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Abstract

We study several systems and phenomena characterized by a discrete scale in-
variance. We first study phase transitions on self-similar fractals. We find that
the discrete scaling symmetry leads to an exponential growth of the Laplace
operator eigenvalues. Discrete scale invariance is also responsible to a new type
of critical behavior resulting in modified, scaling relations. Our results can be
understood in a broader context which relates this behavior to substitutions.
We then explain the relevance of the fractal self-similar structure using the Har-
ris criterion. We show that breaking of scaling relations can be understood as a
competition between criticality and geometric disorder resulting from the fractal
structure.

We then extend our study to other examples including the Efimov physics
and Quantum Einstein gravity (QEG) using a renormalization group (RG) ap-
proach. The relation with substitutions is emphasized. In addition we propose a
method to obtain spectral properties of self-similar fractals using substitutions.
Finally, we study topological properties of finite length two-letters substitutions.
For such substitutions, a real space torus for can be defined which allows to pro-
duce an ensemble of topologically equivalent lattices. For the specific case of
Fibonacci substitutions those lattices are unitarily related. Going to the Fourier
space we show that the torus structure is preserved and that the corresponding
winding numbers are obtained from an algebraic structure which is generic to
any substitution. Those winding numbers are related to spectral properties of
the quasiperiodic structure, through the gap labeling theorem.
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Chapter 1

Introduction

Quite often, physical phenomena are characterized by scale invariance [1–6].
A generic example is provided by systems which undergo second order phase
transitions. Near a fixed point Tc, all thermodynamic functions display a power
law divergence, F (t) ∝ tθ 1 The different θ′s are known as critical exponents
which satisfy scaling relations. This behavior is also known as continuous scale
invariance, meaning that for an arbitrary number λ the following relation holds,
F (λt) = λθF (t). At first sight, this relation is a sub-class of a more general
family of systems which exhibit discrete scale invariance. In those systems λ
cannot be chosen arbitrarily, but rather is chosen from an infinite but discrete set
λn obeying the rule λn = λn0 . Those discrete values lead to a specific behavior of
the scaling function F (t). Writing it as F (λn0 t) = F (λnt) = λθnF (t) = λnθ0 F (t)
leads to a new and distinct behavior. The critical exponent θ which satisfies this
relation is not real valued but rather takes an infinite number of complex values
with the same real part. To see this we note that we can write the scaling
function as F (t) = tθ = exp(θ ln t). By multiplying it with a phase of 1 =
exp(2πim) we find that scaling function can be written as F (t) = tθFper(ln t)
where Fper is a periodic function of period 12. The existence of complex valued
exponents which leads to a log-periodic behaviour is therefore a distinct property
of systems characterized with discrete scale symmetry.

While it is easy to see that for continuous scale invariance, where the scale
parameter is arbitrary, the periodic function is constant, it is less obvious how
does discrete scale invariance influences the physical behavior.

Systems which exhibit discrete scale symmetry are found in many fields of
mathematics. They also include (among others) self-similar fractals [7–25], au-
tomatic sequences [26–28], substitutions [29–44]. Discrete scale invariance also
shows up in many different areas such as: geophysics and seismic measure-
ments [45], financial , and biology. A number of physical phenomena are also
characterized by discrete scale invariance [12–15, 20–25, 27, 34, 38, 45, 46]. This

1Here t is the reduced temperature t = T−TC
TC

.
2F (t) =

∑
m∈Z amt

2θ+ 2πim
lnλ0 = tθ

∑
m∈Z am cos

(
ln t

lnλ0

)
1
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demonstrates the importance of discrete scale invariance as an important tool
in our understanding of a number of physical phenomena.

It seems that till this day there is an insufficient connection between different
fields where discrete scale invariance plays a role. There is a large number of
papers devoted to this subject, but it seems that a good connection between
those different areas is still lacking. For example, while several important works
regarding phase transitions on fractal systems have been done, the full fractal
geometry was never taken into full consideration. This led to some important
but incomplete results [47,48]. Understanding the exact critical behavior on self-
similar fractals is an important task since it might lead to a better understanding
of such preserving the properties of second order phase transition can lead into a
new and distinct behavior. For example, while it is long known that there are no
second order phase transitions when the dimension is smaller than 2, it is far less
known that in fact the dimension which governs the existence of phase transition
is not the geometric\Hausdorff dimension but rather the spectral dimension, to
be defined later. This indicates that second order phase transitions are governed
by the spectral properties of the system rather than the geometric properties.

In this work we will address this subject and give a complete derivation of the
critical behavior of an ideal Bose gas on self-similar fractals. We show that in
contrast to Riemannian manifolds, where the phase transition is well understood
and leads to a set of well known critical exponents on self-similar fractals, on
fractals, the complex geometry leads to a new type of a critical behavior. This
dependence has another important consequence. It violates scaling relations e.g.
Rushbrooke ,Fisher. While the real part of the critical exponents satisfies the
scaling relations it is the contribution of the imaginary parts, resulting from the
self similarity property, which violates them. In general the existence of complex
valued exponents and the breaking of scaling relations due to a relevant disorder
can be explained using the Harris criterion. This criterion gives us an argument
about the importance of disorder on the critical behavior of a system. On self-
similar fractals the breaking of the scaling relations is clearly due to the special
geometry leading to the fact that we can interpret it as some relevant disorder
to a system with non trivial dispersion relation E(k) ∝ kσ.

Log-periodic behaviour and discrete scaling symmetry also appears quite sur-
prisingly in the Efimov physics. In his paper, [49] Efimov had studied a system
of three bosons interacting through short range and weak interactions3. He has
found that effective long range three body interaction is given by Schrodinger
equation with an attractive potential of V (r) = α

r2 . This discovery is remarkable
since for α smaller then some critical value αc the energy is characterized by
an exponential growth En ∝ exp

(
−nν
)
rather then algebraic growth. Moreover

the scale invariance of the Schrodinger equation4 is broken into discrete scale
invariance thus leading to a new behaviour of the system5. This is known as
the Efimov effect.

3By short we mean interactions which decays faster then r−3. By weak we mean interac-
tions which can barely support two body states

4Note that both ∆and V (r) have dimensions of Length−2 thus α is dimensionless
5In Sec 3.2 we show how does this breaking occur

2
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The attractive 1
r2 -potential in the Schrodinger equation was studied in many

other papers (see for example [50–52]). In those papers it was shown that there
is an explicit value of the coupling constant αc such that for α < αc the solutions
are characterized by two complex valued exponents meaning that the system
exhibits a limit cycle behavior. This behavior is not new and was first suggested
by Wilson [4]. Moreover this effect was found relevant in many systems such
as graphene. In this work we also consider this problem from the view point
of generalized substitutions. Originally used in order to describe quasiperiodic
systems such as quasicrystals, substitutions can be used in order to understand
other physical systems [46, 53, 54]. Here we derive the renormalization group
equations for the wave function and show that in general it can be written as
a generalized substitution which we define later on. This preserves the basic
properties of the RG equations and reveals an underlying geometric structure
which relates to Efimov physics.

The dependence of geometry on the system parameters can be found in
Einstein gravity, since the metric is determined by the system parameters such
as mass, energy etc... Moreover, for quantum Einstein gravity(QEG) it is known
that physical quantities depend on the scale. Performing RG calculations it has
been shown [55] that it might exist a non trivial fixed point in the coupling
space characterized by complex critical exponents. Here we show that this
result is a consequence of the chosen background metric [55] and this can be
seen as a type of Efimov effect on some non trivial metric. We choose another
background metric, the Schwarzschild metric, and repeat the derivation of the
critical behavior. We show that although this metric also leads to a non trivial
fixed point, it is not characterized by complex critical exponents. This is a
clear indication that the complex exponents depend on the background choice.
The fact that QEG might be described as an Efimov effect which by itself
relates to substitutions tells us about the importance of the underlying geometric
structure.

Substitutions are not just interesting since they can be related to the Efimov
physics. It turns out that just like our interpretation of self-similar fractals the
basic structure of substitutions can be thought of as kind of disorder to some
otherwise periodic system [20, 26, 27, 30] . All of this makes substitutions an
interesting subject by itself. Since their discovery, a great number of works have
been dealing with a better understanding of their properties. While most works
concentrated on the geometric properties of the substitutions [29,34,37,40–44] ,
some were devoted to the spectral properties of substitutions and corresponding
topological information [31–33, 35, 36]. For example, height of the gaps in the
integrated density of states was shown to be related to winding numbers. This
is known as gap labeling theorem. While important, the gap labeling theorem
rely on the assumption of an infinite length substitution with an exact discrete
scale invariance. Recently it was shown [38] that for the Fibonacci substitution,
the topological content of the gap labeling theorem holds even for finite substi-
tutions. This indicates that the existence of winding numbers is independent of
the assumption of infinite size.

In this work we generalize these results to a general substitution. This is

3
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done using an unusual approach . We define a substitution dependent 2d lattice.
We show that when the number of lattice sites obeys some specific recurrence
relations the 2d real space lattice has a periodic behavior in both directions and
thus defines a torus in real space. We then study the reciprocal space of this
2d torus and show that Fourier transformation presents sharp Bragg peaks. We
study those peaks and show that they also define a torus. On this torus one can
define a winding number.

This work is organized as follows: In section 2 we study the basic proper-
ties of phase transitions on self-similar fractals. We begin with an ideal Bose
gas and obtain its partition function. Then using the Yang-Lee approach, we
derive using a simple RG approach that the critical behavior on self-similar
fractals is characterized by an infinite numbers of complex valued exponents.
We obtain the critical behavior and show that usual scaling relations do not
hold. We then consider the superfluid density ρs and show that alike BEC,
there is no finite superfluid density for ds ≤ 2 and that it also has a log periodic
behavior. Both phenomena are sub-class of a wider phenomenon known as off
diagonal long range order(ODLRO). We generalize the concept of ODLRO to
self-similar fractals and show that it is the spectral dimension rather than the
Hausdorff dimension which underling the existence of ODLRO. This provides a
generalization of the Mermin-Wagner-Coleman theorem. In section 3, we first
present a generalization of substitutions to real numbers rather than integers
and show its relation to the Efimov effect. We show that there is a phase transi-
tion in the critical coupling constant and suggest that it might be related to the
Kosterlitz-Thouless transition. We then study the RG flow in QEG and show
that it depends on the background metric. In section 4, we consider two-letter
substitutions and study there topological properties. We show that the topo-
logical can be obtain using the group structure of the substitution . We finally
conclude this work in section 5.

4

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Chapter 2

Phase transitions on
self-similar fractals

In this section we present results about the critical behavior of physical systems
on self-similar fractals. In contrast to Riemannian manifolds, self similar fractals
are characterized by a discrete scale invariance, rather than a continues one, even
near the critical point. This behavior is a consequence of their specific structure.
As a test case we choose to study Bose-Einstein condensation (BEC) on fractals
and analyze its renormalization group (RG) flow .The geometrical structure of
the fractal leads to a new behavior of the phase transition which is not a standard
second order phase transition but rather a transition characterized by a set of
infinite complex valued critical exponents which break scaling relations. The
breaking of scaling laws is a distinct feature of the fractal geometry. We then
show that on fractal manifolds BEC can occur only when the spectral dimension
(to be defined) rather then the Hausdorff dimension is larger then 2. This turn
out to be a general property of second order phase transitions not specific to
ideal Bose gas. We find that for both BEC and also for the the superfluid
density there is no phase transition when the spectral dimension rather than
the Hausdorff dimension is smaller or equal to 2. This is a clear indication that
the spectral properties of the system are the only relevant to account for the
phase transition. Using the spacial structure of self similar fractals we were able
to show that the critical behaviour found in other works [61] can be understood
by means of the spectral properties of the system rather then its geometric. We
end this chapter with a simple derivation of off diagonal long range order and
show that the system cannot have long range order when the spectral dimension
is less than 2.
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2.1 Bose-Einstein condensation
2.1.1 The partition function
To understand the critical behavior on self-similar fractals, we consider the Bose-
Einstein condensation. As a first step, we derive the partition function of a non
interacting boson gas on a fractal manifold and see how it changes on contrast
to Riemannian manifolds. We consider bosons of mass m in a volume V and at
temperature T . The partition function is:

ln (Ξ(T, V )) = tr ln (1− z exp (βH)) (2.1.1)

where z = expβµ is the fugacity, β ≡ 1
kbT

is the inverse temperature, and
H is the Hamiltonian describing the system. Here it is the Laplace operator
H = − ~2

2m∆ . Expending Eq. (2.1.1) with respect to the number of modes, and
the logarithm in a Taylor series yields

ln (Ξ(T, V )) =
∑
j

∑
n

g(En)1
j

exp (−β (jEn − jµ)) (2.1.2)

where En are the eigenvalues of −∆ with degeneracy g(En). The identity e−x =
1

2πi
¸
dsΓ(s)x−s yields

ln (Ξ(T, V )) = 1
2πi

∑
j

∑
n

g(En)
˛
dsΓ(s)β−sE−sn

zj

js+1 (2.1.3)

which can be further simplified as

ln (Ξ(T, V )) = 1
2πi

˛
Lis+1(z)Γ(s)β−sζν(s)ds (2.1.4)

where the poly-logarithmic function is Lis(z) =
∑
j
zj

js . The function ζν(s) =∑
n g(En)E−sn is the spectral zeta function. It is related to the heat kernel of

the system via a Mellin transform [18, 56] and determines its relevant spectral
properties. On Riemannian manifolds, we can rescale the Laplace operator by
L−2 where L is a characteristic length scale of the system, 1 namely we can
write ∆ = L−2∆̃ where ∆̃ is dimensionless. Inserting it into Eq.(2.1.4) gives

ln (Ξ(T, V )) = 1
2πi

˛
Lis+1(z)Γ(s)

(
L

Lβ

)2s
ζν(s)ds (2.1.5)

where L2
β = ~2β

2m is the thermal wavelength [57].
At low temperatures ,β → ∞, z → 1 and the poly-logarithmic function

reduces to the Riemann zeta function Lis+1(z = 1) = ζR(s + 1). In order
to evaluate the partition function we choose an integration contour where the

1V ∝ Ld

6
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Figure 2.1.1: The second and third iterations of the Sierpinski gasket.

Riemann zeta function is analytic, meaning that the behavior of the partition
function is determine only by the poles of the spectral zeta function at sn = d−n

2
where d is the spatial dimension of the manifold. The partition function is
rewritten

ln (Ξ(T, V )) = V

Ldβ
+ # S

Ld−1
β

+ ... (2.1.6)

Where V is the volume of the manifold and S is its corresponding hypersuface
S ∝ Ld−1. This is just the well known Weyl expansion of the heat kernel . The
volume V in Eq.(2.1.6) is related to the spectral zeta function meaning that it
is related to the spectral rather than geometrical properties of the system.

We now turn our attention to fractals. Here we concentrate only on self
similar fractals, which creates a graph defined in an iterative way [12]. In the
infinite limit the self similarity is reflected by the fact that each sub-graph is
made of N copies of the original sub-graph each is rescaled by a factor of l.
The factor l is the scaling factor of the fractal. As an example we consider
the Sierpinski gasket. The first iterations are presented in Fig. 2.1.1. For each
iteration we create 3 re-scaled copies of the previous shape, Each is characterized
by a circumference of half the original shape. The scaling factor l is therefore
equal to l = 1

2 .
In contrast to Riemannian manifolds, fractals are characterized by more

than one dimension. The Hausdorff dimension dh is well known and can be
understood as an extension of the geometric dimension d. Using Fig. 2.1.1
gives a clear interpretation of this dimension. By assigning to each side if the
n′th iteration a length L and a mass M we note that the total length and mass
are given by Ln = L02n Mn = M03n respectively . For the Sierpinski gasket

7
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the Hausdorff dimension is defined to be

dh ≡ lim
n→∞

lnMn

lnLn
= ln 3

ln 2 . (2.1.7)

While the meaning of the Hausdorff dimension is simple the origin of the other
dimensions is less intuitive. The fact that diffusion on fractals is anomalous
namely

〈
r2〉 ∝ t 2

dw where dw 6= 2 is known as the anomalous walking dimension.
This provides another dimension different from dh. Using the diffusion equation
∂tψ = D∆ψ leads to an anomalous scaling of the Laplace operator ∆ = L−dws ∆̃.
The length scale Ls is known as the spectral length. We use it to define the
spectral volume Vs ∝ Ldhs (see [25], Eq.(20) for the exact relation). Finally we
define the spectral dimension ds = 2dh

dw
. It is related to the spectral behavior

of the Laplace operator and it is specific to the non trivial structure of fractal
manifolds [48].

Unlike Riemannian manifolds where the eigenvalues of the Laplace operator
and their degeneracy grow algebraically En ∝ n2, g(En) ∝ nd, on fractals the
discrete scaling symmetry leads to an exponentially behaviour of the eigenvalues
and the degeneracy En ∝ l−dwn ,g(En) ∝ lndh [?]. Thus the spectral zeta
function is

ζν(s) = ζν(s) =
∑
n

g(En)E−sn ∝
∑
n

l−dwnslndh =
∑
n

ln(dh−dws) = 1
1− ldh−dws .

(2.1.8)
It has an infinite number of complex poles sn = ds

2 + 2πin
dw ln l where ds ≡

2dh
dw

is
the spectral dimension. Eq.(2.1.5), then rewritten

ln Ξ(T, Vs) = Vs

Ldhβ
F

(
ln
(
Ls
Lβ

))
, (2.1.9)

where F is a periodic function of period of 1 (F (x+1) = F (x)). The appearance
of the log-periodic function F in the partition function is at the origin of the
new behavior of the physical properties that we shall derive.

To end this section, we note that on fractals, the self similarity leads to
several important changes which are the key ingredients in the critical behavior:

1. The dimension which governs the behavior of the spectral zeta function
and the behavior of the partition function is the spectral dimension ds
rather than the Hausdorff dimension dh.

2. The Weyl expansion is modified into a log-periodic behavior of the parti-
tion function [19].

To end this section we plot the partition function of this boson gas. This is given
in Fig.(2.1.2) where we have plotted ln Ξ(T, Vs) as a function of it argument Ls

Lβ

for the Sierpinski gasket The log-periodic oscillations are clearly shown in the
lower figure. Note that the relative size of this effect is around 1%. In Fig.(2.1.2)
we have used only the first two terms of Eq. (2.1.9) since they become smaller
very fast when we go to higher terms.

8
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Figure 2.1.2: Upper figure ln Ξ(T, Vs) for Sierpinski gasket. Lower figure
ln Ξ(T, Vs)/ ln Ξleading ≡ Vs

L
dh
β

2.1.2 Existence of a fixed point-Yang-Lee approach
The previous log periodic behavior raises the question: Is there on fractals a
critical behavior near fixed points in the sense of Wilson and Fisher? In order
to prove that on a fractal manifold, the ideal Bose gas has a fixed point, and
to determine its nature we use the Yang-Lee formalism [58, 59]. Yang and Lee
have shown that a fixed point at which a phase transition occurs is determined
by the zeros of the partition function. To use this statement for BEC, we follow
Ikida [60] and write the inverse of the partition function as a product of its poles
rather than its zeros. This is can be done since for the dimensionless free energy
G the following relation holds

G = ln Ξ = − ln
(

1
Ξ

)
(2.1.10)

i.e. that poles of Ξ are equal to zeros of Ξ−1 since in both cases the free energy
is non analytic. In order to find the poles we return to Eq.(2.1.1) and expend
it around its poles. It can be formally written as

Ξ(T, V, µ) =
N∑
n=1

∑
i

exp (β(Ei − µn)) =
∑
n

zn
∑
i

exp (βEi) ≡ PN (z)

(2.1.11)
meaning that the partition function can be written as polynomial PN of the
fugacity with coefficients which depends only on the temperature and the energy
spectrum of the Laplace operator. Furthermore, we can rewrite the partition
function as

Ξ(T, V, µ) =
∞∏
n=1

(z − zn)g(zn) (2.1.12)

9

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Figure 2.1.3: Scale transformation K → Ψ1(K) for the Sierpinski gasket

where zn is the n′th pole and g(zn) is its degeneracy. A quick examination
of Eq.(2.1.1) shows that the poles are given by zn = exp (βEn) ⇒ g(zn) =
ldhn. This means that on fractal manifolds the ideal Bose gas is characterized
by an infinite number of poles distributed between z1 = exp

(
ϕ
T l
−dw

)
(ϕ is a

constant which depend on the fractal geometry) up to z∞ = 1 with a fixed ratio
zn
zn+1

= exp
(
ϕ
T l
−dw

)
= z1. As we mentioned, Yang and Lee have argued that

the existence of a real zero of the partition function is a sufficient condition
for a phase transition to occur. To see that this holds true for fractals, we
use Eq.(2.1.12) and perform a scale transformation on the fractal. Namely the
fractal K is rescaled into one of its self-similar copies K → Ψ1(K) 2(see for
example Fig.2.1.3) . In the same way we take K → Ψ−1

1 (K) which will make a
larger copy of the fractal.

Under the scale transformation (K → Ψ1(K)) the energy levels changes to
En → l−dwEn since subset of the fractal is the same fractal with a rescaled
length unit Ls → Lsl which changes the energy of the Laplace operator which,
as we saw scales like L−dws . On the other hand, since the new fractal is just a
rescaled version of the original fractal means that the degeneracy g(En) does
not change.

