrical grain which is located in the center of the field. The arrows
represent local SmA directors. We can see that they tilt increasingly in the
tangential direction as the distance from the center grows. dn, which is the
projection of n on the plane of the SmA layers, is therefore tangential and
increases radially.

The Little Parks method for liquid crystals assumes that the total twist
flux through a SmA sample is bounded by the twist flux accommodated by
the same volume when no sample is inserted into the same external twist
field, and that the field’s radial pitch wave vector is kg. In simple words it
means that the twist flux through the SmA sample can only be less than or
equal to the twist flux of the "radial twist” field.

CI)SmA = 27T(I)Lp - 7TR2/{30 (46)

The symmetry of the case we have described will set dn, to be tangential
as it is depicted in figure (4.3). The current density will be as well tangential,
and depend only on the distance from the center of the sample.

on, = (511L(r)(:) jo(r) = ¥*(Vip — qn,) (4.7)

Where O is the tangential direction. The value of the twist flux in the sample
is attained by integrating the twist term of the free energy over the complete
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area of the sample, this yields:
Orp=2L ¢ sn,-dl = Rgon, (R). (4.8)
21 Ja
Thus on the boundary of the sample we have

koR -
= . 4.
2. O (4.9)

(5IIJ_(R)

The value of the phase on the boundary of a sample that contains ¢ screw dis-
locations corresponds to fBQ Vip-dl =2nf . And therefore on the boundary
we have:

{
VJ_SO‘BQ = E@- (4-10)
If (4.10) and (4.9) are inserted into (4.7) then, for
2
(< kof = ®yp, (4.11)

the current on the boundary is negative. And since around the core of the
sample the current is positive, it is clear that in between the boundary and
the bulk core, a closed contour must exist for which the current vanishes. This
is therefore the limit that is set for the number of screw dislocations allowed
in the sample. It allows the Bogomol’'nyi bound to be a good approximation
for the free energy of €1;.

When (4.11) is an equality, the zero current contour is found to be on
the edge of the sample. There is no edge region and the complete energy
of the sample is a result of the Bogomol'nyi bound. Moreover for such a
configuration, there are no edge currents to screen the external field and the
entrance of more dislocations into the sample is enabled. For ¢ smaller, there
is a finite edge region §2,. If an external twist is applied, it penetrates the edge
region and decays in it exponentially, relative to a distance of penetration
depth that we denote §. It is emphasized that in general § # \. Since,
A is the characteristic mean field penetration depth for a system without a
boundary, a different approach has to be taken to calculate §. It is calculated
to be such that it minimizes the free energy of Q2. We write:

T(r)=7(R)e 5, (4.12)
where 7(R) denotes the twist field on the boundary of the sample. It can be
calculated by implementing the boundary conditions on it . The complete
twist flux is

Opp :f—l—% 7(r)dQ ~ { + R7(R). (4.13)

T Qs
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Inserting (4.13) into (4.19) gives

. Srp—L —(r-r)

T(r) = —5 ¢ £ (4.14)
The following identities are used to calculate the free energy:
VXilr) _ (4.15)
Y]
. 2
r
{712—2)} W = Y*(Vip —qony)? (4.16)
When inserting the previous equations into (4.5), we obtain
1
— dQ) = 4.17
27 Jq, fos ( )
L) 1 i)\
_ dr'd 2wl — 1)+ = 2 Jr) 2\
[ rar {Quw e grmr+ {22

The integral over €2, was calculated between r = R and r = R — ¢, according
to the exponential decay distance of the twist field. The last term of the
energy expression (which is the analogy to the velocity of superconducting
particles) decays as well exponentially from the boundary

(1 4] o (R—r)

]|1(ﬁ_|2)zﬁ<1_;)<l_q)LP)e 5.
This expression agrees with (4.15) (see appendix A). It is only well defined
in the edge region since it does not take in account currents in the bulk,
according to the assumption that there is no influence between them and the
edge currents.