The partition function changes to

Ξ⇒
∞∏
n=1

(z − exp
(ϕ
T
l−dw(n+1)

)
)g(zn) =

∞∏
k=0

(z − zk)g(zk+1) (2.1.13)

where k = n − 1. Our first goal is to prove that the only physical fixed point
is z∗ = 1 i.e. µ = 0. To that aim we do not rescale zn but find instead a point
z∗ which is a fixed point of the new partition function. In order to keep the

2For the Sierpinski gasket Ψ1(x, y) =
(
x+0.5

2 ,
y+
√

3/2
2

)
where (x, y) is a points in the

fractal set.
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Figure 2.1.4: Change of the poles of the partition function under scale trans-
formation. Blue dots are the original fixed points. The red points are the
corresponding fixed points after the rescaling

partition function unchanged we need to find points z∗such that

∞∏
k=2

(z′ − zk)g(zk−1) =
∞∏
n=1

(z − zn)g(zn). (2.1.14)

An obvious solution to this equation is z∗ = z∞ = 1. Choosing z∞ means
that g(zk+1) = g(zn) while for every other zn < ∞ the degeneracy changes.
This means that the type of fixed points, determined by its degeneracy will be
different. We deduce that the only fixed point that we found is the trivial z∗ = 1
i.e.µ∗ = 0 point. This result agrees with the well known fact that Bose-Einstein
condensation only occurs when the chemical potential is zero. The fact that real
z corresponds to a negative chemical potential means that the renaming poles
are non physical since they correspond to a positive chemical potential.

To end this section, we note that using the Yang-Lee formalism gives a nice
interpretation of the RG flow. After rescaling the fractal, Eq.(2.1.13) shows that
the energy levels of the the new system jump to the next energy level En → En±1
where the − relates to K → Ψ1(K) and + relates to K → Ψ−1

1 (K). The only
mode that remains unchanged is E∞ = 0. This can be thought as stretching the
real z axis while keeping the z = 1 as a point fixed. For example, considering
the transformation K → Ψ1(K) gives a new mode E0 ∝ l0, the other modes
will rescale to En → En−1 for 2 ≤ n < ∞. In this picture, the fixed point
z∞ = 1 remains unchanged under the rescaling of the system, so we can give
a geometric picture for the meaning of the fixed point. In Fig.2.1.3 we plotted
schematically 6 poles including z∞. The blue dots represent the poles before the

11

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



scale transformation while the red dots represent the poles after the rescaling.
The imaginary part of the red dotes was added artificially for convenience of
display. The arrows shows how a pole changes under the scale transformation.

2.1.3 Nature of the Fixed point
Here we derive using RG techniques the critical behaviour of the boson gas.
Although we can use the partition function in order to derive it explicitly,3 the
fractal contribution to the critical behaviour can be better understood using
RG. Indeed the discrete self similarity and the exponentially growth of the
eigenvalues affects the critical behaviour, and leads to a new type of RG flow
which is characterized by a set of infinite complex valued critical exponents.
This is in contrast to Euclidean manifolds where RG approach leads only the
regular mean field exponents. This critical behaviour is affected by the existence
of a dense set of imaginary fixed points. The fixed points are related to the
self similarity of the fractal and cannot be separated. Only by treating them
collectedly the log-periodic behaviour can be seen.

We start from Eq.(2.1.12) and perform again a scale transformation namely,

Ξ⇒
∞∏
n=1

(z − exp
(ϕ
T
l−dw(n−1)

)
)g(zn). (2.1.15)

Next we take the limit z → 1− and consider it as a fixed parameter. Since
T ∝ En, we can rescale the temperature by

T
′

= l−dwT. (2.1.16)

Using this rescaling, the partition function remains unchanged. Eq.(2.1.16) is a
simple and linearized RG equation with a trivial fixed point T ∗0 = 0 and a critical
exponent λ = dw. This result is a consequence of the fact that we can calculate
exactly the partition function of an ideal Bose gas in a box and without taking
into consideration the non trivial geometry of the fractal. The critical exponent
dw is also expected and can be understood a mean-field critical exponent of some
non trivial dispersion relations E(k) ∝ kdw (see for example [1, 61] ). In order
to find fractal contribution to the RG behavior we recall that in the Yang-Lee
formalism, we can think about the fugacity z as a complex parameter. The poles
of the partition function can be complex and only for real values a second order
phase transition may occur. In order to study how does Eq.(2.1.16) change in
the case of a fractal manifold, we assume that the temperature can also be a
complex variable 4 [62]. Doing so, we find that in order for the partition to
remain unchanged it can be rescaled Eq.(2.1.12) into

D

T ′
l−dwn = D

T
l−dw(n+1) + 2πim (2.1.17)

3We indeed derive them in Sec 2.1.4
4This is known in the literature as Fisher zeros.
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where n,m ∈ N 5. We can think of this equation as an infinite set of RG
equations. For every n,m the corresponding solution is

T
′

= T

y + xn,mT
(2.1.18)

where y = l−dw and xn,m = ϕ−12πimldwn. Eq.(2.1.18) has a non trivial fixed
point for

y + xn,mT = 1 =⇒ T ∗n,m = 1− y
xn,m

. (2.1.19)

We have found that on fractal manifold there is an infinite number of imaginary
poles (y is real while xn,m are imaginary). These fixed point correspond to
the poles zn of the partition function and therefore are related to the critical
behavior near the fixed point. Furthermore, they can be interpreted as a devi-
ation from the physical Gaussian fixed point at T ∗ = 0 obtained in Eq.(2.1.16).
Linearizing Eq.(2.1.18) around each of the poles gives

∆T
′

n,m = y(
y + xn,mT ∗n,m

)∆Tn,m = y∆Tn,m (2.1.20)

where ∆Tn,m = T − Tn,m. Each fixed point behaves as a Gaussian fixed point.
This is an indication that the physical fixed point is indeed Gaussian. To obtain
the behavior of all the fixed points, we define the total deviation of the poles
from T ∗ = 0 :

T ∗e =
∞∑
n=1

∞∑
m=1

(T ∗n,m − T ∗0 ) (2.1.21)

where T ∗e serves as an effective fixed point measuring the net change of T ∗n,m
from T ∗0 . We can easily evaluate the sum to find that it is equal to

T ∗e =
∞∑
n=1

∞∑
m=1

T ∗n,m = ϕ(1− y)
2πi

∞∑
n=1

∞∑
m=1

1
m
l−dwn (2.1.22)

The sum over n is geometric i.e.
∑∞
n=1 l

−dwn = 1
1−l−dw = 1

1−y . The sum over
m gives ζR(1) which diverges (ζR(s) has a simple pole in s = 1). Nonetheless
its principle part is well defined and gives

lim
ε→0

(
ζR(1 + ε) + ζR(1− ε)

2

)
= γ (2.1.23)

where γ is the Euler–Mascheroni constant. Here we consider this term only and
ignore infinities since they do not contribute to the RG flow. The effective fixed
point is given by

T ∗e = ϕγ

2πi . (2.1.24)

5The case m ∈ Z will just give a factor of 2 in our results and will not contribute to the
RG flow.
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Note that this result depends on the geometry only through ϕ which is a non
universal constant and depends on the fractal geometry. Finding T ∗e 6= 0 is a
direct consequence of the exponential growth of the eigenvalues. To see it let us
consider Eq.(2.1.17) for a large d dimensional box. The energy spectrum scales
like En ∝ n2

L2 , and the RG transformation becomes

ϕn2

L′2T ′
= ϕn2

L2T
+ 2πim (2.1.25)

where L,L′ are the length scales of the system before and after the rescaling
respectively. We find once again that there is an infinite number of imaginary
poles

T̂ ∗n,m = 1− ŷ
x̂n,m

. (2.1.26)

where ŷ =
(
L
L′

)2 and x̂n,m ∝ m
n2 . The effective critical temperature will be

T̂ ∗e =
∞∑
n=1

∞∑
m=1

T̂ ∗n,m ∝
∞∑
n=1

n2
∞∑
m=1

m−1. (2.1.27)

While the sum over m is equal to γ, the sum over n can be found via a ζ
function regularization. It is equal to ζR(−2) = 0 (The zeta function has simple
zeros for s = −2n). This clearly indicates that the non trivial fixed point on
fractals is a consequence of the exponential growth of the eigenvalues of the
Laplace operator in contrast to the algebraically growth of the eigenvalues on
Riemannian manifolds. For a fix value of m the set of fixed point is dense and
bounded from above by Tm,0. Since different values of n corresponds to different
scales (or iterations) of the fractal they are all equal footing. On the other hand
on a Euclidean manifold the set of fixed points is not dense but grows toward
infinity. This indicates that on fractal manifolds the critical behavior of a Bose
gas is unusual.

We now return to fractals manifolds. In order to observe the above men-
tioned non trivial critical behavior, we need to find the collective flow of all n,m
around T ∗e . We linearize Eq.(2.1.18) with respect to T ∗e and sum over all the
contributions of the different solutions, namely

∆T
′

=
∑
n,m

y

(y + xn,mT ∗e )2 ∆T. (2.1.28)

We first note that the leading contribution to the flow is dw (which comes from
y). This is the just the non fractal contribution to the exponent. There is
another anomalous correction coming from the infinite double sum,

∑
n,m

1
(y + xn,mT ∗e )2 =

∞∑
n=1

∞∑
m=1

1
(y + γmldwn)2 = γ−2

∞∑
n=1

l−2dwn
∞∑
m=1

1
(ωn +m)2

(2.1.29)
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where ωn = γ−1yl−dwn. The sum over m is just the Hurwitz zeta function
ζ(2, ωn). In order to evaluate it we use the relation

ζ(1− s, x) = Γ(s)
(2π)s

(
exp

(
−πis2

)
J(s, x) + exp

(
πis

2

)
J(s,−x)

)
(2.1.30)

where

J(s, x) =
∞∑
k=1

exp (2πkx)
ks

, (2.1.31)

Γ(s) is the gamma function and Lis(z) is the poly-logarithm function. Using
1− s = 2→ s = −1, we find that

ζ(2, kn) = −1
2 (−iJ(−1, ωn) + iJ(−1, 1− ωn)) . (2.1.32)

Γ(−1) diverges but nonetheless we do not consider divergences and again only
consider the non diverging part 6. We find that for s → −1+ the regular part
of the Γ function is equal to −1, so that

ζ(2, cn) = 2π
∑
k∈Z

(eωn)2πki
. (2.1.33)

We now perform the sum over n. Doing so, the RG flow will be characterized
by an infinite number of complex exponents. For every k we can formally write
it as la+ibk where a and bk are unknown 7. The total flow can be written as

∆T
′

=
∑
k∈Z

l−dw+a+ibk∆T (2.1.34)

or
∆T

′
= l−dw+aLper (ln l) ∆T. (2.1.35)

This indicates that the flow around the effective fixed point is not characterized
just by a real critical exponent but rather by an infinite number of complex poles.
Fig.2.1.3 shows a schematic behavior of the RG flow in the complex T plane.
This behavior comes from the geometry of the fractal manifold and indicates
the breaking of continuous scale invariance into discrete scale invariance.

A similar behavior has been already observed in [63–65] . Weinrib and
Halperin have found that adding long range disorder to a pure system might
lead to complex eigenvalues of the RG flow. They have found that this flow
is characterized by two complex conjugated eigenvalues. They argue that one
might think about this complex behavior as an extension to the Harris criterion.
Their criterion state that in order to observe a critical behavior for the pure
system, one must fulfill

dν − 2 > 0 a > d
aν − 2 > 0 a < d

(2.1.36)

6The divergence term comes from the collective behavior of the poles and does not con-
tribute to the RG flow

7In 2.1.4 we shall present a complete derivation of a and bk
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Figure 2.1.5: RG flow in the complex T plane. Here we have plotted one of the
complex RG solutions of Eq.(2.1.34) in order to show its unusual nature

where a is the power of the disorder8. The complex exponents are found for
the relevant parameters which satisfy aν − 2 > 0. The fact that we found an
infinite number of complex conjugate poles while considering a system without
any disorder indicates that the fractal structure itself might serve as a disorder
to some otherwise pure system.

2.1.3.1 Geometric Harris criterion and the relation to non-Pisot sub-
stitutions

Eq.(2.1.36) found by Weinrib and Halperin is an extension of the well known
Harris criterion. This criterion provides a criterion for the relevance of disorder
becomes on the critical behavior of a pure system. In a nutshell, it states that
in order for the disorder to be relevant the heat capacity critical exponent needs
to be smaller than zero. One can generalize this criterion in order to describe
more complicated systems. So far, the most general generalization is due to
Luck [40] who considered a system with a small arbitrary disorder ξ. This
disorder changes the critical temperature with respect to the pure system. The
change is given by

∆T ∝ ξ−d(1−θ) = tdν(1−θ). (2.1.37)

The critical exponent β is known as the wandering exponent and it takes values
between 0 ≤ θ < 1. It measures how strong is the disorder . Taking θ = 1

2 leads
to the regular Harris criterion. In order for the disorder to be relevant, β must

8The disorder δ(r) satisfies 〈δ(r)〉 = 0 and 〈δ(r), δ(r′)〉 ∝ |r − r′|−a
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be larger than the critical value

θc = 1− 1
dν
. (2.1.38)

This criterion is useful to study the critical behavior of more complicated sys-
tems. In [?], Luck has considered the substitution

σ(A) = AαBβ

σ(B) = AγBδ
(2.1.39)

We define the 2× 2 matrix M with entries

M =
(
α β
γ δ

)
. (2.1.40)

For example, in the case of the Fibonacci substitution we have

M =
(

1 1
1 0

)
(2.1.41)

whose characteristic polynomial is

det1 (λI −M) = λ(λ− 1)− 1 (2.1.42)

with eigenvalues
λ1 = τ, λ2 = τ−1 (2.1.43)

where τ = 1+
√

5
2 is the golden ratio. In general, M is a N ×N matrix with N

eigenvalues. Because all the entries ofM are real and positive we are guaranteed
by the Perron–Frobenius theorem that there exists at least one real and positive
eigenvalue λ1 > 1. If all the other eigenvalues module is less than one, λ1 is
called a Pisot number. On the other hand a non Pisot system corresponds to
having at least another eigenvalue λ2 such that |λ2| > 1. In this case θ is equal
to [40]

θ = ln |λ2|
lnλ1

. (2.1.44)

Moreover it has been found that alike fractals, non Pisot substitutions are char-
acterized by an infinite set of complex exponents. To see this, we follow [42] and

evaluate the eigenvector of M , V =
(
ρA
ρB

)
which corresponds to the largest

eigenvalue. We choose a normalization such that ρA+ρB = 1. ρi corresponds to
the relative occurrence of the i′th word in the infinite series. Thinking of such
a substitution as a 1d tiling with two lengths lAand lB we define the average
lattice size a = ρAlA + ρBlB . The distance of the k′th letter from the origin is
given by

xk = mA(k)lA +mB(k)lB = ka+ δx(k) (2.1.45)
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where mi(k) is the number of i′th letter up to k. The function δx(k) is the
deviation from the average lattice and for non-Pisot substitutions, it is given by

δx(k) = kθF

(
ln k
lnλ1

)
(2.1.46)

with F is a periodic function (see for example [42] and references within).
The fact that the fluctuation is a relevant parameter for a non Pisot substi-

tutions together with the fact that the exponent θ takes different signs (θ < 0 for
Pisot substitutions while θ > 0 for non Pisot substitutions) means that the rele-
vance of quasiperidicity can still be understood using the Harris criterion which
allows to determine when disorder effects becomes relevant for the critical be-
havior of systems which otherwise under goes a second order phase transitions.
In [40] the Harris criterion was extended to quasiperiodic systems. It was shown
that the critical exponent which governs the behavior is the wandering exponent
β defined above. From the above we suggest that we can consider the geometric
structure of self-similar fractals as a relevant geometric disorder to some oth-
erwise pure system which under goes a regular second order phase transition.
In the following section we evaluate the critical exponents of BEC and show
that scaling relations are broken. This will strengthen our claim and show that
indeed one can think of fractals as a type of geometric disorder.

2.1.4 Derivation of the Critical Behavior-Breaking of Scal-
ing Relations

2.1.4.1 Cluster expansion and the equation of state

Having shown that the RG flow near the fixed point is characterized by an infi-
nite number of complex exponents, we now wish to compute a and bk explicitly
and to determent what is the dimension how govern phase transitions on fractals
in particular and in Euclidean manifolds in general. In order to compute the
critical exponents, we need to use in other technique. As a first step we expend
the partition function using a cluster expansion with respect to the fugacity.
The partition function can formally be written as

ln Ξ =
∞∑
l=1

B∗l z
l (2.1.47)

Where z is the fugacity and b∗l are constants i.e. z- independent. To see this let
us rewrite the partition function

ln Ξ = tr ln (1− z exp (−β∆)) (2.1.48)

which according to Eq. (2.1.5) can be rewritten

ln Ξ = 1
2πi

˛
dsΓ(s)ζν(s)

(
Ls
Lβ

)dws
Lis+1(z). (2.1.49)
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Using the spectral zeta function ζν(s) found in Sec.2.1.1 we have [24]

ln Ξ = 1
2πi

˛
dsΓ(s) ζR(s)

1− ldh−dws

(
Ls
Lβ

)dws
Lis+1(z). (2.1.50)

Using the poles of the spectral zeta function and the residue theorem leads to

ln Ξ =
∑
n∈Z

An

(
Ls
Lβ

)dwsn
Lisn+1(z) (2.1.51)

where An = res(Γ(sn)ζν(sn)). The poly-logarithm function is equal to

Lisn+1(z) =
∞∑
l=1

zl

lsn+1 . (2.1.52)

The constants B∗l are equal to

B∗l =
∑
n∈Z

An

(
Ls
Lβ

)dwsn
l−(sn+1) (2.1.53)

(note that sn = ds
2 + 2πin

dw ln l ≡
ds
2 + ibn are the poles of the spectral zeta function

defined in Eq.(2.1.8).) The density of the bosons gas ρ(z) is equal to

ρ(z) = 1
Vs
z
∂ (ln Ξ)
∂z

=
∞∑
l=1

Blz
l (2.1.54)

with

Bl = 1
Vs

∑
n∈Z

An

(
Ls
Lβ

)dwsn
l−sn . (2.1.55)

The partition function has an infinite number of real poles zn = exp (βEn),
running from z0 = exp (β) to z∞ = 1 in decreasing order. The line [0, 1) is
free of poles and corresponds to a negative value of the chemical potential (at
a given temperature). At z = 1 we find that µ must be equal to zero. On
the other hand, other values of the poles different from z∞ will correspond to
µ > 0 which is unphysical for an ideal Bose gas. This means that the only
physical pole which may indicate a phase transition is z∞. Thus, we consider
the properties of the density around z = 1−.

It can be written as

ρ(z) =
∞∑
l=1

zl

(
A0L

−dh
β l−

ds
2 +

∑
n

Xn

)
(2.1.56)

where the sum does not include n = 0 and

Xn ≡
1
Vs
An

(
Ls
Lβ

)dwsn
l−sn . (2.1.57)
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It is clear that |Xn| is bounded and the divergence of the density will come from
the n = 0 term. Using z∞ we find that

ρ = A0L
−dh
β ζR

(
ds
2

)
+ ρper

(
ln
(
Ls
Lβ

))
(2.1.58)

which is divergent for ds ≤ 2, i.e. for ds ≤ 2 there is no finite density which
satisfies Eq.(2.1.58). For ds > 2 the Riemann ζR(s) function is finite and we
can find the critical density as a function of the critical temperature.