The exponential decay of the current, according to figure (4.2) of the
numerical calculations of equation (1.4), shows that this approximation is in
good agreement for v that changes moderately in the edge region. Therefore
it is correct to approximate the order parameter to an average value of 1) =
Yo = constant. It is then a matter of finding the proper value of the order
parameter which minimizes the free energy. The integration of the twist term
yields:

Fu}is 15 _ 5 (5 _
¢ t:——(q)Lp—g)Qb ; b:1—€2—_+3_€ 2.

(4.18)

(4.19)

27 4R 2R 2R
The integration of the first term of (4.17), that we shall denote as A yields:
A 6, , 9 1
— = —(¢§ — — =9). 4.
2= YW - 1R~ 50) (1.20)
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The velocity term is more difficult to calculate, it is obtained after we insert
(4.18) into the integral:

—2(R—r")
F, , B, 56 T8 54/R oD
SR (—Byp) s a = o122 [0 O e T
o~ Voll=pSasa=gpllme o ptoge T | T
(4.21)

The radius of the system is R > 4, so that the last integral in (4.21) becomes
negligible. This term can however play a role for very small systems, when
the edge region is of the size of the penetration depth. It is added that
this term manifests the current dependence on the radius and ¢ which could
suggest a strong connection between 1y and d. However for large R it is of
second order and we shall consider them to be independent. The complete
energy expression of the sample including the bulk then rewrites:

Fy(®Lp)
21

o 1 19
=(+ 5(% —1)*(R— 55) + ZE((I)LP —0?b+5 (0 —Prp)’a (4.22)

We wish to determine the value of iy through the minimization of the energy.
The value we obtain is

Cl(g— @LP)Q
(3 - R)

2

Ug =1+ (4.23)

It depends on a specific example of given system parameters. They are the
applied twist field flux ®,p the value of the § parameter (it is shown that
although the § parameter is not an external controlled parameter, there is a
wide range of values for which the results are good), the size of the system
and the number of dislocations. For the appropriate range of the system
parameters, the value of 12 was found to be larger than 0. (4.23) is inserted
into (4.22). We obtain an expression for the free energy which is dependent
only on ®p, ¢ and the constants a an b which are functions of the § parameter
and the radius of the sample. The complete free energy contains the bulk
and the edge energy expressions:

Fy(®
% = (4 c(l —Dpp)? —d(l — Dpp)*, (4.24)
T
where ¢ = a + %}%b and d = 5(#275)' Equation (4.24) is the free energy that

describes a mesoscopic cylinder of SmA which is inserted into a radial twist
field. For 6 < R, d and c are positive parameters.
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Chapter 5

Final results and conclusions

5.1 A selection mechanism (interpretation of
the free energy functional)

We wish to analyze whether (4.24) shows that screw dislocations can be
found inside the sample and when they are stable. It is also wished to obtain
an exact number of screw dislocations that are induced at a given strength
of a twist field.

The free energy of a sample of radius R and a penetration depth ¢ con-
taining ¢ screw dislocations is a function of the applied twist flux & p.

If a certain value of the external twist field ®,p is applied, there is an
energetically preferred number of screw dislocations that are induced into it.
It is necessary to show that for a twist field that is not too large so as not
to distroy the SmA phase, the free energy of a sample that does not contain
any screw dislocations is larger than the free energy that contains at least
one screw dislocation.

The smallest value of the twist field ®;p for the entrance of the first
screw dislocation into the system corresponds to {Fj—o < Fy—1} |¢,,. Some
numerical simulations for different system parameters have been done and
presented in three figures.

Figure 5.1 presents energy surfaces for varying values of the § parameter
and the twist field surrounding the sample. It shows that a finite zone of
system parameters and twist field values exists, in which the energy of the
system that does not include a screw dislocation is larger than the energy of
a system which includes a single screw dislocation.

In figure 5.2 the process of generating surfaces was repeated for different
values of induced screw dislocations ¢. A ’bird view’ of the interception lines
is presented.
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The framework of this work sets a limit for the total number of allowed
screw dislocations as a function of the size of the system.