Next we follow [61] and add by hand to the partition function a symmetry
breaking term hψ where ψ is the order parameter and h is its conjugate field
which acts as a symmetry breaking term. The corresponding “free energy” is
equal to

ln Ξ = ln Ω− hh∗

µ
(2.1.59)

Notice that the free energy is just the inverse Legendre transform of ln Ω where Ω
is the canonical partition function. From now on we shall consider the partition
function per unit of spectral volume Vs. The order parameter ψ and the total
density are respectively equal to

ψ = ∂ ln Ξ
∂h

= −h
∗

µ
(2.1.60)

ρ = ∂ ln Ξ
∂µ

= hh∗

µ2 + #T
ds
2
∑
n∈Z

AnLisn (ex)xibn (2.1.61)

where x = βµ and we used ∂Lis(ex)
∂x = Lis−1(ex). Note that the factors An

are different form the previous ones, we keep this notation since we are only
interested in the critical behavior. We shall choose h to be real namely

ρ = ψ2 + #T
ds
2
∑
n∈Z

AnLisn (ex)xibn ≡ ψ2 + #T
ds
2 Fper(x). (2.1.62)

The density has two contributions. The first ,ψ2, is interpreted as the density
of particles in the ground state while the other comes from the excited states.
We can now define the critical temperature in the usual way: Near the fixed
point the chemical potential goes to zero and the density depends only on the
temperature. Since the density of the excited states grows as a function of
temperature, there exist at least one temperature T ∗ such that ρ(T ∗) = ρex(T∗).
At this temperature the number of particles in the ground state will be equal
to zero. We define T ∗ to be the lowest real temperature at which the density of
particles in the ground state is equal to zero. This definition yields

ρ = #T ∗
ds
2
∑
n∈Z

AnζR(sn)T ∗ibn ≡ #T ∗
ds
2 Fper(T ∗). (2.1.63)

While we cannot find T ∗ exactly, like for the d dimensional Euclidean Bose gas
we can still use this result. Writing Eq.(2.1.61) as

ψ2ρ−1 + ρ−1#T
ds
2 Fper(x) = 1. (2.1.64)
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We can now take the expression of ρ from Eq.(2.1.63) and insert to it ρ−1(T ∗)
from Eq.(2.1.64) to have after some simple algebra

Fper(x)
Fper(T ∗)

=
(
T ∗

T

) ds
2 (

1− ψ2ρ−1) (2.1.65)

Next we define
G(x)) ≡ 1− Fper(x)

Fper(T ∗)
(2.1.66)

namely G(x) is equal to 1 −
(
T∗

T

) ds
2 (1− ψ2ρ−1) ≡ q. Expending z around

T = T ∗ gives

q =
(
ds
2 t+ ψ2ρ−1

)
(2.1.67)

where t = T∗−T
T∗ and we neglect contributions from the term tψ2ρ−1 which are of

the order of t2 (near T ∗ we expect that,ψ → 0) . Using Eq.(2.1.60) we can write
x as x = h

kbT∗ψ
. Eq(2.1.66) states that the equation of state (EOS) is a function

of only one variable which associates the temperature, the order parameter and
the conjugate field h. We can now use the asymptotic behavior of Fper(x) in
order to derive all the critical exponents. We can define a function H(q) in a
way that will satisfy H(q) = x this means that x depends on q only and it can
obtained from a small q expansion of H which is the inverse function of G(x).

2.1.4.2 Expansion of the polylogarithm functions.

In Eq.(2.1.66) the function Fper(x) has an infinite number of contributions from
different polylogarithm functions. Since we are only interested in the small x
behavior we need to find what is the small x expansion of Lis(e−x)xa+ib. To do
so we follow [66]. Using the Mellin transform we can write Liσ(e−x) as

Liσ(e−x) = 1
2πi

˛
dsΓ(s)ζR(s+ σ)x−s. (2.1.68)

The ζR(s) function has a simple pole for s+ σ = 1→ s = 1− σ with residue 1.
On the other hand the Γ(s) function has a pole for s = −n and residues (−1)n

n!
where n ∈ N . We then find that for non integer σ

Liσ(e−x) = Γ(1− σ)xσ−1 +
∞∑
n=1

(−1)n

n! ζR(σ − n)xn. (2.1.69)

Let us examine how does this asymptotic behavior look like for Euclidean man-
ifolds in the limit V → ∞ where the partition function has only contribution
from the largest pole d

2 of the spectral zeta function ζν(s). For d = 3 we find
that

Li 3
2
(e−x) = Γ(−0.5)x0.5 +

∞∑
n=1

(−1)n

n! ζR(1.5− n)xn. (2.1.70)
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For small values of x we havex0.5 > xn for n ≥ 1 meaning that the contribution
of the sum in Eq. 2.1.70 is negligible therefore

Li 3
2
(e−x) ≈ Γ(−0.5)x0.5 − ζR(1.5)x→ Γ(−0.5)x0.5. (2.1.71)

On the other hand, for d > 4, we have for small values of x x d2−1 < x so

Li d
2
(e−x) ≈ Γ

(
d

2 − 1
)
x
d
2−1 − ζR

(
d

2 − 1
)
x→ ζR

(
d

2 − 1
)
x. (2.1.72)

For d > 4, the small x behavior of the polylogarithm is dominated by the largest
pole of the gamma function which does not depend on the dimension, meaning
that for d ≥ 4 the critical behavior is independent of d

In order to extend this result to fractals we need to examine a more compli-
cated case. Since for µ 6= 0 the partition function is rewritten

lnZ = Vs

Ldhβ

∑
n∈Z

AnLisn+1

(
eβµ
)
T ibn . (2.1.73)

First we note that

∑
n∈Z

AnLisn+1

(
eβµ
)
T ibn =

∑
m∈Z

AmLism+1

(
eβµ
)( 1

T

)ibm
(2.1.74)

where m = −n . Defining x = −βµ (remembering that µ < 0), we can write
the partition function as

lnZ = Vs

Ldhβ

∑
n∈Z

AnLisn+1

(
e−x

)
xibn . (2.1.75)

Since An depends on µ, and we are only interested in the case µ = 0, Anxibn is
independent of µ . Next we examine the asymptotic behavior of Lisn (ex)x−ibn
for small x. We use once again the Mellin transform to find

M(Lisn+1 (ex)xibn) =
´∞

0 Liσ(e−x)xs−1+ibndx =
∑∞
n=1
´∞

0
e−nx

nsn+1x
s−1+ibndx =

= Γ(s− ibn)
∑∞
n=1

1
nsn

1
ns+ibn Γ(s+ ibn).

(2.1.76)
In order to determine the asymptotic behavior of this expression, we use the
same methods as before. The ζR(s) function has poles for s = 1 − sn − ibn =
1 − ds

2 − 2ibn The Γ(s) function has poles for s + ibn = −m → s = −m − ibn.
The polylogarithm can now be written as

Lisn+1 (ex)xibn = Γ
(

1− ds
2 − 2ibn

)
x
ds
2 −1+2ibn+

∞∑
m=1

(−1)m

m! ζR(1−m−ibn)xm+ibn .

(2.1.77)
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We once again will keep only the leading term small x values. For ds < 4 we
find that

∣∣∣x ds2 −1+2ibn
∣∣∣ > ∣∣x1+ibn

∣∣ so we can neglect the contributions from the
infinite sum. This gives

Lisn+1 (ex)xibn ∝ x
ds
2 −1+2ibn (2.1.78)

On the other hand for ds > 4,
∣∣∣x ds2 −1+2ibn

∣∣∣ < ∣∣x1+ibn
∣∣ so we have

Lisn+1 (ex)xibn ∝ x1+ibn . (2.1.79)

It is important to note that the condensation criterion is govern by ds and
not by dh which governs the small x behavior of the partition function. It
is an indication that the mean field behavior of the system depends on its
spectral rather than geometrical properties . Changing the spectral dimension,
we observe a transition from a non mean field RG flow for ds < 4 to the mean
field behavior for ds ≥ 4. This crossover can also be observed from the period
of oscillations near T ∗ which changes sharply when ds = 4. This is very similar
to previous works on RG for long range interactions J(r) ∝ r−κ. In their work
Fisher et al. have found that the critical dimension is changed into dc = d

κ . This
means that one can think of κ as the anomalous dimension of the long range
interactions.

2.1.4.3 Critical behavior of C,χ, ψ - Critical Exponents

Using the results of the previous section we are now in a position to derive an
explicit form of the critical behavior of order parameter-ψ , the susceptibility
χ and the heat capacity C as a function of the reduced temperature t . Using
the asymptotic behavior of x obtained in Eq.(2.1.78) and Eqs.(2.1.60,2.1.79),
we express Fper(x) as

Fper(x) ≈
{ ∑

n∈ZBnx
ds
2 −1+2ibn∑

n∈ZBnx
1+ibn

ds < 4
ds > 4

(2.1.80)

where Bn are non universal constants which depend on the geometry of the
fractal. In the appendix A, we show that H(z) can be formally written as

H(q) ≈
{

q
2

ds−2
∑
n∈ZAnq

2icn

q
∑
n∈ZAnq

icn

ds < 4
ds > 4

(2.1.81)

with

cn = bn ×

{
− 4
ds(ds−2)
− 1

2

ds < 4
ds > 4

. (2.1.82)

We are now ready to derive the critical exponents. Consider first the critical
exponent β of the order parameter. From the EOS, we find it equal to

h

kbT ∗
=
{

ψ
(
ds
2 t+ ψ2ρ−1) 2

ds−2 ∑
n∈ZAn

(
ds
2 t+ ψ2ρ−1)2icn

ψ
(
ds
2 t+ ψ2ρ−1)∑

n∈ZAn
(
ds
2 t+ ψ2ρ−1)icn ds < 4

ds > 4
.

(2.1.83)
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The critical behavior of the order parameter is determined for h = 0. There are
two different cases. For t > 0 the equation

(
ds
2 t+ ψ2ρ−1) = 0 has no solution

for a real valued ψ, meaning that necessarily ψ = 0 is the only solution. On
the other hand for t < 0, we obtain ψ = ±

√
−ρd2 t. From the EOS, we find

that ψ ∝ t
1
2 i.e. without dependency on the dimension. Formally there can

be another set of infinite complex solutions coming from the complex part of
Eq.(2.1.83) but they are unphysical. To see that we assume that ψ0 is another
solution to this equation. This means that

ψ =

√
ρ

(
ψ0 −

d

2 t
)
. (2.1.84)

But then ψ is not scaling function of t meaning that for t → 0, ψ 6= 0 in
contradiction to the fact the it is an order parameter. From this we deduce that
the only physical solution is

ψ ∝

{
0
t

1
2

T > Tc

T < Tc
(2.1.85)

which identifies the critical exponent β = 1
2 . Note that this is in complete

agreement with the results of the regular mean field exponents.
Next we consider the critical exponent δ defined by

ψ ∝ h 1
δ ⇐⇒ h ∝ ψδ. (2.1.86)

Using the scaling of ψ we write Eq.(2.1.83) as

h

kbT ∗
∝

{
ψ
ds+2
ds−2

∑
n∈ZAnψ

4icn

ψ3∑
n∈ZAnψ

2icn

ds < 4
ds > 4

(2.1.87)

or equivalently

h

kbT ∗
∝

{
ψ
ds+2
ds−2hper(lnψ)
ψ3hper(lnψ)

ds < 4
ds > 4

. (2.1.88)

The critical exponent γ of the susceptibility if obtained from χ ∝
(
∂ψ
∂h

)
h=0

=
1

( ∂h∂ψ )
h=0

namely

(
∂h

∂ψ

)
∝

{
ψ

4
ds−2

∑
n∈ZAnψ

4icn + ψψ
4

ds−2
∑
n∈ZAn(4icn)ψ4icn−1

ψ2∑
n∈ZAnψ

2icn + ψ2∑
n∈ZAn(2ic)ψ2icn−1

n

ds < 4
ds > 4
(2.1.89)

or (
∂h

∂ψ

)
∝

{
ψ

4
ds−2

∑
n∈ZDnψ

4icn

ψ2∑
n∈ZDnψ

2icn
n

ds < 4
ds > 4

(2.1.90)
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where

Dn =
{

An(1 + 4icn)
An(1 + 2icn)

ds < 4
ds > 4

(2.1.91)

using ψ ∝ t 1
2 ,we obtain(

∂h

∂ψ

)
∝

{
t

2
ds−2

∑
n∈ZDnt

2icn

t
∑
n∈ZDnψ

icn
n

ds < 4
ds > 4

(2.1.92)

so that

χ ∝

{
t
−2
ds−2

(∑
n∈ZDnt

2icn
)−1

t−1 (∑
n∈ZDnψ

icn
n

)−1
ds < 4
ds > 4

(2.1.93)

so that

χ ∝

{
t
−2
ds−2χper (ln t)
t−1χper (ln t)

ds < 4
ds > 4

(2.1.94)

We also derive the critical behavior of the heat capacity . To do so we
consider Eq.(2.1.59) and evaluate its second derivative with respect to the tem-
perature T . It is easy to see that the only contribution comes from ln Ξ. Using
the expansion of Liσ(ex)xibn for Lisn(ex)xibn , we find that

C ∝ T ∂
2(ln Ξ)
∂T 2 =


∑
n∈ZDn(βµ)

dS
2 −2+2 i2bnds∑

n∈ZDn(βµ)
dS
2 −2+in 2bn

ds
n

ds < 4
ds > 4

(2.1.95)

which together with βµ = h
ψ and Eq.(2.1.83) allows to write the heat capacity

as

C ∝

{ ∑
n∈ZDn(

∑
m∈ZAnt

2
ds−2 +2icm)

dS
2 −2+2i 2bn

ds∑
n∈ZDn(

∑
m∈ZAnt

1+icm)
dS
2 −2+i 2bn

ds

ds < 4
ds > 4

. (2.1.96)

To determine the leading behavior, we notice that Am, Dn depend only on the
residues of the spectral zeta function, i.e. An ∝ Γ(sn)ζR(2sn)

π2sn . For n > 0,

Γ(sn)
Γ(sn+1) =

Γ(d2
2 + ibn)

Γ(ds2 + ibn+ ib)
≈ 0.01 + 0.01i (2.1.97)

and the same holds for n < 0, thus leading to a fast decay of Am. We than
neglect contributions of Am for m 6= 0 so that

C ∝

{ ∑
n∈ZDn(t

2
ds−2 )

dS
2 −2−2i ibnds∑

n∈ZDn(t1)
dS
2 −2−i ibnds

ds < 4
ds > 4

(2.1.98)

and

C ∝

{
t−

ds−4
d2−2Cper (ln t)

t
ds−4

2 Cper (ln t)
ds < 4
ds > 4

. (2.1.99)
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Figure 2.1.6: Upper figure, C(t) for diamond fractal D(6, 2) ds = ln 6
ln 2 ≈

2.585.Lower figure C(t)
t−α here α = ds−4

ds−2 ≈ −2.419 . The amplitude of the heat
capacity is normalized to by one.

We are now in a position to study the Widom and Rushbrooke scaling relations
on fractal manifolds. We first consider the Rushbrooke relation which on a
regular manifold reads α+ 2β + γ = 2 which express that ψ2

Cχ scale like t2. On
a fractal manifold, we find that this relation is changed into

ψ2

Cχ
∝ t2 1

χperCper
= t2Aper(ln t) (2.1.100)

an indication for relevance of the fractal geometry. Next we examine the Widom
scaling relation 1 − δ = γ

β . The real part of the critical exponents, leads to
the Widom scaling relation. On the other hand, considering the log-periodic
behavior breaks the scaling relation as for the Rushbrook relation.

The relative magnitude of the log-periodic oscillations with respect to the
total thermodynamic function depends on the sign of the critical exponent.
To see this we have plotted in Fig. (2.1.6) a schematic behaviour of the heat
capacity C(t) near T ∗ for a diamond fractal D(6, 2). The spectral dimension
of this fractal is ds = ln 6

ln 2 such that 2 < ds < 4 therefore we expect that a
phase transition will occur. Since α < 0 we find that the effect of the log-
periodic oscillation is dominant around T → 0 where t = T∗−T

T∗ is large. On the
other hand the near T ∗ the oscillation become more and more dense. Taking
the susceptibility where γ > 0 we expect to find that the oscillations become
stronger near T ∗.

As a finale remark, it is interesting to compare our results to [61, 67] where
the critical behavior of an ideal Bose gas with a modified dispersion relations
E(k) ∝ kκ was investigated. For example, the heat capacity critical exponent
α was found to be

α = d− 2κ
d− κ

. (2.1.101)
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On a fractal manifold, the scaling of the Laplace operator is ∆ ∝ L−dws where
Ls is the spectral length. Assuming that d = dh and κ = dw we have,

d− 2κ
d− κ

= dh − 2dw
dh − dw

=
dh
dw
− 2
dh

dw−1
= ds − 4
ds − 2 (2.1.102)

using the relation ds = 2dh
dw
. This suggests to interpret our results in terms of

a complex dispersion relations E(k) ∝ kdwE (ln k) where E is a periodic but
non analytic function. While the term E(k) ∝ kdw is known from previous
works [47,48], the appearance of E (ln k) which leads to a non analytic spectrum
is a new and unique feature of self-similar fractals and might used to predict
the notion of momentum on a fractal.

2.1.4.4 Critical behavior of the correlation length ξ - Hyperscaling
relations.

We now wish to determine the critical behavior of the correlation length ξ(t). To
that purpose, we derive the Green’s functionG(r, t) = 〈φ∗(r, t), φ(0, t)〉 .Following
[68]

G(r, µ, T ) =
∑
n

φ∗n(r)φn(r)
exp (β (εn − µ))− 1 (2.1.103)

In order for the wave function to describe the return probability as in [24], it
need to be a scaling function

φ∗n(r)φn(r) = f

(
r

Ln

)
(2.1.104)

where Ln ∝ ln l being the inflation factor of the fractal . Expending the Bose
function in a Taylor series and using the Mellin transform of φ∗n(r)φn(r), the
correlation function is rewritten as

G(r, µ, T ) = L−dhβ

∑
n∈Z

∞∑
j=1

j−sn exp
(
−α j −#1

j

(
r

Lβ

)dw)
(2.1.105)

with sn ≡ ds
2 + 2πin

dw ln l being the complex poles of the spectral ζ function ζν(s).
We have used that the energy scales as ε ∝ L−dws and we have defined α = −βµ.
Changing the sum over j into an integral leads to

G(r, µ, T ) =
∑
n∈Z

L−snβ

ˆ ∞
0

dj × j−sn exp
(
−α j −#1

j

(
r

Lβ

)dw)
. (2.1.106)

Using the definition of the modified Bessel function of the second kind,

Kν(x) =
ˆ ∞

0
dy × y−(1+ν) exp

(
0.5
(
−y − x2

y

))
(2.1.107)
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implies

G(r, µ, T ) =
∑
n∈Z

Ksn−1

((
r

ξ

))
(2.1.108)

where ξ = #
Lβ
α−

1
dw . Using Ldwβ ∝ β we find that ξ ∝ (βµ)−

1
dw . In the limit

r
ξ � 1, the Green’s function becomes

G(r, µ, T ) =
∑(

r

ξ

)−sn
(2.1.109)

thus leading to a familiar behavior of the Green function (see [23]). For r
ξ � 1,

we find that
G(r, µ, T ) ∝

∑
n

exp
(
−r
ξ

)
(2.1.110)

which is independent of sn.
The correlation length can be found using the same techniques as before.

Writing

ξ(t) ∝ (−βµ)−
1
dw (2.1.111)

and using the expression of βµ leads to

ξ ∝

{
(
∑
m∈ZAnt

2
ds−2 +2icm)

−1
dw

(
∑
m∈ZAnt

1+icm)
−1
dw

ds < 4
ds > 4

(2.1.112)

namely,

ξ ∝

{ ∑
m∈ZAnt

−2
dw(ds−2)−

2icm
dw∑

m∈ZAnt
− 1+icm

dw

ds < 4
ds > 4

(2.1.113)

or

ξ ∝

{
t−

2
dw(ds−2) ξper (ln t)
t−

1
dw ξper (ln t)

ds < 4
ds > 4

(2.1.114)

We now consider the Josephson hyperscaling relations α = 2 − dν [69]. This
scaling relation is important since it is the first hyperscaling relation, meaning
that it depends on the dimension of the system rather than just on relations
between thermodynamics function such as Rushbrooke. On Riemannian man-
ifolds it correspond to ξ−d

C ∝ t2. Using Eqs.(2.1.99,2.1.114) we find that the
scaling relation is modified into

ξ−dh

C
∝ t2Bper (ln t) (2.1.115)

in agreement with the extended Harris criterion. The log-periodic termBper (ln t)
indicates that critical exponents α and ν are underlying as a result of the fractal
geometry
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Finally we consider Fisher’s scaling relation γ = ν (2− η) where η is the
anomalous dimension. To find η we calculate G(r, 0) = 〈φ(r), φ(0)〉 where the
average is defined as in Eq.(2.1.103). The Green’s function scales as ψ2 ∝ t.
Using t ∝ ξ− 1

ν and that r should scale like ξ 9 we find that,

G(r) ∝ t ∝ ξ
−1
ν ∝ r

1
−ν (2.1.116)

Using the complex poles of ν leads to (for ds < 4)

G(r) = r
−
(
dw(dS−2)

2

)∑
n∈Z

r−
2icn
dw (2.1.117)

Since dwds = 2dh then

G(r) = r−(dh−dw)Gper (ln r) . (2.1.118)

In [23] it was shown that for a regular diffusion process on fractals, the Green’s
function is

G(r) = r−(dh−dw)Gper (ln r) , (2.1.119)
so that

η = 0. (2.1.120)
The anomalous dimension is then real. Assuming that it is a complex parameter
η = a + ib, we immediately find that the imaginary part can be absorbed into
the log-periodic term Gper.

In order to find how does Fisher’s scaling relation are change we use the fact
that the susceptibility can be written as

χ(t) =
ˆ
dV G(r, t). (2.1.121)

Taking only the real part of the critical exponents and using the fact that
dV ∝ Ldh we find that on a manifold with an anomalous diffusion relations
becomes

γ = ν (dw − η) (2.1.122)
meaning that it is in fact an hyperscaling relation rather then a scaling relation,
and it depends on the fractal geometry via dw.

This relation can further be modified, if we assume that ν and γ involve an in-
finite number of values γn = 2

ds−2 +2icn and νn = 2
dw(dS−2) + 2icn

dw
. Eq.(2.1.122)

becomes

γn − νn (dw − η) = 2i (cn − cm) = 2icn(1− δn,m) (2.1.123)

meaning that each imaginary fixed point satisfies the scaling relation indepen-
dently. Only the collective behavior of all the fixed points which is a distinct
characterization of the fractal geometry leads to the breaking of the scaling
relations. This is in agreement with the derivation in Sec 2.13.