The last figure (5.3) shows the results obtained for a single value of 9.
The curves that appear denote the energy of the system, each for a different
value of /. They intercept at given values of the twist field. The lower
envelope created by the intercepted curves represents the minimum value of
the energy. We can see that it corresponds to a growing number of screw
dislocations as the applied twist field grows.

These figures make it visible that for a finite area of the system parameter
field there is a strong correlation between the number of screw dislocations
and the external applied twist field. It is energetically preferred to insert
additional screw dislocations into the system than repel them by screening
currents. This is understood in the following way: For a certain applied twist
stress the strain energy is lower if a dislocation is inserted into the center,
enabling the boundary to relax. An opposite view would be that the twist
flux can enter the system when the edge region vanishes and is located on
the boundary. The bulk then is open to collect twist flux from the external
field. As soon as an added dislocation enters the system, the bulk energy
rises and it is preferred to shrink its size to enable a larger edge size that
shields the entrance of further dislocations.

5.2 Conclusions

It has been shown that

1. For a mesoscopic system it is possible to use the de Gennes free energy
to describe a system with only few screw dislocations.

2. A dual point is identified for which the free energy is topological and
given by Frg = 2nl.

3. The role of the boundary is to stabilize ¢ screw dislocations as a function
of the applied external twist field.

4. Our study is the first analytical derivation towards the understanding
of existence and stability of the TGB phase.

To summarize it, a closed expression of the free energy for a small SmA
sample was obtained, from a direct derivation of the Landau-Ginzburg energy
expression for liquid crystals. The derived energy expression contains as a
parameter the number of screw dislocations that are induced into the system.
It shows us that the minimization of the free energy allows to characterize a
stable system that contains a finite number of screw dislocations.
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5.3 A discussion on some questions

We have decided to mention some questions which have come up in the course
of this work in form of a discussion.

e It looks as if the energy in equation (4.24) is unbounded and could
even become negative. This is incorrect, since our theory is only valid
when the value of ®;p is much smaller than 7R and only for R > J.
This will limit the number of screw dislocations in the system. As an
example for the parameters R = 10,6 = 2.138, like in figure (5.3), the
twist flux allowed in the sample should be smaller than 5 (see Appendix
B), and therefore the number of screw dislocations in the system will
be equal or less than 3.

e Does our boundary condition disregard edge effects which are known to
appear on finite SmA samples? More specifically, should the Rapini-
Papoular form be added to an edge energy? Or is our theory not
general or wrong without the Rapini-Papoular edge contribution? As
we understand it, it is true that what we presented is in no way the
most general case of a SmA sample and of the boundary conditions.
However, we do believe that it is possible to generate an example in
which the important physical parameters that influence the behavior
of the system are those that we have included and analyzed in this
work. Moreover, we also believe that this work is meaningful although
it lacks generality and although it is probably not enough 'rounded
up’ to be implemented on an experiment. It is however a major step
in that direction, since as a first approximation it identifies the most
important parameters that influence such a system and it gives some
principle results that characterize its physical properties.

e The use of the boundary condition (4.6) results from a physically rea-
sonable assumption. However, it is not a result of physical properties,
and one can rightfully claim that any result obtained depends on the
specific boundary conditions that are set.

e Why does only the twist term in the expression of the free energy ap-
pear? This is actually the same question as the first one but somewhat
more general. Again it is a matter of not addressing the most general
situation, in which a SmA sample can be found. For a sample with a
boundary we need to justify that it is possible to separate the effect
of twist from the other terms of the Frank Oseen free energy. In gen-
eral for a sample of infinite bulk this is obviously correct, since this is
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exactly the meaning of the Frank Oseen free energy which is a mani-
festation of the diagonalization of the strain tensor of a sample. It is
necessary to do some more research to determine how much this can
be generalized for finite samples too. We have eluded this problem by
setting very specific boundary conditions, including the way our sample
is aligned proportionally to a stress field on it.

5.4 Suggestions for further research

In the following section some ideas that are out of the scope of this work,
but can be followed on the basis of it, are mentioned.

e The analytical solution we presented is valid at the dual point. How-
ever, this is a point which is not reproducible in an experiment. For an
experimental verification of the theory, it is necessary to show that the

1

results we yielded are also valid in the vicinity of k = 7

e [t would be also interesting to try and get the same results for a different
boundary, like an infinite half space SmA.

e The numerical calculation showed that there are some interesting re-
sults as R gets smaller towards the size of 2;. It comes from the integral
that was mentioned and dropped in 4.21.

e For a liquid crystal theory to be more complete, it is desirable to add
the extra terms of Frank Oseen elastic energy considering also edge
dislocations and other strains.
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Figure 5.1: This figure is a numerical result of equation (4.24). The x axis is
the twist field &, p, the y axis is a varying penetration parameter ¢ value and
the z axis is the corresponding value of the free energy. The sample radius
chosen is 10 (dimensionless units). Each surface represents the energy of a
sample that contains ¢ screw dislocations. Two surfaces are presented, the
red surface is the zero energy plane F=0, the blue surface is the result of the
deduction of a surface with a single screw dislocation ¢ = 1 from a surface
without one £ = 0. A finite area of § parameters and values of the twist field
exist for which the blue surface lies above the zero energy plane.
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Figure 5.2: Presents a bird view of six surfaces, each contains a different
number of screw dislocations. The contours are the interception lines between
them. The contour that lies at the far left is the interception between surfaces
of =0 and ¢ = 1. Following to the right, the interception between ¢ = 1
with ¢ = 2 appears. This continues the same way as we move to the right,
every contour that appears represents an additional dislocation in the system.
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The free energy curves of a mesoscopic SmA cylinder in a radial twist field
T T

9 T T

R=10,6=2.138

WN O

®©
T

Figure 5.3: In this graph, each curve represents the energy of a system con-
taining a different number of screw dislocations. The radius of the system is
10 and the value of § is 2.138. The blue line represents the energy curve of
a system that does not contain any dislocation. As we see, when the exter-
nal twist field is small this curve corresponds to the lower envelope line and
therefore to the minimum possible energy of the system. However, when the
field grows the lowest energy corresponds to the red, the green and the light
blue lines which correspond to a system that contains one, two and three
screw screw dislocations.
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Appendix A

Dependence of i[> on 6

In deriving (4.18):

' J J Rr
% = F1 = U= Pup)e
we used (4.15):
V xj

Using the assumption that i) depends only weakly on 6 when R is large, we
shall prove that this is self consistent.

In (4.14) we obtained the following expression for the twist flux in the
edge region:

T('r) . (I)LP - 66—(1?5—7')2
= T

We can use the identity V x 7(r)Z = 25O in order to derive the current
14-Prp —(B=r)

density. We obtain j = 5s=3e™ 5 . If the last expression and (4.18) are
valid, then they suggest the following dependence of the order parameter

1

v|* = 219 (A1)

T

which is not independent on the penetration depth. However, this depen-
dence is weak when R is large, since r will be much larger than ¢ and therefore
(4.18) still agrees with (4.15). In order to show that, we insert the expression
obtained for the order parameter into the current expression (4.18). When
its curl is taken the following is obtained:

—ij(r>:—7'r 5—27'7'
o (r) + 257(r). (42
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For 9 < r the term on the right is small and can be neglected, and we see
that the assumption that i) depends only weakly on ¢ is justified and self
consistent.
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Appendix B

An approximation of the twist
flux allowed in a system of size

R=10

The second assumption at the beginning of chapter 4 is R < i—z which is

equivalent to kg < 2. If we insert this into equation (4.11) we obtain:

k 2
o < TR (B.1)

Qrp =
Requiring that kg is smaller than g—g, amounts to assuming that the external
twist field is such that in a cholesteric sample of the same size the director
would have tilted by 60°. In a SmA sample this is much less, we shall assume
that it is not larger than 20°, and therefore it is a small tilt. For a sample
size R = 10, a good approximation for the maximum twist flux is:

1

Figure (5.3) indicates that this corresponds to up to three dislocations in the
system.
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