9Close to the fixed point we have only one length scale in the problem which is the corre-
lation length ξ
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2.2 Helicity modulus and superfluidity on frac-
tals

Another example for the unusual critical behavior of a Bose gas on fractals is the
behavior of the superfluid density ρs as a function of temperature. On Euclidean
manifolds, superfluidity is usually described as the ability of a liquid to flow
vessel without friction. This definition had led to many but not necessarily
equivalent models to explain this phenomenon. For example, the Landau model
where the superfluid liquid flows around a cylindrical vessel without exchange
of momentum with it. This change is not energetically favorable for velocities
smaller than some critical velocity vc. Another example is the Onsanger and
Penros’e model accordingly to which superfluidity is some type of BEC [70].
The fact that all those models are based on the definition of the momentum of
the particles makes them useless when going to fractals since there the notion
of momentum is ill defined [8].

Here we choose another way to obtain the superfluid density. We define
it by means of the helicity modulus Υ defined as the change of free energy
per unit of volume of the system under twisted boundary conditions (ψ(0) =
exp (−iθ)ψ(Ls)) [5, 71] . In order to find a formal expression for Υ we write
the helium wave function as ψ(x) = exp (−iα(x))φ(x) where α is a phase.
The free energy changes due to the twisted boundary conditions. Since in our
notation all the dependence on the twist is in the phase we can assume that
∆F = 1

2VsΥ 〈∇α〉
2 where ∆F is the difference between the free energy with

and without twisted boundary conditions and〈∇α〉 is the spatial average per
unit of volume of the gradient of the phase. The appearance of the spectral
volume Vs rather than the geometric volume is a consequence of dependence on
the free energy on the spectral properties in Eq.(2.1.5). Next we choose a gauge
satisfying the boundary conditions, α = θx

Ls
. We can write the spatial average

as
〈∇α〉 = 1

Vh

ˆ
dV∇

(
θx

Ls

)
. (2.2.1)

Since ∆ ∝ L−dws , ∇ ∼
√

∆ ∝ L
− dw2
s we find that 〈∇α〉2 = θ2

Ldws
. On the other

hand, clockwise (+θ) and counterclockwise twists (−θ) are physically equivalent
so that the Taylor expansion of F (θ) contains only even powers of θ. The helicity
modulus can be written as

Υ = Ldws
Vs

(
∂2F

∂θ2

)
θ=0

. (2.2.2)

Finally, trying relate between the superfluid density and ∆F we can write a
formal relation: ∆F = 1

2ρsΘ(T, ~, Vsm) where Θ is a function of the system
parameters. Compering between the two definitions of the free energy gives
ρs = ρL2

s

(
m
~2

) (
∂2F
∂θ2

)
θ=0

where ρ = m
Vs
.

Under the twisted boundary conditions the spectrum of the Laplace oper-
ator changes. Since positive and negative twists describe the same physics,
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this change must be proportional to the size of the twist and not to its sign.
Moreover, twisted boundary conditions are equivalent to a U(1) gauge transfor-
mation , meaning that the Laplace operator changes into a covariant operator.
In [9] it was found that by adding a gauge field, the Laplace operator changes
to ∆ → (∂ +A)2 where ∂ is the gradient operator on fractals10 and A is the
gauge field. This means that in our gauge the energy spectrum of the Laplace
changes to En(θ) = ~2

mL2
s
(l−

dwn
2 + θ)2.

From Eq.(2.1.5) at T < Tc, and µ = 0, it is clear that the dependence of the
free energy on the twisted boundary conditions comes only from the spectral
ζν(s) function. So, in order to find the superfluid density ρs we need only to
evaluate

(
∂2ζν
∂θ2

)
θ=0

. The second derivative of the free energy is

(
∂2F

∂θ2

)
θ=0

= β

πi

˛
ds(2t− 1)Γ(t)ζR(t)ζ

′

ν (t)
(
Ls
Lβ

)dw(t−1)
(2.2.3)

where ζ ′ν (t) is the second derivative of the dimensionless spectral ζν(s) function
and t = s+1. ζ ′ν (t) has poles at tn = ds

2 + 2πin
dw ln l ⇒ sn = ds

2 −1+ 2πin
dw ln l . In order

to have a finite contribution from ζR(s+1), we must have ds
2 −1+1 > 1⇒ ds > 2

which agrees with our previous results.
The factor 2t−1 in Eq.(2.2.3) governs the behavior of the superfluid density.

Splitting the integral into two parts, we find that in the first term, the odd
s dependence cancels all the contributions of the complex poles. The only
remaining term comes from s0 = ds

2 . The integral over this pole is equal to
the spectral volume which gives the density ρ. On the other hand in the second
term, there are no powers of s meaning that up to a constant it is equal to the
free energy given in Eq.(2.1.5). The superfluid density is given by

ρs = ρ

(
1−

(m
~2

) ds
2
Ldss β

−ds
2 H

(
ln Ls
Lβ

))
. (2.2.4)

where H is another periodic function of period 1. Both H and the total number
of particles in the ground state given by

〈
ψ2〉 (ψ being the order parameter we

have found in Sec.2.111) they are governed by the same complex poles they are
equal to each other. This means that in the limit T → 0 ρs = ρ. This is in
contrast to models of interacting Bose gases where only a fraction of the liquid
becomes superfluid even down to T = 0 12. This indicates that the proposed
model of superfluidity can be thought of as kind of Bose-Einstein condensation.
Indeed there is a relation between the superfluid density in Eq(2.2.4) and the
number of particles in the ground state for Bose-Einstein condensation namely

ρs(T ) = ρN0(T ). (2.2.5)
10For more detail about the gradient operator see [7, 8]
11See Sec.2.1.4 for the derivation
12around 8%
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We have found that also on fractals a superfluid system of N non interacting
bosons under twist boundary conditions behave as BEC of free particles. Our
results agree with previous calculation done for d = 3 ( [6]).

The fact that both BEC and superfluidity are both governed by the spectral
dimension, emphasizes that phase transitions, corresponding to a symmetry
breaking of an order parameter, are govern by the spectral properties of the
Laplace operator. This result can be used in order to gain a deeper under-
standing of spontaneous symmetry breaking. It is a known, that for Euclidean
manifolds, there is no spontaneous symmetry breaking of continuous symmetries
for d ≤ 2 [72–74]., our results generalizes Mermin Wagner Hohenberg Coleman
theorem together with a deeper understanding of second order phase transitions.

2.3 Off diagonal long range order
In this section we generalize the notion of “off diagonal long range order”
(ODLRO) defined by Yang [75] to fractals. We show that it also related to
the spectral properties of the system. In a simple language ODLRO means that
when we have a second order phase transition a macroscopic part of the system
is correlated. This is shown in the spatial term of wave function of the particles
at the ground state which is proportional to the system size meaning that the
correlation function

〈
ψ†(0)ψ(r)

〉
does not decay to zero when r →∞. From our

previous derivations it is quite clear that for ds ≤ 2 there will not be ODLRO.
To see this more generally we consider the order parameter which is defined by

ψ(r) =
√
ψ0 exp (−iα(r)) (2.3.1)

where ψ0 = ψ0(T ) is the density of condensed particles here ψ0 is a generic
name for a density and should not be thought of as the superfluid density. To
evaluate the correlation function〈

ψ†(0)ψ(r)
〉

= ψ0 〈exp (iα(0)) exp(−iα(r))〉 , (2.3.2)

we expand the exponents in power series

〈
ψ†(0)ψ(r)

〉
= ψ0

∞∑
n=0

∞∑
k=0

(i)n (−i)k

n!k!

〈
(α(0))n (α (r))k

〉
. (2.3.3)

The correlation function is evaluated using standard path integration methods〈
(α(0))n (α (r))k

〉
= Z−1

ˆ
Dα (α(0))n (α (r))k exp (−H)

where H is the Hamiltonian of the system and

Z =
ˆ
Dα exp (−H) .
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Alternatively, we evaluate the correlation function using functional derivatives〈
(α(0))n (α (r))k

〉
= (−i)n (−i)k

(
δn

δJ(0)n
δk

δJ(r)k ln (Z(J))
)
J=0

(2.3.4)

where
Z(J) = Z =

ˆ
Dα exp (−H + Jα) .

Inserting Eq.(2.3.4) into Eq.(2.3.2), leads to

〈
ψ†(0)ψ(r)

〉
= ψ0

∞∑
n=0

∞∑
k=0

(−1)n

n!k!

(
δn

δJ(0)n
δk

δJ(r)k ln (Z(J))
)
J=0

. (2.3.5)

Since for n 6= k, there are non-connected diagrams, the functional derivative
gives zero, and the sum over n vanishes. We have

〈
ψ†(0)ψ(r)

〉
= ψ0

∞∑
k=0

(−1)k

k!k!

(
δk

δJ(0)k
δk

δJ(r)k ln (Z(J))
)
J=0

. (2.3.6)

The functional derivative in the last equation gives G(r)k and the multiplicity
factor is k!, so that

〈
ψ†(0)ψ(r)

〉
= ψ0

∞∑
k=0

(−1)k

k! G(r)k = ρs exp (−G(r)) . (2.3.7)

From Eq.(2.1.118), the spatial Green’s function is given by

G(r) = r
1

dh−dw Gper

(
2π ln r

ln l

)
,

where Gper(x) = Gper(x+ 1) and

Gper(r) =
∑
n∈Z

an cos
(

2π ln r
ln l

)
so that

〈
ψ†(0)ψ(r)

〉
= ψ0

∏
n∈Z

exp
(
an cos

(
2π ln r

ln l

))r −1
dh−dw

 (2.3.8)

for dh ≤ dw,
lim
r→∞

−1
rdh−dw

= −∞

while the factor
(∏

n∈Z exp
(
an cos

( 2π ln r
ln l

)))
is bounded by 1 from below mean-

ing that the correlation function vanishes. On the other, hand for dh > dw we
have

lim
r→∞

−1
rdh−dw

= 0
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and 〈
ψ†(0)ψ(r)

〉
= ψ0 × ψper

(
2π ln r

ln l

)
.

As expected the condition for ODLRO is dh > dw ⇒ ds > 2. The log-periodic
function ψper comes from the log-periodic behavior of the Green’s function. We
see that for ds ≤ 2 the correlation function of the order parameter is equal to
zero. As we saw in Sec 2.1.4, the order parameter itself is real and does not a
involve log-periodic term.

From this derivation, we conclude that second order phase transitions are
modified on a the fractal geometry. There is no BEC for ds ≤ 2 .This was
known [48] and we have shown that this is indeed a much more general result
which can be traced to a large class of systems. This should be generalized to: “
There is no spontaneous symmetry breaking of continuous symmetry for ds ≤ 2”.
This is a generalization of the Mermin Hohenberg Coleman theorem [72–74].
Moreover, we have found that scaling relations are modified in a sense of some
kind of disorder which breaks scale invariance near the critical temperature into
a discrete scale invariance.

2.4 Appendices for section I
2.4.1 Appendix A
We wish to find the inverse of Eq.(2.1.66). To do so, we assume that we can
write it as

x = H(z) = z
2

ds−2
∑
n∈Z

Anz
2icn (2.4.1)

(we shall only consider the case ds < 4 the other one is a straightforward
generalization). If this is the solution we can plug z(x) and find what are the
conditions for cn. We get

H(z) =
(
x
ds
2 −1

∑
n∈Z

Bnx
2ibn

) 2
ds−2 ∑

m∈Z
An

(
x
ds
2 −1

∑
n∈Z

Bnx
2ibn

)2icn

.

Since
(
x
ds
2 −1

) 2
ds−2 = x, so we have

x
∑
n∈Z

Bnx
2ibn = x

(∑
n∈Z

Bnx
2ibn

) 2
ds−2 ∑

m∈Z
Am

(
x
ds
2 −1

∑
k∈Z

Bkx
2ibk

)2ick

meaning that we need to find An and cn such that

∑
n∈Z

Bnx
2ibn =

(∑
n∈Z

Bnx
2ibn

) 2
ds−2 ∑

m∈Z
Am

(
x
ds
2 −1

∑
k∈Z

Bkx
2ibk

)2ick

.
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This can be done by proper choice of Anand cn Since bnand cn are linear in n,
then,

Enx
2i( 2bn

ds−2 +( ds2 −1)cn+bn+cn) (2.4.2)

Where En is an unknown combination of An and Bn which is not known. By
demanding that

(
2bn
ds−2 +

(
ds
2 − 1

)
cn + bn + 2cn

)
= bn we find

cn = − 4
ds(ds − 2)bn. (2.4.3)
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Chapter 3

Generalized substitutions
and renormalization group
flow of the attractive 1

r2
potential

In the previous chapter we have shown that the RG flow on self-similar fractals
is affected by its complex structure. While a phase transition accrues, it is not
a simple second order phase transition in the sense that the scale invariance of
the system near the critical point is broken to a discrete scale invariance. The
discrete scale invariance leads to an infinite number of complex critical exponents
which leads to a log-periodic behavior of the thermodynamic function such as
the heat capacity. In Sec.2.1.3.1 we have argued that the this behavior is related
to the fact that fractals can be thought of as a type of relevant geometric disorder
to some otherwise pure system of dimension dh.

As we briefly mentioned in Sec.2.1.3.1 there are other systems with non
obvious fractal structure in which the RG flow is characterized by complex
critical exponents. In this chapter we shall try to answer the question: How can
we categorized different RG flows which leads to a complex critical behavior?
Our answer to this question will be to divide them according the structure
properties of the Pisot non-Pisot substitutions. We will to see that one can build
a self-similar fractal and obtain several properties about the fractal using only
substitutions 1. This indicates that substitutions which are a sub class of a wider
family known as automatic sequences are good candidates for understanding the
complex critical behavior we have found in the previous section and the one that
we shall study here.

1We will address this subject in the and of this section
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3.1 Generalized substitution for non integer num-
bers

3.1.1 Basic properties of substitution process
We begin with a short reminder to substitutions in the spirit of [29]. Consider a
finite alphabet 2 {A,B} , a substitution process σ is then defined as an inflation
rule

σ(A) = AαBβ

σ(B) = AγBδ
(3.1.1)

with α, β, γ, δ are the number of letters that is created under σ. For example, for
the Fibonacci substitution, σ(A) = AB σ(B) = A and we have α = β = γ = 1,
δ = 0. Next we define the occurrence matrix M to be

M =
(
α β
γ δ

)
(3.1.2)

The matrix M has two eigenvalues λ1,2 with |λ1| ≥ |λ2| . λ1 has an eigenvector
V1 given by

V1 =
(
v1
v2

)
. (3.1.3)

Here we choose a normalization such that v1 + v2 = 1. vi is the average ap-
pearance of the i′th letter in the limit n → ∞ with n being the number of
iterations.

Substitutions can also be interpreted geometrically. Assigning to each letter
a length of lAor lB respectively leads to a distance xk from some origin, k being
the total number of letters after n iterations. In order to have an non vanishing
effect, lA and lB should be different from each other. In [29] it was shown that
a “neutral choice” for the Fibonacci substitutions is lA = τ , lB = 1. This was
done as follow, for a two letters substitution the first letter can be either A or
B we call An ≡ σn(A) and Bn ≡ σn(B). The following recursion relations are
satisfies (

An+1
Bn+1

)
=
(
α β
γ δ

)(
An
Bn

)
. (3.1.4)

Assigning each letter a length lA lB we can write(
lAn+1
lBn+1

)
=
(
α β
γ δ

)(
lAn
lBn

)
where lin is the length of the first n′th letters. By defining un = lAn

lBn
we find the

map
un+1 = αun + β

γun + δ
. (3.1.5)

2here we shall consider a two letters alphabet for simplicity the generalization for more
letters is trivial

38

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



This map has a fixed point for

u∗ = λ1 − δ
γ

(3.1.6)

which for the Fibonacci substitution is equal to u∗ = τ−0
1 = τ . Thus a neutral

choice for the lengths is lA = τ , lB = 1.
The choice of the of different lengths for lA,B assist us in defining us an

average lattice constant. Since after large number of iterations it scales like
(see [29,44] )

k ∝ λn1 . (3.1.7)

In the limit of k →∞ we define an average lattice constant r

r = lim
k→∞

xk
k

= vAlA + vBlB . (3.1.8)

The average lattice constant is used in order to evaluate the distance xk after k
letters. The distance satisfies the relation

xk = mA(k)lA +mB(k)lB (3.1.9)

where mi(k) is the number of letters of type i in the first k letters. They obey
the obvious relation mA(k) + mB(k) = k. Trying to express the length xk
in terms of the average lattice constant r we need to take into account that
Eq.(3.1.8) is correct only in the limit k →∞. We then define

xk = kr + δx(k). (3.1.10)

δx(k) is a fluctuation term, which measures the deviation from the average
lattice. In [44] it was shown that it scales like

δx((k) ∝ λn2 (3.1.11)

so that by a simple derivation 3one might expect that

δx((k) ∝ kθ (3.1.12)

with
θ = ln(λ2)

ln(λ1) (3.1.13)

Notice that for λ2 < 1 β < 0, meaning that the fluctuations decays and there
will be no fluctuations in the limit k → ∞. On the other hand for λ2 > 1
the fluctuation are unbounded. while interesting Eq. (3.1.12) is not the most
general for of the fluctuation term namely, Eq.(3.1.12) can be written as

δx((k) ∝ kθF
(

ln k
lnλ1

)
(3.1.14)
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Figure 3.1.1: Upper figure: δx(k) for the occurrence matrix M =(
3 1
1 2

)
which is non-Pisot. Lower figure F (ln k) = δx(k)

kθ
for the same substi-

tution with θ = ln(3−τ)
ln(2+τ) ≈ 0.2516

with F (x) = F (x + 1) is a periodic function. In Fig. (3.1.1) we have plotted
δx(k) and F (ln k) = δx(k)

kθ
for a non-Pisot substitution given by the occurrence

matrix4 M =
(

3 1
1 2

)
. The log periodic oscillation are clearly shown in

the lower figure where we have plotted F (ln k). This indicates that δx((k)
is not a scaling function but rather a discrete scaling function. In contrast
to Fig .(2.1.2) where the log-periodic inoculations are small and smooth, here
the log-periodic behaviour gives another behaviour. In [44] it was argued that
F (ln k) is a continuous but non differentiable which is in fact a fractal function5.
Fractal functions which are continuous but non differentiable are known for a
long time and can be originated to Weierstrass6 The fluctuation term of a non-
Pisot substitution is another example of such function.

Although Eq. (3.1.14) was proven [28] we wish to end this section with a
qualitative argument to the fact that δx(k) is characterized by a discrete scale
invariance. To do so we note that the scaling relation of Eq. (3.1.12) can be
written as

δx((λ1k) = λ2δx((k) (3.1.15)

3We have ln(δx(k) = n lnλ2 and ln k = n lnλ1.Compering the two equations give the
desired result

4Note that the eigenvalues of this matrix are λ1 = 2 + τ, λ2 = 3− τ are both larger then
one

5By fractal function we mean that by zooming in on some part of δx(k) we find a smaller
copy of it

6Weierstrass function is W (x) =
∑∞

n=0 a
n cos(πxbn) with 0 < a < 1 and ab > 1 + 3π

2 .
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meaning that if λ2 > 1 it is characterized by find an discrete but infinite number
of k0

7 satisfying δx(k0) = 0. For those values of k0 Eqs.(3.1.9,3.1.10) are
rewritten as

mA(k0)lA +mB(k0)lB = k0r. (3.1.16)

We find that

mA(k0) = k0

(
r − lB
lA − lB

)
= k0

(
vAlA + vBlB − lB

lA − lB

)
= k0

(
vAlA − lBvA
lA − lB

)
= vAk0

(3.1.17)
where we used the relation vA + vB = 1. In order to find if a system has a
discrete scaling symmetry we need to check for which values of k the relation
mA(k) = vAk holds. As an example we use the asymptotic expression of mA(k)
given in [42]

mA(k) = k − 1− Int(vBk) = Int(vAk)− 1 (3.1.18)

where Int(x) is the integer part of x. This formula is only exact in the limit
k →∞. The equation

Int(vAk)− 1 = vAk0 (3.1.19)

has a trivial solution for k =∞. In order to find a non trivial solution we need
to find a more general form of mA(k) which is still unknown. Nonetheless, we
prove that mA(k) and thus δx((k) must be a discrete scaling For this, we use
Eqs .(3.1.9-3.1.10) and write

mA(k) = vAk + δx((k). (3.1.20)

From now we will use δx((k) ∼ kθ. Taking k → λ1k we have

mA(λ1k) = λ1vAk + λ2δx(k) (3.1.21)

where here we used in δx((λ1k) = δx((k). We find that

1
λ1
mA(λ1k)− λ2

λ1
δx((k) = mA(k)− δx((k) (3.1.22)

so
δx((k) = mA(λ1k)− λ1mA(k)

λ1 − λ2
. (3.1.23)

We rescale k once again λ1k → ςλ1 → k = ∆k with ∆ = ςλ1. By the same
arguments we have

δx((k) = mA(∆k)−∆mA(k)
∆θ − λ1

. (3.1.24)

Since ς is arbitrarily we take it to be ς = 1
λ1
, meaning

mA(k)−mA(k)
1− λ1

= mA(λ1k)− λ1mA(k)
λ1 − λ2

= 0. (3.1.25)

7Here we think of k as a continuous variable
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By induction, this remains valid for ς = λn1 meaning that u(k) vanishes for a
discrete set of points. Since we know that δx((k) ∼ kθ which is only equal to
zero for k = 0 (we assume that λ2 > 1) and goes to infinity for large k we deduce
that

δx((k) = kθF

(
ln k
lnλ1

)
(3.1.26)

with F (x) = F (x + 1). This proves that δx(k) is indeed a discrete scaling
function. Since in our derivation we did not use the fact that the occurrence
matrix M has only integer entries we can use this for the general case of non
integer substitutions, which we define in the next section.

3.1.2 Physical meaning of non integer substitution process
Here we generalize the results of the previous section to non integer powers.
Here xk cannot be interpreted as distance since the definition of 1.5 unit cells is
not well defined. Instead we think of our system as a half infinite size system,
and divides it to cells of size 1 in some arbitrary units. To each site we assign
a force Fi i = A,B, according to the substitution rule . xk is replaced by the
total work, starting from the origin to x = k

xk →Wk =
ˆ k

0
F (x)dx =

k∑
n=1

F (n). (3.1.27)

We now consider substitutions rules with non integer powers. First, consider
the substitution rule σ(A) = AA−1 with obvious generalization to other values.
Since we assign to A a force FA we interpret A−1 as −FA such that

Wσ(A) =
ˆ 2

0
Fσ(A)(x)dx =

ˆ 1

0
FAdx−

ˆ 2

1
FAdx = 0. (3.1.28)

This definition means that a negative substitution will give a negative contri-
bution to the total work.

Eq.3.1.27 can also help us defining generalized substitutions with non inte-
gers powers e.g. σ(A) = AmBθ where θ /∈ Z. The non integer power can be
interpreted as follow: Define frac(θ) = θ − int(θ), then take int(θ) cells and
apply on them the force FB . On the int(θ) + 1 cell apply FB only on frac(θ)
of the cell. We now use our previous results (especially Eq.(3.1.25)) with trivial
generalization, where now u(k) serves again as the fluctuation term to write

Wk = FAmA(k) + FBmB(k) = kF0r + (FA − FB)u(k) (3.1.29)

where F0 is the average lattice force defined like as in Eq. (3.1.8). In contrast,
here mA,B(k) is given by

mA(k) =
ˆ k

0
(F 0
A(x))dx (3.1.30)
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which can be a non integer number. mA(k) counts the contribution to Wk from
the force FA.Here we define

F 0
A(x) =

F (x)
FA

F (x) = FA(x)
0 otherwise

. (3.1.31)

Since d|mA(k)|e + d|mB(k)|e = k we define mi(k) = d|mi(k)|e + δmi(k) ≡
m̃i(k) + δmi(k) so Eq. 3.1.29 is rewritten as

Wk = Fm̃A(k) + FAδmA(k) + FBm̃B(k) + FBδmB(k) = kr + (FA − FB)δx(k).
(3.1.32)

Defining Ek = Wk−FAδmA(k)−FBδmB(k), and v(k) = u(k)−FAδmA(k)+FBδmB(k)
(FA−FB)

we have

Ek = FAm̃A(k) + FBm̃B(k) = kr + (FB − FA)v(k) (3.1.33)

where m̃A(k) + m̃B(k) = k. Since Eq. 3.1.33 is just like Eq. 3.1.10, we have

v(k) = kθG

(
ln k
lnλ1

)
. (3.1.34)

Now if the substitution rule is determined by integers powers (σ(A) = An1Bn2 , n1, n2 ∈
Z) it is clear that mi(k) = m̃i(k)→ δmi(k) = 0 meaning that δx(k) behaves as
in Eq.(3.1.34). Because this, we only consider the other case (ni /∈ Z). We know
that m̃A(k)+m̃B(k) = k and that k ∝ λn1 . From Eq.(3.1.29) it is clear that if ex-
ist k0 such that δx(k0) = 0 then FAmA(k0)+FBmB(k0) = k0r. This means that
FAδmA(k0) + FBδmB(k0)→ v(k0) = 0. On the other hand, Eqs.(3.1.333.1.34)
means that there are infinite numbers of k′s for which v(k) = 0. For each one of
those values we find that FAm̃A(k)+FBm̃B(k) = kr which indicates that the to-
tal sum of the relative deviations are equal to zero FAδmA(k)+FBδmB(k) = 0.
Thus we obtain

δx(k) = kθF

(
ln k
lnλ1

)
. (3.1.35)

3.2 Efimov physics as a substitution process
Here we consider the relations between renormalization group RG flow and
substitution and study the Efimov physics and Schrodinger equation with the
1
r2 potential. This potential was studied in many examples [50–52]. We choose to
follow [52] and derive its corresponding RG equations. For this we only consider
the radial part of the Schrodinger equation with an arbitrary 1

rS
potential

R′′ + d− 1
r

R′ − α

rs
Rs = 0. (3.2.1)

The case s = 2 is important since α is dimensionless. We can guess a solution
of the form R(r) ∝ rκ.Inserting this solution into Eq. (3.2.5) we find

(κ(κ− 1) + (d− 1)κ+ α) rκ−2 = 0.
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This equation is satisfies for every value of r when

κ1,2 =
(2− d)±

√
(2− d)2 + 4α
2 . (3.2.2)

When α < − (2−d)2

4 the solutions of κ are complex valued. The solution of
Eq. (3.2.1) is therefor given by

R = cos (ln(r) + φ) (3.2.3)

where φ is a phase which determined by the initial conditions of the problem.
The appearance of a complex exponent and a log-periodic function in (3.2.3)
indicates the breaking of scale invariance to a discrete scale invariance.

For a general s we guess a solution of the form

R(r) = C exp
(ˆ

dr
u(r)
r

)
(3.2.4)

gives
r
du

dr
= (2− d)u− u2 + α

rs−2 . (3.2.5)

We now introduce a scaling variable, l = ln(r/R0) where R0 is a cutoff radius
and g(l) = αR

(s−2)l
0 . The corresponding RG equations are

du
dl = (2− d)u− u2 + g

dg
dl = (2− s)g (3.2.6)

Since we are only interested in the 1
r2 potential we take s = 2 meaning that

g = 0.This shows that indeed α do not depend on any length scale. Although
Eq.(3.2.6) can be solved exactly we choose to write it in a discrete form so it
can be interpreted as a (2× 2) matrix

un+1 − un
∆l = (2− d)un − u2

n + g (3.2.7)

where ∆l = 1 in some arbitrary units. Close to the fixed point we expect that
the solution converges to a fixed solution, so we assume that u2

n ≈ unun+1 . We
find that

un+1 + unun+1 = (3− d)un + g. (3.2.8)

Assuming again that un+1 = un + o(un) we have

unun+1 ≈ (2− d)un + g (3.2.9)

Next we define un ≡ l1n
l2n

with lin are some functions. Eq.(3.2.9) is then written(
l1n+1
l2n+1

)
=
(

2− d g
1 0

)(
l1n
l2n

)
(3.2.10)
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thus we mapped the RG equation into a 2 × 2 matrix. Following [44] and our
previous results we can associate the matrix into a work of some force Fi after

n iterations. The matrixM =
(

2− d g
1 0

)
can be thought of as a generalized

occurrence matrix. Its eigenvalues are

λ1,2 =
(2− d)±

√
(2− d)2 + 4g
2 . (3.2.11)

which are exactly the power (κ) of the solutions of Eq. (3.2.1) for s = 2.
The eigenvalues are equal to the fixed points of Eq.(3.2.6) meaning that the
oscillations of Eq.(3.2.1) are mapped into a generalized substitution processes
with M being the occurrence matrix.

In order to find a physical interpretation of l1,2n we write Eq. 3.2.10 explicitly

l1n+1 = (2− d)l1n + gl2n
l2n+1 = l1n

. (3.2.12)

l2n is a memory function of l1n−1. We can rewrite Eq.(3.2.12) , while neglecting
the obvious index dependence

ln+1 − (2− d)ln = gln−1 ⇒ Ln+1 − (2− d)An = g. (3.2.13)

where Ln ≡ ln
ln−1

. Since the problem is three dimensional, we take d = 3, which
gives

Ln+1 + Ln = g(n) (3.2.14)

(Here we consider a coupling constant which depends on n ). Since g(n) was
found [51]

g(n) = (m+ 0.5)π (3.2.15)

we find recursion relations between different L′ns

Ln+1 + Ln = (n+ 0.5)π ⇒ Ln = nπ

2 (3.2.16)

For the 1
r2 potential the cutoff of the theory changes exponentially with the

scale, namely Rn = R0 exp
(
−πnν

)
where ν =

√
1 + 4g so

ν ln
(√

R0

Rn

)
= nπ

2 . (3.2.17)

We have found that An is proportional to the logarithm of the RG cutoff. This
means that Ln measures the number of iterations we need to do in order go from
R0 to Rn. So Eq.(3.2.14) is just iterative way to write the known RG equation
of the coupling constant near its zeros.

The recursion equation for l (Eq.(3.2.13)) behaves differently for g > g∗ or
g < g∗ where g∗ ≡ − (2−d)2

4 is the critical coupling. This is shown in Fig.3.2.1,
where its solution for some values of g for d = 1 is presented. From Fig.3.2.1
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Figure 3.2.1: The solution to the recursion equation of l(n) as a function of the
coupling constant g for 3 different values of g = {0.25,−0.25,−0.75}.

we find that for g > g∗ limn→∞
ln+1
ln

= limn→∞ Ln+1 =∞. On the other hand
for g < g∗ the limit is not defined. Instead it is characterized by oscillations
which decay as a function of distance. Since ,that up to a constant, Ln is equal
to ln(Rn) this is clearly an indication that the log-periodic oscillations are a
function of the cutoff. So, we were able to reproduced ,using substitutions, the
dependence of the 1

r2 potential on the coupling constant.
From Fig.3.2.1 and our previous results it is clear that g∗ is a special value

which might serve as a fixed point. This behavior clearly indicates a phase
transition with g acts as a magnetic field. In order to find the type of this phase
transition we need to find an order parameter of the system. We follow [50] and
re-examine Eq.(3.2.17). The n′th cut off is equal to

Rn = R0 exp
(
−Ln
ν

)
(3.2.18)
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The energy of the system is given as

En ∝
1
R2

0
exp

(
−Ln
ν

)
. (3.2.19)

For g > g∗ Ln →∞ so there are no bound states meaning that the ground state
energy is E1 = 0. This is an indication that for larger values of the coupling
constant than g∗ there is no discrete energy spectrum but rather a continues
one. On the other hand for g < g∗ we find that due to the oscillations the large
n limit of Ln does not exist. In this case the Lnare given by a discrete set of
numbers given by Eq.(3.2.16).The ground state energy is

E1 = 1
R2

0
exp

(
−L1

ν

)
= 1
R2

0
exp

(
−π
ν

)
(3.2.20)

which reproduce the results [50–52] . Next we define an order parameter M of
the system. In the limit of infinite system size, the system reaches to its ground
state so we can write its partition function

Z = tr exp (−H) . (3.2.21)

The free energy is
F − lnZ (3.2.22)

8. The coupling constant serves as a magnetic filed

M(g) = ∂F

∂g
= −∂ lnZ

∂g
(3.2.23)

Most of the contribution to the free energy comes from the ground state, so

M(g) ≈ −∂E1

∂g
. (3.2.24)

The order parameter dependence on g is

M(g) =
0 g > g∗

2πν−3

R2
0

exp
(
−πν
)
, g < g∗ . (3.2.25)

We have found that due to the exponential dependence on ν (and therefore on
g ) the transition is smooth for any order. This looks like a Kosterlitz-Thouless
type of transition. The fact that we were able to reproduce previous results
using substitutions, indicates that there is an underlying geometric structure
which breaks the scale invariance of the system into discrete scale invariance.
This structure is reflected in the coupling constant g which serves as a magnetic
field and determines the existence of the phase transition.

8 Here we shall neglect the dependence on the temperature
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3.3 Limit-cycles in quantum Einstein gravity and
aperiodic tilling of the space

3.3.1 Limit cycles in quantum Einstein gravity (QEG)
The next example that we consider, is a different problem which at first sight
looks rather different than the one we studied in Sec.3.2. It is the RG flow
of Quantum Einstein Gravity. First, we review the main results from [55]. In
their papers Reuter et al. have found that the β- function which derived from
the Hilbert-Einstein (HE) action in a quantum regime is characterized by Non
Gaussian Fixed Point (NGFP). The RG flow around this fixed point has a set
of complex valued eigenvalues. Their calculations were done by expending the
effective action up to second order in the coupling constant. It contains terms
proportional to the metric g and the Ricci curvature R, namely

S =
ˆ
ddx
√
g (R+ 2Λ) (3.3.1)

where Λ is the cosmological constant . Assuming a small perturbation, h, to the
background metric g, the effective action is (keeping terms up to second order)

Γ2
k(h, g) = 1

2Zn,kκ
2 ´ ddxĥµν (−D2 − 2λk + CTR

)
ĥµν − ...

...−
(
d−2
d

)
φ
(
−D2 − 2λk + CSR

)
φ

(3.3.2)

where λk ∝ k2Λ, k being the momentum. D2 is the covariant Laplace operator
φ = tr(h) and ĥµν = h − φ. The constants CT,S are given by CT = d(d−3)+4

d(d−1)
and CS = d−4

d . In [55] the background metric g was chosen to be a sphere of
radius r which gives a Ricci curvature of R = d(d−1)

r2 .
In order to see the correspondence between QEG and Efimov physics, we

examine Eq.(3.3.2). We derive the EOM for φ (or respectively hµν). This is
easily done since the curvature and the Laplace operator depends only on the
background metric g. The EOM are given by(

D2 − C(d)R
)
φ = −2λkφ (3.3.3)

The fact that D2, R and λk scale like r−2 means that there is no implicit length
scale in the problem. Indeed the coupling C(d) which appears before the Ricci
curvature is equal to C(d) = (d − 1)(d − 4) meaning it do not depends on any
length scale. Eq(3.3.3) looks like Eq(3.2.5) with s = 2 which by our previous
results gives complex valued critical exponents for some values of the coupling
constant. This is an indication that the complex critical exponents which found
in [55] might be a consequence of Efimov physics.

To see that indeed this is the case, we extend Reuter’s work and chooses
another background metric, the Schwarzschild metric in an Euclidean signature.

ds2 = F (r)dt2 + d2r

F (r) + r2dΩ2 (3.3.4)
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where F (r) = 1 − 2Gm
c2r , m being the mass, c is the speed of light (taken here

after to be 1), and G is Newton’s gravitational constant. For this metric, the
Ricci tensor and curvature are both equal to zero

Rµν = R = 0 (3.3.5)

On the other hand there exist another non vanishing scalar which relates to the
curvature,

RµνφσR
µνφσ = 12r2

s

r6 (3.3.6)

with rs = 2GM
c2 being the Schwarzschild radius. We need to use higher terms in

our calculation and not just the HE action. This is be done by expanding the
full action in a power series with respect to Ricci curvature

S =
ˆ
ddx
√
g+
ˆ
ddx
√
gR+

ˆ
ddx
√
gR2+

ˆ
ddx
√
gRνµR

νµ+
ˆ
ddx
√
gRνµρσR

νµρσ+...
(3.3.7)

All the terms except the first and last are equal to zero. Following the same
techniques as in [55] , the effective action is given by

Γ2
k(h, g) = 1

2Zn,kκ
2
ˆ
ddxĥµν

(
−D2 − 2λk + C̃T R̂

)
ĥµν−

(
d− 2
d

)
φ
(
−D2 − 2λk + C̃SR̂

)
φ

(3.3.8)
where nowR̂ ≡ RµνφσRµνφσ and C̃T,S ∼ r2

s . The EOM reads(
D2 − ξ(d)

r6

)
φ = −2λkφ (3.3.9)

The fact that here ξ must be dimensnfull means that there exist a specific length
scale that we can interpret as a modified Bohr scale 9. This is a first indication
that complex critical exponents are metric dependent.

In order to see this explicitly we need to derive the β-function equations for
the cosmological constant and the Newton constant. For this we follow [55] and
evaluates the constants appearing before the terms

´
ddx
√
g and

´
ddx
√
gR̂ of

the Weyl expansion of the metric. It can be written as function of the Laplace
operator (see [55] for more details)

tr(W (−D2) = (sπ)−dtr(I)
(
Q d

2
(W )

ˆ
ddx
√
g + 1

6Q d
2−1(W )

ˆ
ddx
√
gR+ .

(3.3.10)

+ +1
6Q d

2−2(W )
ˆ
ddx
√
gR̂+ ...

)
.

Notice that the second term vanish form our derivation. The pre-factors Qn are
given by

Qn = 1
Γ(n)

∞̂

0

dzzn−1W (z). (3.3.11)

9In fact by putting ~ in the right place this will give us the Planck length
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Defining

A = −D2 + k2R0
(
−D2

k2

)
− 2λk (3.3.12)

N = 2(Znk)−1∂t

(
Gnkk

2k2R0
(
−D2

k2

))
(3.3.13)

with R0 being a cut off which is chosen to be a sharp cut off. The evolution
equation of the λk and Gnk are given by

∂t(Gn,kλk) =
(
4k2)−1 (4π)

−d
2

[
trT (I)Q d

2

(
N

A

)
+ trS(I)Q d

2

(
N

A

)
− 2trV (I)Q d

2

(
N0

A0

)]
(3.3.14)

∂t(Gn,k) = −12k2(4π)
−d

2

[
trT (I)Q d

2−2

(
N

A

)
+ 6cT (I)Q d

2

(
N

A

)
+
]

(3.3.15)

+trS
(
Q d

2−2

(
N

A

)
− 6CSQ d

2

(
N

A2

))
−2trV (I)

(
Q d

2−2

(
N0

A0

)
+Q d

2

(
N0

A0

)
CV

)
where CT ,Cs are defined above and CV = 1

d . trT,S,V (I) are the traces over
the tensorial, scalar and vectorial degrees of freedom respectively. In contrast
to [55] we find that the evolution equation depends on Q d

2−2 rather than on
Q d

2−1.This reflects the fact that in we needed higher terms in Weyl expansion.
Next we define the following integrals

Φpn(ω) = 1
Γ(n)

∞̂

0

dzzn−1 R
0(z)− zR′0(z)

[z +R0(z) + ω]p (3.3.16)

Φ̃pn(ω) = 1
Γ(n)

∞̂

0

dzzn−1 R0(z)
[z +R0(z) + ω]p (3.3.17)

Note that tr(I)Qn
(
N
A

)
= Φpn(ω). These integrals have the following properties

Φ̃pn(ω) =
1

Γ(n+1) n 6= 0, p = 1
0 n 6= 0, p > 1 . (3.3.18)

Φ̃p0(ω) = Φp0(ω) = 1
(1 + ω)p . (3.3.19)

Inserting Φ̃n(ω) into the RG equations and taking d = 4. The RG flow equations
for λ and g are given by (here we define t = 1− 2λ)

βg = (2 + ηN )g (3.3.20)

βλ = −(2− ηN )λ+ g

π

(
5 ln(t)− 2ζ(3) + 5

2ηN
)

(3.3.21)
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where
ηN = gB1(λ)

1− gB2(λ) (3.3.22)

with
B1(λ) = 36

t
+ 10 ln t− 2ζ(2) + 6 (3.3.23)

B2(λ) = −5
6πt . (3.3.24)

The explicit dependence of B2 on λ in Eq(3.3.24) is in contrast to the result for
a spherical background metric where B2(λ) = C(d) [55].

We now study the NGFP properties of this theory. For this, we assume that
the fixed points λ∗, g∗ are both different than zero,meaning η∗N (g∗, λ∗) = −2.
From this we can find g∗(λ∗) which reads

g∗ = −6π
5B∗2 −B∗1

(3.3.25)

Inserting Eq.((3.3.25)) into Eq.(3.3.21) gives

0 = −4λ∗ + −6π
5B∗2 −B∗1

(5 ln(t∗)− 2ζ(3) + 5) (3.3.26)

We solved Eq.(3.3.26) numerically and found a non trivial fixed point. In
Fig.3.3.1 we have plotted β(λ∗). Clearly there is a finite value of λ∗ 6= 0 such
that β(λ∗) = 0. The fixed points are equal to

g∗ = 0.3264 λ∗ = 0.3936. (3.3.27)

Linearizing the two beta functions around their fixed points yields the set of
equations (

g′

λ′

)
=
(

∂βg
∂g

∂βg
∂λ

∂βλ
∂g

∂βλ
∂λ

)(
g
λ

)
. (3.3.28)

The critical behavior is dictated only by the eigenvalues of this matrix at the
fixed point. The derivatives are given by

∂βg
∂g

= (2 + ηN ) + g
∂ηN
∂g

(3.3.29)

with
∂ηN
∂g

= B1

(1− gB2)2 . (3.3.30)

∂βg
∂λ

= g
∂ηN
∂λ

(3.3.31)

and
∂ηN
∂λ

= g

1− gB2
(B′1 + ηNB

′
2) (3.3.32)
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Figure 3.3.1: β(λ) for the Schwarzschild background metric. The red dot λ∗ ≈
0.3936 satisfies β(λ∗) = 0

and B′i stand for ∂Bi
∂λ . At d = 4 we have

B′1 = 72
t2
− 20

t
(3.3.33)

B′2 = − 10
6πt2 . (3.3.34)

We also have

∂βλ
∂λ

= −(2− ηN )− λ∂ηN
∂λ
− g

π

(
−10
t
− 5

2
∂ηN
∂λ

)
(3.3.35)

∂βλ
∂g

= −λ∂ηN
∂g
− 1
π

(
5 ln(t)− 2ζ(3) + 5

2ηN
)
− 5

2
g

π

∂ηN
∂g

(3.3.36)
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Figure 3.3.2: β(λ) for the sphere background metric. The red dot λ∗ ≈ 0.3602
satisfies β(λ∗) = 0

At the fixed point we find that the two eigenvalues are equal to

θg = −25.8363 (3.3.37)

θλ = 19.7556. (3.3.38)

The eigenvalues are real. The real valued critical exponents do not depend on
the constants appearing before the functions the β function but only on the
dependence of the anomalous dimension ηN on λ. To see this we fix the value of
B2 to be 1 which is equal to Reuter’s results up to a constant. We then repeat
the same calculations to find the fixed points and the critical exponents. The
results are presented in Fig.3.3.2 . The fixed points are equal to

g∗ = 0.32861 λ∗ = 0.3602 (3.3.39)

with complex valued critical exponents

θ1,2 = 9.32962± 6.07381i (3.3.40)

thus reproducing the complex critical behavior near the NGFP as in [55]. For
both scenarios we find that g ∗ λ∗ ≈ 0.12 similar to [55]. The existence of a
NGFP does not depend on the background metric but it is rather a general
result of the theory. On the other hand, the critical exponents depends on
background metric. This indicates that the origin of the complex exponents
found in [55] comes from breaking of the scale symmetry of Eq.(3.3.3) into a
discrete scale invariance which can be understood within Efimov physics.
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3.3.2 The relation to substitutions
The existence of complex valued exponents in QEG is important since it means
that there is possibility that in the early universe which corresponds to small
scales, the space was characterized by a discrete scale invariance. The fact
that the geometry of space itself looks quasiperiodic is very unusual and relates
to the early attempts of Penrose to tile the space in a quasiperiodic way. In
this section, we map the RG equations into a generalized substitution matrix
and show that the complex critical exponents is a consequence of a non-Pisot
substitutions. This might be a step in the way toward an quasiperiodic tiling
of the early universe.

For this, we note that the difference between our solution and Reuter’s is in
the dependence of the anomalous dimension η on λ. While here both B1 and
B2 depends on λ, in Router’s solution B2 = const (for d = 4). The different
critical behavior clearly originates from this dependence and it need to be taken
into account when mapping the RG equations into an occurrence matrix. We
define dη = η − η∗with η∗being the solution of the critical points. Expending
βλ to first order in dη we find

dβλ = (λ− wg) dη = (λ− rg) (xdλ+ ydg) (3.3.41)

where we define w = 5
2π x =

(
∂η
∂λ

)
λ∗,g∗

,y =
(
∂η
∂g

)
λ∗,g∗

, and dλ = (λ − λ∗),
dg = (g− g∗). Next we assume that λ(l) = g(l) + ∆ where ∆ is small compared
to λ and g. This assumption is valid since that for both scenarios we are only
interested in the area near the critical points where we found λ∗ ≈ g∗. Doing
so, Eq.(3.3.41) is rewritten

dβλ = a0λ− a1λ
2 + a2 (3.3.42)

with

a0 = −(λ∗x+ wg∗x− λ∗y − rg∗y) = −(a1x− a2y)
a1 = −(x+ y)

a2 = w(g∗)2y + wg∗λ∗x = d1x+ d2y
. (3.3.43)

Writing dβλ = λn+1−λn while using the same arguments as in Sec.3.2 leads to
the occurrence matrix

N =
(
K T
1 0

)
(3.3.44)

with K ≡ a0
a1
, T ≡ a2

a1
. This matrix has complex eigenvalues for

T < −1
4K

2 ⇒ a1a2 < −
1
4a0. (3.3.45)

Before we continue we need to see that this matrix indeed gives different eigen-
values for our case and Router’s. The eigenvalues of N for both scenarios are
given in Table.1 . We find that indeed, Router’s metric is characterized by a set
of complex valued eigenvalues.

54

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Case Eigenvalues
Schwarzschild 3.7314, 0.0385

Sphere 0.0624± 0.2949i

Table 3.3.1: Different eigenvalues of the generalized occurrence matrix N . In the
upper row we present the eigenvalues obtained using the Schwarzschild metric.
In the lower row we present the eigenvalues obtained using the sphere metric

Another form of the occurrence matrix might be obtained by taking the
matrix of partial derivatives of the RG β-functions

M =
(

∂βg
∂g

∂βg
∂λ

∂βλ
∂g

∂βλ
∂λ

)
≡
(
a b
c d

)
(3.3.46)

The condition for limit cycles is given by the eigenvalues of M

(λ− a) (λ− d)− bc = λ2 − sλ+ p = 0 (3.3.47)

where s = tr(M) = a+ d and p = det(M) = ad− bc. The eigenvalues are equal
to

λ1,2 = s±
√
s2 − 4p
2 (3.3.48)

The condition for complex valued eigenvalues is

4p > s2 ⇒ 4ad− 4bc > a2 + d2 + 2ad. (3.3.49)

This is equal to

bc < − (a− d)2

4 . (3.3.50)

The trivial choice for limit cycle is corresponding to the relation between the
diagonal and the off diagonal terms of the beta functions(

∂βg
∂λ

∂βλ
∂g

)
< −1

4

(
∂βg
∂g
− ∂βλ

∂λ

)2
(3.3.51)

There is a simple relation between K and T defined above and the existence of
limit cycles obtained from Eq.3.3.51 . We first note that

∂βg
∂g
− ∂βλ

∂λ
= ∂βg

∂η

∂η

∂λ
− ∂βλ

∂η

∂η

∂g
= (d1x− d2y) ∼ a0. (3.3.52)

on the other, we have

bc = −(d1x+ d2y)(x− y) = d2y
2 − d1x

2 + (d1 − d2)xy. (3.3.53)

For x = ±
√

d1
d2
y we find that the only reaming term will be bc ∝ xy. On the

other hand
∂βg
∂λ

∂βλ
∂g

= ∂βg
∂η

∂η

∂g

∂βg
∂η

∂η

∂g
∝ xy. (3.3.54)
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Meaning that for x ≈ ±
√

d1
d2
y there is a simple mapping between the two

occurrence matrices. Indeed, close to the critical point we find

x

y
=

∂η
∂λ
∂η
∂g

= −∂g
∗

∂λ∗
. (3.3.55)

Using Eq.(3.3.25) we find that

− ∂g∗

∂λ∗
= −g∗

1
t2

( 25
6π + 36

)
+ 10

t

− 1
t2

( 25
6π + 36

)
− 10 ln(t)− 2ζ(3)− 6

(3.3.56)

close to the fixed point we can neglect higher terms to find

− ∂g∗

∂λ∗
= −g∗ g

∗

λ∗
=
√
d1

d2
(3.3.57)

We choose to work with the non trivial occurrence matrix since it look like
the occurrence matrix found for the Efimov physics and the 1

r2 potential (see
Eq.(3.2.10) ). It reflects the fact that Router’s complex valued eigenvalues
are related to the choice of a background metric. Using this we can derive
all previous results found for the 1

r2 potential, e.g the Kosterlitz-Thouless phase
transition. Trying to interpret this as some kind of a phase transition means that
we need to find a magnetic field like, parameter. While in Sec.3.2 the coupling
constant plays this role it remains unclear to us what its analog here. Since we
are not changing parameters but rather the background metric. Nonetheless,
using the mapping into substitutions it seems reasonable to assume that QEG
must have some parameter which governs this “transition”.

Using the substitution, the relation between Penrose’s quasiperiodic tiling
of the universe and the critical behavior of the NGFP becomes clearer. The
fact the RG equations can be mapped into a substitution processes suggest
that in the early universe where the Plank scale is relevant, the universe was
characterized by an quasiperiodic order which may be a sign of discrete scale
invariance.

3.4 Substitution and the relation to fractals

3.4.1 Substitution and the relation to fractals behavior.
In Sec.2 we derived the RG flow on self-similar fractals and obtained its depen-
dence on the fractal structure. In this chapter our main focus were substitutions
and their corresponding RG flow. It seems at first sight that the two topics are
non related. Here we show that in fact there is a close relation between sub-
stitutions and self-similar fractals. Moreover, one can learn a great deal of
information regarding a fractal system using substitutions. The first indication
that there is a close connection between substitutions and fractals is the fact
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that as we saw in previous sections they are both characterized by a set of
infinite number of complex eigenvalues, namely

u(k) = kθF

(
ln k
lnλ1

)
(3.4.1)

The fluctuation term u(k) looks like the partition function derived in Eq. 2.1.9.
The question that rises is: Is this just a coincidence? It seems that the answer
to the question is no and indeed there is a close relation between fractals and
automatic sequences which substitution is a sub family of. [26]

To see this relation we give a simple set of rules which allows us to generate
from a substitution a self-similar fractal. For example, consider a two letters
alphabet {F,G} and the following substitution rule σ(F ) = FGFGF σ(G) =
GG. To this we also add some action denoted by ◦ which states the following:
F◦ corresponds to turning right by an angle of 60◦ and rescale the next letter
by a factor of 0.5. G◦ means the same but to turn left. Starting from the letter
F and inserting the ◦ between every two letters we find that in the limit of large
n σn(F )→ Sierpinski gasket.

Using this, we can use substitutions in order to obtain the Sierpinski gasket
which is a well known self-similar fractal. Due to the fact that the concept of
Riemannian metric ds2 =

∑
i F (x)dx2

i is not defined on self-similar fractal, we
need to define another metric which is known as the resistance metric [17]. In
order to define it we consider an arbitrary function f on the manifold. We define
the energy of this function as

ε(f, f) =
∑
x∼y

(f(x)− f(y))2 (3.4.2)

where the sum is on all the manifold sights and x ∼ y means that we only sum
nearest sights. The resistance metric is now defined as

R(x, y) =
(

min
f

(ε(f, f) : f(x) = 1, f(y) = 0)
)−1

. (3.4.3)

On Euclidean manifolds the resistance metric is equal to the norm R(x, y) =
|x− y|. On the other hand, on fractals it was shown [12] that R(x, y) ∝ |x− y|γ
with γ 6= 1. For example, for the Sierpinski gasket it is equal to γ = ln 5

ln 2 −
ln 3
ln 2 ≈

0.736.
The fact that by changing substitutions rules we were able to derive a ge-

ometrical object that clearly cannot be embedded in Rn proves that one can
think on fractals as some type of geometric disorder. As an example, consider
the occurrence matrix associated with the Sierpinski gasket

M =
(

3 2
0 2

)
(3.4.4)

with eigenvalues of Λ1,2 = 3, 2. It is a non Pisot substitution meaning that
the fluctuation term will diverge with a power law θ = ln 2

ln 3 = d−1
h . This is

an indication that using substitutions we can obtain knowledge regarding the
geometric properties of the fractal.
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3.4.2 Fractal spectral properties from substitutions
Interesting by itself, the relation between fractals and substitutions might be
used in order to derive other properties of the fractal system. As an example,
we derive the gaps of the integrated density of states (IDOS) of the Sierpinski
gasket and compare them to the known results [48]. For this, we need only to
consider the two letter alphabet F,G and the substitution rule presented above.
We first recall a general theorem regarding gaps and substitution given in [31].
Consider a finite alphabet {Ai} and a substitution rule σ(Ai). We define the
occurrence matrix in the usual way

M1
i,j = #(Aj) in σ(Ai) (3.4.5)

This matrix has a set of eigenvalues λ1 > λ2 > ... We define ρ1 to be the
eigenvector of λ1 with the normalization convention

∑
i ν
i
1 = 1. Next we define

higher extension of σ in the following way. We take all the two letters that might
appear in the substitution (AiAj).We then take a word a of length k. The first
letter of a are denoted by a0. We have and |σ(a0)| = m and |σ(a)| = n. We
then go through σ(a) letter by letter and write the corresponding two letters
words until we have m pairs.We define

ζ(ω) = (a0a1)(a1a2)(a2a3)...(am−1am) (3.4.6)

For example, for the Sierpinski gasket we have only three two letters words which
are legal , GG, FG GF . We have σ(FG) = FGFGFGG σ(GF ) = GGFGFGF
σ(GG) = GGGG we then have

ζ(FG) = (FG)(GF )(FG)(GF )(FG)

ζ(GF ) = (GG)(FG)

ζ(GG) = (GG)(GG)

. (3.4.7)

Similar to M1 we define M2 which corresponds to ζ. Its largest eigenvalue is
also λ1. It has a normalized eigenvector ρ2 which we normalized the same way
as ρ1. The gap labeling theorem states that the gaps of the IDOS are given by
the following module group

Z[λ−1
1 ] (3.4.8)

which is generated by the coordinates of the normalized eigenvector ρ1 and ρ2.
For the Sierpinski gasket we can now find the gaps easily. The occurrence

matrix is given by

M1 =
(

3 0
0 2

)
(3.4.9)

while M2 is given by

M2 =

 3 0 0
2 1 0
0 1 2

 . (3.4.10)

58

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Figure 3.4.1: Black: Normalized IDOS derived using [10]. Color lines, gap
locations corresponding to IDOS(gap) = n

3m

Both M2 and M1 largest eigenvalue is λ1 = 3. The normalized eigenvector are

V1 = 1
3

(
1
2

)
and V2 = 1

3

 1
1
1

 . The gaps in the IDOS are now easily found

using the previous theorem. They are given by

IDOS(gap) = n

3m mod (1) (3.4.11)

where k, n ∈ Z . This result is in complete agreement with the result found
in [48]. Moreover compering this with the analytic results of [10] 10we find that
they are in agreement. This is presented in Fig.3.4.1 where we have plotted
the normalized IDOS for the Sierpinski gasket after 13 iteration using [10].
The colored lines represent the theoretical infinite iteration height of the gaps
corresponding to Eq.3.4.11.

The fact that in order to derive the IDOS we only needed the substitu-
tion rules which generates a self-similar object with the same properties as the
Sierpinski gasket indicates that the discrete scaling symmetry of self-similar
fractals are indeed related to an quasiperiodic tiling created using substitution

10See pages 7 − 8 in [10] for the exact derivation of the eigenvalues and the IDOS of the
Laplace operator for the Sierpinski gasket
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rules. The fact that we were able to find the height of the gaps in the spectrum
which depends on the spectrum of the fractal indicates that they contain not
only geometric properties of fractals. Using substitutions, one can also learn
some spectral properties regarding self similar fractals.
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Chapter 4

Topological effects in
quasiperiodic structures

In the previous chapters we used substitutions to describe phenomena charac-
terised by discrete scale invariance. In this chapter, we wish to explore and to
understand some basic properties of substitutions. While basic ideas are easy
to understand, the variety of substitutions [29] prevents from understanding all
their properties. Here, our purpose is to study topological properties arising
from the non trivial geometry of 2-letters substitutions. In Sec 3.4.2 we have
presented the gap labeling theorem which states that the location of the gap is
given by IDOS(gap) = n

aλm1
mod (1) where λ1is the largest eigenvalue of the

occurrence matrix and m,n ∈ Z. The numbers n,m were found to be topo-
logical invariants. For example, for the Fibonacci substitution the location of
the gaps is given by IDOS(gap) = p+ qτ with τ being the golden mean. q is a
winding number which relates to n,m in a known way [31].

Recently, it has been shown that for the Fibonacci substitution, the topolog-
ical properties of an infinite length chain are preserved when considering finite
length chains [38]. Here we extend these results and show that for a general
finite length 2-letters substitution, some of the topological properties of the infi-
nite lattice are preserved. Here we give the theoretical background beyond [38]
and show that for finite length chains of specific length an unique algebraic
structure can be defined. This structure defines all the topological properties
such as the gap labeling theorem and the location of the gaps. This remains
valid not just for Fibonacci substitution but to other wide class of substitutions.
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4.1 Discrete phason for the Fibonacci substitu-
tion

The Fibonacci substitution is a 2-letters substitution defined by the inflation
rule σ(A) = AB and σ(B) = A, so that the occurrence matrix is

M =
(

1 1
1 0

)
(4.1.1)

This matrix has two eigenvalues λ1 = τ and λ = −1
τ with τ being the golden

meaning τ = 1+
√

5
2 . We use the substitution in an iterative way order to build

an infinite length chain Σ such that σ(Σ) = Σ. In the infinite limit, the chain
is characterised by discrete scale invariance.

Another equivalent way to build the Fibonacci chain is by using the charac-
teristic function [37,38]

χn = sign [cos (2πnτ − πτ)− cos (πτ)] . (4.1.2)

The choice of the phase πτ in the first ) term of Eq.(4.1.2 is arbitrary and allows
to set the first letter of the chain. In order to create a 2d lattice we need to
generalize Eq.(4.1.2). This was done in [38] by introducing a phase φE ∈ [0, 2π]
so that Eq.(4.1.2) becomes

χn(n, φE) = sign
[
cos
(
2πnτ − πτ + φE

)
− cos (πτ)

]
. (4.1.3)

By changing the continuous variable φE , we generate a 2d lattice represented
in Fig.(4.1.1 We then perform a Fourier transform of that 2d structure, called
hereafter the reciprocal lattice, represented in Fig. (4.1.2)

We observe diffraction peaks (hereafter Bragg peaks) whose locations along
the kφ-axis are given by integers which correspond to the heights of the plateaus
occurring at gaps in the spectrum of a conveniently defined tight-binding Hamil-
tonian [31] and have been coined as topological invariants. The key difference
here to be emphasized is that the present results are obtained for a finite chain
of length FN and thus with only FN Bragg peaks rather than the infinite one
for the gap labelling theorem.

The structure found using Eq. (4.1.3) is not unique and can be studied using
approaches different from the characteristic function so that it can be generalised
to other types of substitutions. We consider the following scheme : we take the
first FN letters of the semi-infinite chain (irrespective to the chosen first letter).
Next we define a one letter shift operator T such that T C0

FN
= C1

FN
where C0

FN
corresponds to the first FN letters of the chain and C1

FN
corresponds to the

letters 2...FN + 1. In a similar way we consider T kC0
FN

= CkFN . The FN × FN
matrix

Σ0
FN
≡

(
C0
FN
C1
FN
...CFN−1

FN

)t
(4.1.4)

obtained by piling each CkFN on top of each other leads to a 2d lattice displayed
in Fig.4.1.3.
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Figure 4.1.1: Diagram representing the different chain configurations for a
fixed length FN = 89, while changing the continuous variable φE . The different
configurations are piled up one on top of the other. We thus generate a 2d
structure.

Figure 4.1.2: Fourier structure of Fig.4.1.1

. This lattice, unlike the one in Eq (4.1.3), is discrete. Nonetheless, the
two structures are related. To see it, note that by letting φE to be a discrete
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Figure 4.1.3: 2d structure created using the direct approach

parameter φE(m) = 2πm
FN

with m = 0...FN − 1 we obtain the 2d lattice of
Fig.(4.1.1). Next we define φD(m) ≡ 2πmτ and the general phase

φ(ε) = φE − ε
(
φE − φD

)
(4.1.5)

where ε ∈ [0, 1] is a tuning parameter. Taking ε = 0 to Eq. 4.1.3 gives the
previous 2d lattice. On the other hand, ε = 1 gives Σ0

FN
. This is a clear indica-

tion that the phason is discrete rather than a continuous parameter. Moreover,
in [38] it was argued that the phason is a gauge filed which allows to measure
topological numbers as winding numbers. Its discreteness needs now to be taken
into account. Other equivalent choices for ε are displayed in Fig. (4.1.4).

4.1.1 Topological properties of substitutions and relation
to the gap labeling theorem

4.1.1.1 Generalized 2d substitutions

Here we wish to extend the notion Fibonacci numbers to a general 2-letter
substitution. To do so we recall that a general substitution can be defined using
the occurrence matrix

M =
(
α β
γ δ

)
. (4.1.6)

Next, we define the integers

s = trace(M) = α+ δ
p = det(M) = αδ − βγ . (4.1.7)
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(a) Fourier amplitude for ε = 0.5 (b) Fourier amplitude for ε = 1

(c) Fourier amplitude for ε = 1.5

Figure 4.1.4: Fourier images for different values of ε

The two eigenvalues of M are

λ1,2 = s±
√
s2 − 4p
2 . (4.1.8)

The Frobenius-Peron theorem guarantees that λ1 > 1. For |λ2| < 1, the substi-
tution is known as a Pisot substitution and as a non-Pisot otherwise (|λ2| ≥ 1).
We have previously considered lattices of size FN × FN . What is special about
these lengths? To answer this question, we consider the 2d lattice obtained from
a chain of length L = 88 = F11 − 1. The corresponding Fourier image is shown
in Fig.4.1.5a .

Although the diagonal in Fig.4.1.4b shows up as before, it is smeared and
moreover we note the appearance of other non diagonal modes. For a size
88 × 89, we obtain a very different picture (Fig.4.1.5b) where the diagonal is
stronger without smearing along the vertical axis but only in the horizontal
one. Taking the system size to be 89 × 89 gives back Fig.4.1.4b From this
we conclude that choosing chains of length given by a Fibonacci numbers has
important consequences to the Fourier transform of the 2d lattice.

To extend these results and to study the general properties of substitu-
tions beyond the Fibonacci case, we consider a 2-letters substitution defined in
Eq.(4.1.6) and the series of integers ΦN given recursively by

Φ0 = 0 Φ1 = 1
ΦN = sΦN−1 − pΦN−2 .

(4.1.9)

For the Fibonacci substitution, s = 1, p = −1 so that ΦN = ΦN−1 + ΦN−2 as
expected for Fibonacci numbers. For the sake of convenience, we shall continue
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(a) Fourier structure for 88×88 sites Fibonacci(b) Fourier structure for 89×88 sites Fibonacci

(c) Fourier space for non Pisot with Φ4 = 75 (d) Non Pisot Fourier structure for F4 = 55

Figure 4.1.5: Fourier image for different substitutions of different sizes

Figure 4.1.6: Real space lattice for non Pisot substitution defines in Eq. (4.1.11)
with F4 = 55

labelling FN the numbers defined from a general substitution, namely

FN = ΦN − ΦN−1 = sΦN−1 − (1 + p)ΦN−2 = sFN−1 − pFN−2 (4.1.10)

For regular Fibonacci numbers the two definitions lead to the shifted series
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FN = ΦN−1. To further study the relevance of the numbers FN in the behaviour
of the Fourier spectrum, consider the non Pisot substitution

M =
(

3 1
1 2

)
(4.1.11)

so that s = p = 5. The corresponding two eigenvalues are λ1,2 ≈ {3.618, 1.382}
. The matrix Σ0

FN
and the 2d lattice are represented in Fig.4.1.6.

The respective series Φ′Ns and FN starts with [0, 1, 5, 20, 75, 275, 1000, 3625]
and [1, 4, 15, 55, 200, 725, 2625]. A simple examination shows that while a lattice
of size FN = 55 gives the Fourier picture shown in Fig.4.1.5d it is not true true
for ΦN (see Fig.4.1.5c), namely the numbers F ′Ns are those relevant to describe
the properties of finite chains.

In section 4.4 we will present a more detailed explanation for the choice of
generalised Fibonacci numbers rather than ΦN based on topological properties
of the substitution as manifested in Bratelli graphs and corresponding homology
groups. For now we shall focus on more heuristic arguments

4.2 Winding numbers of a substitution
4.2.1 Reshuffling rules for the Fibonacci substitution
As we have seen, we cannot describe a 1d quasicrystal described by a non-
Pisot substitution using a characteristic function. Using the approach leading
to Eq.(4.1.4), we can generate and compare distinct 2d lattices. It turn out
that the two structures Σ0

FN
(for ε = 1) and Σ1

FN
(for ε = 0) are related via a

reshuffling of the rows given by

n′ = nFN−2 mod (FN ) (4.2.1)

where n in the nth row of Σ0
FN

and n′ is the n′th row of Σ1
FN

. The two structures
are identical up to some reshuffling of rows. Eq.(4.2.1) can be generalized by
introducing a new parameter q = 1...FN such that

n′(q) = (n q FN−2) mod (FN ). (4.2.2)

The more general Eq.(4.2.2) allows to define a set of FN different 2d lattices
labeled ΣqFN . There is a one to one correspondence between the values of q and
of ε all corresponding to a Fourier image with sharp Bragg peaks. This means
that this reshuffling corresponds to a unitary transformation characterised by a
phason φ.

Topological numbers are better defined in Fourier space. As we saw, Bragg
peaks move only along the horizontal k‖ axis and not along the vertical k⊥ axis.
For each q, ΣqFN is unitarily related to Σ0

FN
by Eq. (4.2.2), so that each Bragg

peak at a value k⊥ is shifted with respect to the Fourier image of Σ0
FN

by an
amount ∆q(k⊥) given by (see Fig.(4.1.4b)),

∆q(k⊥) = (aq + bq(k⊥ − 1)) mod (FN ) (4.2.3)
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where aq, bq = 1, ..., FN are numerically and uniquely determined for each q
and k⊥ = 1, ..., FN . We thus obtain a discrete group under addition ∆q(k′⊥) +
∆q(k⊥) = (aq + bq(k′⊥ + k⊥)) mod (FN ) isomorphic to Z/FNZ.

To define a winding number for the case of a continuous variable φ, we recall
that we consider a phase α(φ) isomorphic to the group U(1) and the integral

W = 1
2π

2πˆ

0

dα

dφ
dφ (4.2.4)

which amounts to an integer. W is the corresponding winding number.
In our case, the discrete variable k⊥ plays the role of φ and ∆q(k⊥) the one

of α. Therefore, it is natural to generalise the continuous description into the
discrete form,

Wq = 1
FN

∑
k⊥

∆q(k⊥)−∆q(k⊥ − 1) (4.2.5)

where Wq is the new winding number. To show that it is an integer, note that
we have a telescopic series so that using Eq. (4.2.3) we find

Wq = 1
FN

(∆q(FN )−∆q(1)) = bq. (4.2.6)

where bq is indeed an integer. Therefore, we can use the additive group structure
Z/FNZ of the phase ∆q(k⊥) to describe the unitary transformations between
different ΣqFN ’s . The winding numberWq has a simple intuitive meaning. Since
we have found that it’s equal to bq it counts the number of times we complete
full circles moving along on the reciprocal space. Since Z/FNZ is isomorphic
to a discrete set of the unit circle1 we find that by multiplying each term by a
factor bq we complete exactly bq circles around the unit circle. Thus bq defines
a discrete version of a winding number with the 2π periodicity is replaced by
the mod (FN ).

4.2.2 General substitution
For a general 2-letter substitution, we cannot use a characteristic function like
Eq.(4.1.2), namely a simple interpretation in terms of a discrete phason φ. But
since for the Fibonacci substitution where both description are valid, there is a
one to one correspondence between the phason φ(q′) and the row exchange n′(q)
means that we can use the last reshuffling rules in order to obtain the winding
number defined in Eq.(4.2.6). First we rewrite Eq.(4.2.2) for a general 2-letters
substitution. For instance, for the non-Pisot substitution defined in Eq.(4.1.6)
and calculating the F ′Ns we note that generally gcd(FN , FN−2) 6= 1, leading to
a non invertible transformation when using Eq.(4.2.2) . This can be solved by
rewriting the reshuffling rule as

n′(q) =
(

nqFN−2

gcd(FN , FN−2)

)
mod (FN ). (4.2.7)

1For each element in m ∈ Z/FNZ we can a sign a phase e
2πim
FN
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The calculations done in the previous section are now valid using Eq.(4.2.7) for
a general substitution. Furthermore, Eq.(4.2.3) generalises to

∆q(k⊥) = (aq + bq (k⊥ − 1)) mod (FN ) (4.2.8)

where aq, bq = 1...FN . The shift along the k‖ axis is again given by an element
of Z/FNZ and the winding number is Wq = bq.

We consider now the behaviour as a function of q of Eq. (4.2.8). To that
purpose, we introduce another parameter s = 1, ..., F

N
such that

∆s,q(k⊥) = (aq + bs bq k⊥ − 1)) mod (FN ). (4.2.9)

Clearly ∆1,q(k⊥) = ∆q(k⊥). For every q, q′ = 1, ..., FN there exists a unique s
such that for every k⊥,

∆s,q(k⊥)−∆1,q′(k⊥) = aq − aq′ . (4.2.10)

independently of bq, bs or k⊥ meaning that up to an irrelevant constant the to
corresponding lattices coincide up to a translation in reciprocal space. SinceWq

does not depend on aq, we note that all the different FN winding number can
be obtained from the same lattice. Using Eq.(4.2.9) and Eq. (4.2.5), we have

Wq,s = ∆q,s(FN )−∆q,s(1)
FN

mod (FN ) = bsbq mod (FN ) (4.2.11)

so that for a FN × FN lattice, they are exactly FN different winding numbers
given by bsbq mod (FN ).

To summarise this section, we have shown that a general 2-letter substitution
is characterized by periodic behaviour in the real space preserved in the recip-
rocal space. All the Fourier images are topologically equivalent and described
by the properties of the cyclic group Z/FNZ. These results are also related to
the gap labeling theorem as we shall see in the next section.

4.2.3 The group structure
We wish now to present a more practical algebraic picture of a general substi-
tution.This algebraic picture will give assist us in understanding the winding
number defined in Sec .For every q = 1, ..., FN , Eq. (4.2.7) can be written in a
matrix form

ΣqFN = UqΣ0
FN . (4.2.12)

The matrix Uq is a FN × FN matrix with the following entries

1 if n′ = qnFN−2
gcd(FN ,FN−2)mod(FN )

Uq(n′, n) =
0 otherwise

. (4.2.13)
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Figure 4.2.1: F
(
Σ1
FN

)
vs F (U1) for an 89× 89 Fibonacci substitution

It is easy to check that det(Uq) = and that U−1
q = U t meaning that Uq is a uni-

tary matrix. All the different ΣqFN are related through a unitary transformation.
The set {Uq}FNq=1 defines an Abelian group with the multiplication rule

UqUs = UsUq = Ut. (4.2.14)

where
t ≡ qsFN−2 mod (FN ) . (4.2.15)

The group of unitary transformations {Uq} is therefore isomorphic to Z/FNZ.
Going to Fourier space we have

F (ΣqFN ) = F (UqΣ0
FN ) = F (Uq)F (Σ0

FN ) (4.2.16)

where F defines the discrete 2d Fourier transform. Since F (Σ0
FN

) is diagonal
in Fourier space we conclude that Ũq ≡ F (Uq) has sharp peaks at the same
locations as F (ΣqFN ) (see Fig.4.2.1) . so that the variation of

the peak intensities of F (ΣqFN ) originates from F (Σ0
FN

).
The set {Ũq}FNq=1 has the group structure of {Uq} with the multiplication

rule,
ŨqŨs = ŨsŨq = ŨFN−[qsFN−2] mod (FN ). (4.2.17)

The winding number Wq = bq in Eq. (4.2.6) is encoded in the algebra of group
{Ũq} in Eq. 4.2.17. To see that we define a matrix of the indexes q, s by

L(q, s) = FN − [qsFN−2] mod (FN ) (4.2.18)

where the mod (FN ) acts only on qsFN−2. A color code representation of L
for Fibonacci substitution is shown in Fig.4.2.2 from which Wq = bq is readily

70

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



Figure 4.2.2: Color representation of L(s, q) the intensity represent the out
cum of FN − (qsFN−2) mod (FN ) where cold colors are small numbers and hot
numbers are large numbers

obtained. For a fixed value of q = q̃, we vary s and count how many times
L(q, s) = FN − q̃sFN−2 mod (FN ) crosses 0modFN . Since winding numbers
are usually defined using counterclockwise integration, we set Wq = 1 to be
the winding number starting from FN−1 and decreasing to 0. For a general
substitution of length FN the value of q which satisfies this relation is given by

q0 = FN−1. (4.2.19)

The value of q associated to the winding number Wq is given by

q = FN−1 bq mod (FN ). (4.2.20)

The winding numbers bq clearly depend on the algebraic structure of {Ũq} as
reflected in the matrix of indices L(q, s). Moreover, by introducing the normal-
ization k = q

FN
, we normalise the horizontal q-axis to be between [0, 1]. The

location of the gaps in the spectrum of a 1d Fibonacci lattice with FN sites was
found to be [38]

kgap = FN−1Wq mod (FN )
FN

. (4.2.21)

The index matrix L(q, s) encodes the information on the winding numbers
and on the locations of the gaps in the spectrum. It defines a group isomorphic
to Z/FNZ. In the limit N → ∞, this group converges to the discrete group
Z. Therefore, the corresponding winding numbers and gap locations will take
an infinite number of integer values. These features of quasiperiodic structures
(e.g. quasicrystals) is unique and very different from crystalline i.e. periodic
structures for which there exist a finite number of Bragg peaks only and a finite
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number of spectral gaps independently of the lattice size. Note also that in the
latter case, the set of winding (i.e. topological) numbers is finite and trivial.

4.3 The relation to 1d gap labeling theory
n the previous section we have obtained that the algebraic structure of the
set {Ũq}FNq=1 can be used in order to obtain the position of the gaps and their
corresponding winding numbers. For the Fibonacci substitution, those numbers
were found to be related to the topological invariant of the gap labelling theorem.
Related results have been obtained for an infinite length 1d lattice using K
theory methods. The heights of the gaps of the normalized integrated density
of states were found to be given by the K0 group [31].

Here we wish to relate our results to the K0 group but for a finite system of
length FN . More specifically, the corresponding limit of the set {Ũq}FNq=1 yields
K0. For this we shall examine several examples and show that there is one to
one correspondence between our previous results and the gap labelling theorem.

The first example that we consider is the Fibonacci substitution. The cor-
responding K0 group is given by [31]

K0 = {IDOS(gap)} = (Z + τZ) ∩ [0, 1] = τZ ∩ [0, 1]. (4.3.1)

On the other hand from Eq. (4.2.21), the location of the gaps in the k-axis
(k = q/FN ) is given by

k(Wq, N) = FN−1Wq mod (FN )
FN

(4.3.2)

with Wq = 1, ..., FN . Using that FN−1
FN
≈ τ implies that

k(Wq, N) ≈ τ(Z/FNZ) ∩ [0, 1] . (4.3.3)

with the corresponding group K(Wq, N) ≈ τ(Z/FNZ). In the limit of N →
∞, the ratio FN−1

FN
≈ τ becomes exact and (Z/FNZ) → Z, therefore, for the

Fibonacci substitution:

lim
N→∞

K(Wq, N) ∩ [0, 1] = K0. (4.3.4)

The next example that we consider is the period doubling substitution given
by

M =
(

1 2
1 0

)
(4.3.5)

It has two eigenvalues λ1,2 = 2,−1. The K0 group is given by [31]

K0 = {IDOS(gap)} = Z
3× 2J ∩ [0, 1] (4.3.6)
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Using Eq. (4.1.10) the generalized Fibonacci numbers are given by

F = 2, 2, 6, 10, 22, 42... (4.3.7)

so that FN−1
FN
≈ 2 = λ1

We define the new matrix K(q, s)

K(q, s,N) = L(q, s)
FN

. (4.3.8)

Entries of L(q, s) are integers between 1, ..., FN so that entries of K(q, s) lies
between [0, 1] and

K(q, s,N) = FN−2qs mod (FN )
FN

. (4.3.9)

Using FN−2
FN

≈ λ−2
1 = 2−2 and that every integer s ∈ Z has a unique decompo-

sition in binary s =
∑
ai2i with ai = 0, 1, leads to

K(q, s,N) = q
∑
ai2i

22 ∩ [0, 1] = q
∑
ai2i−M

22−M ∩ [0, 1] (4.3.10)

where M is the maximal power of the binary expansion of s. We now have

K(q, s,N) = z

2J [0, 1] (4.3.11)

where J ≡ 2−M ∈ Z and z = q
∑
ai2i−M . Taking the limit N →∞ gives the

group K0 defined in Eq.(4.3.6).
The last example is the binary non-Pisot substitution defined by M =(
1 3
1 0

)
.The IDOS is given by [31]

K0 = {IDOS(gap)} = 1
3J (p+ θt) mod (1) (4.3.12)

where θ = 1+
√

13
2 is the largest eigenvalue of M . We note that for a general

substitution FN
FN−1

→ λ1 where λ1 being the largest eigenvalue of the occurrence
matrix M .

K(q, s) = 1− qsFN−2 mod (FN )
FN

. (4.3.13)

For a general s ∈ [1...FN ] we can write

s =
∑
i

AiFi (4.3.14)

where Ai are integers and Fi < FN . This gives

K(q, s) = 1−
q
∑
iAiFiFN−2 mod (FN )

FN
(4.3.15)
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Using that Fi
FN
≈ θi−N and that θ−1 = 1

3 (θ − 1) gives

K(q, s) = q
∑
i

Ai
(θ − 1)N−i

3N−i+2 ∩ [0, 1] (4.3.16)

Expending (θ− 1)N−i while using θ2 = θ+ 3 gives the same group structure as
in Eq.(4.3.12) in the limit of the infinite chain.

Those three examples demonstrate that the K0 group can be understood
as the infinite limit of the algebraic group structure {Ũq}FNq=1 for a finite chain.
The L(q, s) matrix can be used in order to derive both spectral properties (i.e.
the locations of the gaps) and also the related topological invariants (i.e. the
winding numbers). For every finite chain of length FN , there are exactly FN
topological numbers corresponding to the lowest valued spectral gaps of the gap
labelling theorem.

This correspondence between the gap labelling theorem and its K-group
structure which characterises spectral properties and our results which are purely
structural indicates that the group of unitary transformations {Uq} might serve
as a basis for the generalisation of the Bloch theorem to quasiperiodic systems.

To bridge between the two situations of periodic and quasiperiodic systems,
we consider the simple case of a periodic chain ABABABA.... which can be

obtained by the substitution M =
(

1 1
1 1

)
. The present method reproduces

the correct number of gaps and their locations in the Brillouin zone. Since
det(M) = 0 and trace(M) = 2, then λ1 = 2. The corresponding set of gener-
alised Fibonacci numbers satisfies the relation FN = 2N−2. Note that FN−1

FN
= 2

for every finite N . Using our previous result we find that k = bq
2 mod (1).

Taking bq = [1...FN ] gives only two gaps with winding numbers ±1 and located
at k = 0.5 and k = 1. Those are the results readily obtained using the scattering
approach. This may give an indication of how to define a Bloch theorem for a
quasiperiodic lattice using the algebraic structure obtained in Eq. (4.2.18).

4.4 Bratelli Graphs and The Homology groups
of Finite Lattices

4.4.1 General properties of cycles
In this section we wish to give a short, alternative and simple explanation re-
garding the origin of the topological properties found in the previous sections.
For simplicity, we shall only consider the Fibonacci substitution. We also con-
sider Fibonacci numbers FN with N ≥ 5. We start from the matrix Σ0

FN
and we

wish to describe it using the corresponding Bratelli graph (see [76] for details).
We use the notation A = aa B = ab and C = ba where {a, b} is the two-letter
alphabet. For F6 = 8, we consider the last two letters in each chain constitutive
of Σ0

FN
and we obtain
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Figure 4.4.1: Bratelli diagram for Fibonacci substitution. The arrows on the
edges corresponds the the flow between two neighboring vertex. The arrows
inside the graph describe the long and short cycles.

C8
8 = C0

8 = abaababa :→ C
C7

8 = aabaabab→ B
C6

8 = baabaaba→ C
C5

8 = abaabaab→ B
C4

8 = babaabaa→ A
C3

8 = ababaaba→ C
,C2

8 = aababaab→ B
C1

8 = baababaa→ A
C0

8 = abaababa→ C

The two-letters cycle is thus CABCABCBC. It is represented in Fig .(4.4.1)
, namely, we associate to each of the three possible two-letter combinations (for
the Fibonacci case !) a vertex. Each vertex is connected to neighboring ones
by an edge. We see that there are only 2 possible closed cycles respectively of
length 3(CABC) and of length 2 (CBC) (hereafter long and short cycles). For
a chain of length FN , those cycles are repeated several times according to the
following scheme : For an FN ×FN + 1 matrix, there are FN−3 long cycles and
FN−4 short cycles, i.e. a total of FN−2 = FN−3 + FN−4 cycles.

This is important since we know that the exchange rules behaves like

n
′

⊥(q) = n⊥qFN−2 mod (FN ) (4.4.1)

Let us understand why the number of cycles is FN−2. The ratio between
long and short cycles is FN−3

FN−4
≈ τ . This results from the properties of the vertex

C. Arriving to vertex C we can go either to B or to A. The C −A edge is baa
while the C − B edge is bab. Since the letter a appears τ more times than b,
we see that C goes to A τ more times than to B meaning that long cycles will
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appear more frequently. Moreover, we see that on average the vertices B,C
appear more often than A (In fact they appear exactly τ more times).

Let us now prove an intermediate result, namely that for N ≥ 5, the cycles
always start as CABC for even N and as CBC for odd N .

The proof is by induction. ForN = 5(F5 = 5) this can be readily checked and
indeed we obtain CBCBCAB. For N = 6, (F6 = 8) we have CABCABCBC.
For N = 7, F7 = F6 + F5 so that the last two letters in the first row will be
identical to first one in F5. We can now use induction to prove the result for a
general N . This shows that the frequency of appearance of A is smaller than
those of B,C.

We now go back to the initial problem of the number of cycles. To that
purpose, we first note that while a long cycle must reach A, C and B this is
not true for a short cycle. This is expressed by means of the 2-letter density
function defined for a chain of finite length FN by,

ρ(Xi) = #letters of type Xi

FN
. (4.4.2)

which fulfills ρ(A) + ρ(B) + ρ(C) = 1. Clearly, ρ(C) = ρ(B), while ρ(A) is
smaller. Moreover, ρ(A) = ρ(C)/τ , implies that,

2ρ(C) + τ−3 = 1 . (4.4.3)

Using that τ3 = 2τ + 1, leads to

ρ(C) = τ−2 = FN−2

FN
. (4.4.4)

Therefore, since each cycle reaches C, from this value of the density, we conclude
that the total number of cycles (long + short) equals FN−2. This should not
come as a complete surprise, since it is the same factor FN−2 which enters into
Eq.(4.4.1). Consider for instance the two specific transformations (correspond-
ing to q = 1), between CABCABCB and CCAABBBC.

4.4.2 The relation to the winding number
We can further simplify Eq.(4.4.1) by noticing that every q = 1, ..., FN can be
written as (see e.g. Eq. (4.2.20)),

q = rFN−1 mod (FN ). (4.4.5)

so that
n′r = nrFN−2FN−1 mod (FN ). (4.4.6)

Using the identities between Fibonacci numbers,

FN−2FN−1 mod (FN ) = (FN−FN−1)FN−1 mod (FN ) = −F 2
N−1 mod (FN )

(4.4.7)
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and F 2
N−1 − FNFN−2 = (−1)N−2 we deduce

FN−2FN−1 mod (FN ) = ±1. (4.4.8)

so that Eq.(4.4.1) simplifies to

n′r = nr mod (FN ) . (4.4.9)

From this last equation we can infer a simple relation between the reshuffling
rules, the cycling of the Bratelli diagram and the winding numberWq = r(= bq).
For instance, for FN = 5, the sequence along the Bratelli diagram is C → B →
C → A→ B. Now for e.g. r = 2, the initial 2-letter C moves to the second site
of the chain, the second letter B moves to the 4th site and the 3rd letter C moves
to the sixth site and so on. Finally, the new chain is C → C → A → B → B.
Note in that case (r = 2), we crossed exactly twice the whole chain (of length
FN ), namely the winding number is Wq=4 = 2 as obtained otherwise from the
multiplication table of

{
Ũq
}
in Section 4.2.

4.4.3 Homology group for finite systems
The homology groups defined in [76] correspond to chains of infinite length.
The question addressed in this section is the generalisation of those results to
finite chains of length FN . The Bratelli diagram is independent of the length,
namely still described by three vertices and four edges (for the Fibonacci case),
V ≡ {A,B,C}, E ≡ {e1, e2, e3, e4}. For the infinite chain, it is known [76] that
cycles of any length can be expanded as linear combinations of either vertices
of V or edges of E with integer coefficients. The resulting structures Cn are
groups known as chain complexes. For the specific case of Fibonacci chains, we
have C0 = Z3 (for vertices) and C1 = Z4 (for edges).

For finite chains of length FN chain, there is a straightforward generalisation.
We derive it for the simple case FN = 5 for which the basic cycle (obtained
previously) reads

C → B → C → A→ B. (4.4.10)

Since by Eq.(4.4.9) we only have an FN different reshuffling, then the corre-
sponding cycles can be expanded either using elements of V but with integer
coefficients in 1, ..., FN . This means that now C1 = {A,B,C} is not isomorphic
to Z3 but rather to

C0 = (Z/FNZ)3. (4.4.11)

In a similar way we can build the Bratteli diagram with 4 letters as edges and
3 letters as vertex. The 4 letters will be

f =

f1 = abaa
f2 = baab
f3 = aaba
f4 = abab
f5 = baba

(4.4.12)
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Figure 4.4.2: Bratteli diagram for 3 letters

The Bratteli diagram is presented in Fig. 4.4.2
It it interesting to find that the same properties for the previous diagram

are preserved for this diagram. Namely for a FN + 1 chain we complete exactly
FN−2 cycles among which FN−3 are long (e1 → e2 → e3 → e1) and FN−4 are
short (e1 → e4 → e1). This is another indication that all equivalent Bratelli
diagrams account for the same topology. Moreover the same reshuffling rule for
the 2 letters chains also apply here namely n′ = rn mod (FN ). We can now
repeat on the same derivation and find that for an FN chain

C1 = (Z/FNZ)4. (4.4.13)

The Homology groups can now be obtained in straightforward and systematic
way. To that purpose, we define the subset of exact sequences from the set of
CW chains defined previously,

0→ C1 → C0 → 0 (4.4.14)

The only non trivial boundary operator will be ∂1 which is still equal to

∂1 =


1 0 −1
−1 1 0
0 −1 1
−1 0 1

 (4.4.15)

since the Bratteli diagram remain the same for a finite chain. The only difference
now is that groups on which the operator ∂1 operates are now finite groups. By
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the same arguments as in [76], we find that

H0 ∼= Z/FNZ (4.4.16)

and
H1 ∼= Z/FNZ× Z/FNZ. (4.4.17)

The homology groups H0 and H1 are isomorphic to {Ũq}FNq=1 and L(q, s) respec-
tively. This emphasises the close relation between the homology groups of a
quasiperiodic structure and the corresponding K0 group,

K0 = lim
N→∞

H0 ∩ [0, 1]. (4.4.18)

Eq. (4.4.18) indicates that the gap labeling theorem and our algebraic struc-
ture are both isomorphic to the Homology groups of the substitution. Since the
Bratelli diagram defines the manifold of the substitution our result show that
the non trivial topological structure of quasiperiodic systems is of a purely struc-
tural origin and it is distinct and independent of possible topological structures
induced by an external applied field like in the case of the QHE for periodic
structures.
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Chapter 5

Conclusions

In this work, we have studied several systems for which the notion of discrete
scale symmetry is relevant. We have shown a wealth of different phenomena
related to this symmetry.

First, we have studied self similar fractals, which result from a direct imple-
mentation of discrete scaling symmetry. On such structures, the very idea of
second order phase transitions is not so simple and need to reconsidered. The
exponential growth of the Laplace operator eigenvalues and their corresponding
degeneracy led to a distinct behavior of the partition function. Using simple
scaling techniques we have shown that the RG flow in the complex temperature
plane is characterized by an infinite number of complex poles and to a modifi-
cation of standard scaling relations such as those of Rushbrooke and Fisher.

These modifications together with the complex valued critical behavior has
been explained using the assumption that the fractal geometry consists of some
type of relevant disorder to some otherwise “pure” system. This geometric
extension of the Harris criterion might be used in order to define momentum
on self similar fractals. The overall change of our results consists in chang-
ing previous results performed with some dispersion relation of E(k) ∝ kθ into
E(k) ∝ kθEper(ln k). Spectral properties of the Laplace operator led to the
result that the dimension that governs the existence of second order phase tran-
sitions is not the Hausdorff (geometric) dimension dh but rather the spectral
dimension ds. This indicates that spectral rather than geometric properties of
the system become important near the critical point. This is in agreement with
other works and this was used to generalize the Mermin Wagner Hohenberg
Coleman theorem to a self similar fractal.

Next, we have studied Efimov physics and Schrodinger equation with an
attractive 1

r2 potential. Our first objective was to show that it can be mapped
into a 2 × 2 occurrence matrix which represent a general substitution. Using
this method all the well known properties of the 1

r2 potential are preserved.
The fact that the complex RG flow has a strong dependence on the values of
the coupling constant points for the existence of a quantum phase transition.
We were also able to generalise Efimov physics beyond its general realm, e.g.
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by including some aspects of quantum Einstein gravity. Indeed for a spherical
metric, the effective action behaves like an 1

r2 Schrodinger equation while the
Schwarzschild metric does not so that the existence of a complex RG flow is a
non universal result but metric dependent. On the other, we have found that
the existence of a non Gaussian fixed point is universal. Using the same method
as for the 1

r2 potential, we have been able to represent the early space time of
the universe as a general quasiperiodic structure. This is a first step towards a
tiling of the space time similar to Penrose approach.

Finally, we have studied finite length systems defined by a general 2 letters
substitutions. We have shown that the topological properties of the infinite
systems like the heights of the spectral gaps in the gap labelling theorem are
already encoded in the finite system. More precisely, we have shown that the
topological numbers showing up in the gap labelling theorem can be recovered
from a pure structural approach using specific set of unitary transformations on
a generalised 2-dimensional lattice. For a specific lengths this lattice defines a
torus both in direct and Fourier spaces. These results apply for a large class of
substitutions.

The set of unitary transformations constitutes a group which on the lat-
tice is isomorphic to Z/FNZ× Z/FNZ group. This interesting result allows to
define and study winding numbers in a straightforward way and to deduce corre-
sponding topological features of quasiperiodic systems such as the gap labelling
theorem.
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סימון לתורת ישיר באופן קשורים אלו מספרים המפורסמים. winding numbers להיות
של המרווחים של הגובה בין הקשר את מתארת אשר (Gap labeling theory) המרווחים
מראים אנו טופולגיים. מספרים אותם לבין substitution ידי על הנתון א־מחזורי פוטנציאל
הדו המבנה מתוך substitution כל עבור מאוד טוב בקירוב אלו מספרים להסיק ניתן כי
תוצאות של הכללה בקלות יאפשר אשר ניסויי כלי יצירת מאפשרים ובכך הסופי מימדי

בלבד. פיבונאצי סדרת עבור מתייחסות אשר קודמות
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לגזור יכולים איננו ואנו מכיוון פרקטלית. גיאומטריה המאכלסת נוזלית העל הצפיפות של
ובוחרים עקיפה בשיטה משתמשים אנו כנ"ל מערכת עבור הרנורמליזציה משוואת את במדויק
הצפיפות שפה. תנאי של לשינוי המערכת של הרגישות דרך נוזלית העל הצפיפות את להגדיר
עבור מחזורית. לוג התנהגות ידי על מאופיינת היא גם כי מוצאים ואנו מחושבת נוזלית העל
אלא הפרקטלי המימד אינו זהו כי מראים ואנו חושב הקריטי המימד שצוינו הדוגמאות שתי
מהווה זאת תוצאה המערכת. של הקריטית בהתנהגות ששולט הספקטרלי המימד דוקא
שני מסדר פאזה מעבר מונע אשר Mermin-Wagner-Colman של הידוע למשפט הכללה

נמוכים. במימדים
ע"י המאופיינות מערכות של שונה ב"פאזה" מתרכזים אנחנו העבודה של השני בחלק
אפשר אשר מהמידע ובעיקר אפימוב מאפקט הנובעות השונות בתוצאות ומתעניינים אדש"ס
הנה אלו מערכות .1/r2 של פוטניציאל עם שרדינגר משוואות של מההתנהגות להפיק
ע"י מאפויינות הן הצימוד קבוע של מסויימים פרמטרים עבור כי וידוע סקאלה חסרות
אותה ידי על תמיד מאופיינים אשר מפרקטלים בשונה זאת לוג־מחזורית והתנהגות אדש"ס
תמיד מופיינות אינן substitutions ע"י המתוארות מערכות לפרקטלים בניגוד התנהגות.
המתאר ככלי לשמש יכולות ולכן מרוכבים קריטיים אקספוננטים של אינסופי סט אותו ע"י
לאחר . substitutions של הבסיסי המבנה את מגדירת ראשית אנו זה בחלק אפימוב. את
אנו מכן לאחר טבעיים. מספרים שאינם למספרים פשוטה בצורה אותו מכלילים אנו מכן
באמצעות אותה לתאר ניתן כי ומראים 1/r2 של פוטנציאל עם שרדינגר משוואת את חוקרים
כתלות כי מראים אנו הגל. פונקציית של הבולטים המאפיינים על שומרת אשר substitution
התנהגות לבין רגילה סקאלה סימטריית בעלת התנהגות בין פאזה מעבר קיים הצימוד בקבוע
Kosterlitz- למעבר זהה בצורה מתנהג זה פאזה מעבר דיסקרטית. סקאלה סימטריית בעלת

המפורסם. Toules
בנושא להתעננין עוברים אנו בו החלק במהשך מודגשת אפימוב אפקט של החשיבות
אנו איינשטיין. של הכבידה תורת של הקריטית ההתנהגות לחלוטין: קשור בלתי הנראה אחר
אספוננטים בעלת קריטית נקודה של קיומה כי ומראים בתחום שנעשו עבודות אחרי עוקבים
ידי על נעשה זה התורה. של כללי מאפיין ואינה מטריקה תלויית הנה מרוכבים קריטיים
אנו מכאן ממשית. יוצאת אשר הקריטית ההתנהגות ומציאת שוורצשילד מריקת של בחירה
גורמת בתורה אשר ספרות של מטריקה מבחירת נובעת הקריטית ההתנהגות כי מסיקים
הנה הקריטית הנקודה של קיומה כי מראים אנו כן כמו אפימוב. לאפקט הדומה להתנגות
את ממירים אנו מקודם, רקע.כמו מטריקת תלוית אינה וכנראה התיאוריה של כללית תופעה
שקולות הן כי ומראים דיסקרטיות משוואת לסט הרנורמליזציה חבורת של הזרימה משוואות

.substitutionsל־
בעלות מערכות של רב למספר שקולות אשר מערכות סט הנן substitutions כי העובדה
אותן של השונות התכונות ללימוד מוקדש העבודה של האחרון החלק חשוב. הנו עצמי דימיון
בקלות ניתנות אשר סופיות במערכות להתמקד בוחרים אנו הקנונית לספרות ניגוד מערכות.
אנו substitutions של קטן במספר המתמקדות קודמות לעבודות בניגוד בניסויים. לשחזור
ובמיוחד שלהן מחזורי הקוואזי מהאופי הנובעים מאפיינים מספר מלא באופן לחקור בוחרים
מגדרים אנו ומובחנים סופיים גדלים עבור עצמו. מהמבנה הנובעים טופולוגיים אפקטים
מספר קיימים זה למבנה הממשי. במרחב טורוס מגדיר אשר מיוחדת בצורה מימדי דו מבנה
ע"י המקורי מהמבנה נוצרים אשר טופולגית שקולים אבל גיאומטרית שונים מבנים של רב
הציקלית. המנה לחבורת שקולה החלפה עצמו. המבנה בגודל תלויה אשר השורות של החלפה
המוגדרת אופיינית פונקציה באמצעות לבנייה שקולה השורות החלפת פיבונאצ'י סדרת עבור
דרכו אשר כיול שדה ומגדירה ההחלפה לחוק קשורה זאת פאזה אופיינית. phi פאזה ידי על

טופולוגי. מאפיין הנו אשר winding number להגדיר ניתן
שדה קיים כי מוצאים אנו נשמרת. המבנים בין השקילות פורייה למרחב עוברים כאשר
מתבררים winding numbersה־ פורייה. במרחב הנ"ל השקילות את משמר אשר נוסף כיול
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מורחב תקציר
מגוון מבין בסקאלה. לשינויים רציפה אינוורינטיות ידי על מאופיינות בטבע רבות תופעות
פאזה מעבר העוברת מערכת של הקריטית ההתנהגות הנה ביותר המפורסמת אולי הדוגמאות
אינוורטיות כלליות, תופעות בסט שמדובר למרות שלה. הקריטית הנקודה ליד שני מסדר
ידי על המאופיינות תופעות של יותר רחב מגוון של תופעה תת הנה בסקאלה לשינויים
מערכות בסקאלה, רציף לשינוי בניגוד (אדש"ס). בסקאלה לשינויים דיסקרטית אינוורטיות
על אלא ממשיים קריטיים אקספוננטים של סט ידי על לא מאופיינות אדש"ס ע"י המאופיינות
מערכות של הקריטית ההתנהגות מכך כתוצאה מרוכבים. אקספוננטיים של אינסופי סט ידי

מערכת. תלוית להיות והופכת משתנה אלו
הדוגמאות מן כחלק נושאים: של רחב במגוון מופיעות אד"שס ע"י מאופינות אשר מערכות
סדרות ,substitutions ע"י המתוארות מחזוריות קוואזי מערכות מפרקטלים, למנות ניתן
שונות, פיסיקאליות ממערכות הנעים שונים מחקר תחומי של רחב ובמגוון וכו.. אוטומטיות
של ביותר רב במספר מופיעה אד"שס כי העובדה עצם המניות. ושוק גיאולוגיה,ביולוגיה,
התכונות ושל אלו מערכות של ההתנהגות את להבין הצורך על מלמדת שונות תופעות

שלהן. הכלליות
למערכות בנוגע שלנו ההבנה לימנו עד אלו, למערכות שקיימת הרבה החשיבות למרות
ההתנהגות את לראות ניתן כדוגמא בחסר. לוקה אד"שס ידי על מאופיינות אשר פיסיקאליות
גיאומטריה ומאכלסת שני מסדר פאזה מעבר לעבור אמורה אשר פיסיקאלית מערכת של
אשר האוסדורף) כמימד גם (הידוע הפרקטלי המימד לא שזהו שהעובדה למרות פרקטלית.
המלאה הקריטית ההתנהגות הספקטרלי, המימד דווקא אלא הפאזה מעבר התכנות את קובע
הדמיון תכונות כי העובדה עקב זאת במלואה. מובנת אינה עדיין הקריטית הנקודה ליד
מידע של לאובדן מביאה זאת עובדה בחשבון. נלקחו לא הפרקטל של המלאות העצמי

הפרקטלית. הגיאומטריה לנוכחות ברור אינדיקטור מהווה יכול אשר חשוב פיסיקאלי
המפגינות בטבען, פרקטליות אינן אשר מערכות, של רב מספר קיימות כי העובדה בנוסף
לאפקט כדוגמא שונים אפקטים של מוטעה לפירוש לגרום עלול מרוכבת קריטית התנהגות
חלקיקים שלושה בין האינטרקציה את מתאר אשר אפימוב אפקט את להזכיר ניתן כנ"ל
מערכת של אנרגיה ספקטרום של תכונות מקיים הנ"ל מקרה האנרגיה ספקטרום קוונטיים.
גיאומטריה לבין האפקט בין אין כי העובדה למרות וזאת פרקטלי מבנה מאכלסת אשר

פרקטלית.
אדש"ס. ע"י המאופיינות מערכות של המיוחד האופי את להבהיר הנה זאת עבודה מטרת
את ומנתחים סימטריה אותה ידי על המאופיינות שונות מערכות מספר חוקרים אנו כך לשם
קיימת העצמי הדמיון בעל למבנה כי מראים אנו באדש"ס. כתלות הפיסיקאלית ההתנהגות

מערכות. אותן של ההתנהגות בקביעת רבה חשיבות
הפרקטלי. במבנה כתלות הקריטית ההתנהגות את מנתחים אנו העבודה של הראשון בחלק
המאכלס אינטרקציה ללא בוזונים גז : פשוטה במערכת להתמקד בוחרים אנו כך לשם
התנהגות ע"י מאופיינת היא כי ומראים החלוקה פונקציית את גוזרים אנו מתמטי. פרקטל
בטכניקה משתמשים אנחנו שלנו. התוצאות שאר נגזרות זאת מהתנהגות לוג־מחזורית.
במישור קריטית טמפרטורה קיימת כי להראות מנת על הרנורמליזציה חבורה של פשוטה
של הבסיסיות מהסימטריות הנובע יחודע אפקט זהו כי מראים אנו המרוכב. הטמפרטורות

הפרקטל.
כל כי ומראים הנ"ל המערכת של של הקריטית ההתנהגות את גוזרים אנו בנוסף
מרוכבים קריטיים אקספוננטיים אינסוף של סט ידי על מאופיינות התרמודינמיות הפונקציות
אשר מרוכבים קריטיים אקספוננטים אינסוף של הקיום .scaling lows את שוברים אשר
Harris בקריטריון שימוש ע"י מוסבר המערכת של הפרקטלי המבנה של בלעדית תוצאה הנו
ההתנהגות את גוזרים או בנוסף טהורה. מערכת על סדר אי של הרלוונטית את מתאר אשר
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לפיסיקה בפקולטה אקרמן אריק פרופ' של הנחייתו תחת נעשה המחקר

הזמן הקדשת על המסורה, ההנחיה על אקרמן לפרופ' לב ומקרב בחום להודות ברצוני
בעלות מערכות של המרתק התחום את בפני שהציג ועל ההתלהבות על המסירות על הרבה,

דיסקרטית, סקאלה סימטרית

דון, גורן,ירוסלב טל שפילברג, אוהד לוי, אלי לקבוצה: לחברי להודות רוצה אני בנוסף
הטובים. והרעיונות המרתקות השיחות על עובדת ועומרי

השתלמותי. במהלך בי הכספית התמיכה על לטכניון מודה אני
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המנוח־ סבי של לזכרו מוקדשת העבודה
ז"ל גיטלמן אלי

95

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



96

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



ידי על המאופיינות מערכות על פיסיקה
דיסקרטית־ סקאלה סימטריית

גבישים וקוואזי לפרקטלים יישומים

מחקר על חיבור

התואר קבלת לשם הדרישות של חלקי מילוי לשם
לפילוסופיה דוקטור

גיטלמן דור

לישראל טכנולוגי הטכניון־מכון לסנט הוגש

2016 נובמבר חיפה תשע"ז חשון
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