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Abstract

We propose a mapping between renormalization group flows and sub-
stitution processes for underlying tilings. A substitution process is a way
to iteratively construct complicated structures like lattices and fractals.
In our work, we use two-letter substitution processes to describe renormal-
ization group flows with 2x2 matrices. We use this mapping to describe a
fractal spacetime manifold, which emerges as part of a quantum gravity
theory, by a simpler structure - a tiling. The theory we consider in this
work is Quantum Einstein Gravity, an effective quantum gravity theory.
It has a complicated renormalization group flow, one that is not easily
accessible to analytical solution.

In order to obtain the mapping, we begin with a simpler example of
a different theory from a remote field in physics: Efimov physics. This
theory describes the fractal bound states of scale-free systems, the original
being the Efimov effect, a system of 3 spinless quantum particles. In a
setup where each pair of these 3 bodies interact via short range, attractive
interaction, and their interaction range vanishes simultaneously with the
scattering length going to infinity, the system has 3-body bound states
which form a geometric series, with universal scaling. This result is sur-
prising, as only 3-body bound states exist whereas 2-body bound states
do not exist, for the system. The series of bound states form a self-similar
fractal.

Efimov physics and Quantum Einstein Gravity share an important
feature. When examining their renormalization group flows, their fractal
features correspond to a limit cycle solution appearing in their flow. Such
limit cycle solutions are periodic and they have a discrete scale invariance,
resulting in self-similar physical quantities. However, Efimov physics has a
very simple renormalization group flow, a single quadratic equation, which
makes the distinction between its bound states very clear by inspecting its
flow. We use the simplicity of the Efimov physics flow in order to construct
a mapping between a quadratic renormalization group flow into a tiling,
such that the fixed points of the flow map to a periodic tiling, while limit
cycles and aperiodic orbits in the flow map to fractal and aperiodic tilings,
respectively. We find that these results also hold for Quantum Einstein
Gravity and that the phase transition between the different tiling forms is
analogous for both theories, hence relating Efimov physics and Quantum
Einstein Gravity into the same universality class.
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Nomenclature

• β Renormalization group equation

• λ Scaling factor

• D Hausdorff dimension

• L Length or radius

• m Mass

• mS Mass of Sierpinski triangle

• N Natural numbers

• Ai Alphabet

• σ Substitution operator

• k Substitution step or momentum scale

• ni Number of type i letters in substitution rule

• M Occurrence matrix

• li0 Length of type i tile

• lin Total length of type i letters at substitution step n

• ρi Density of type i letters

• a Average lattice

• mi (n) Number of type i letters at substitution step n

• λi Occurrence matrix eigenvalues

• x (n) Tiling length at substitution step n

• u (n) Fluctuation of tiling length from average lattice

• Vi Potential strength of type i

• Wi (n) Work of particle on i sub-tile at substitution step n

• ~ Reduced Planck constant

• E Energy

• ∇2 Laplace operator

• l Angular momentum quantum number

• d Dimension

• ζ Interaction strength
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• ψ Wave-function

• µ reduced mass

• ξ Dimensionless interaction strength

• χ Radial wavefunction

• θ Polar angle

• φ Azimuthal angle

• ξc Critical dimensionless interaction strength

• g Boundary condition coupling constant

• L0 Boundary condition radius

• ϕ Phase

• g± Fixed points of renormalization group flow of g

• gk Discrete boundary condition coupling constant or dimensionless gravi-
tational constant

• g∗ Fixed point of boundary condition coupling constant g or dimensionless
gravitational constant gk

• Z Integers

• C Complex numbers

• Tr Trace over all indices with spacetime integration

• Lυ Lie derivative w.r.t vector field υ

• gµν Background metric

• hµν Dynamical metric

• γµν Full metric

• gµν Full metric expectation value

• C Ghost field

• D2 Covariant Laplace operator

• Rk Scale dependent cutoff

• Sk Scale dependent action

• Wk Scale dependent generating functional

• Γk Average effective action

• Γ(2)
k Scale dependent exact propagator

• Γquad
k Quadratic part of average effective action
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• R Ricci curvature

• G(n) Correlation function of n fields

• T Limit cycle period

• ZNk Graviton field strength renormalization

• G Newton’s constant

• Gk Scale dependent Newton’s constant

• Λk Scale dependent cosmological constant

• η Anomalous graviton dimension

• Λk Dimensionless scale dependent cosmological constant

• ui (k) Coupling constant i at scale k

• Λ∗ Cosmological constant fixed point
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1 Introduction

The structure of our spacetime near and below the Planck scale remains a
fascinating and elusive open question in physics to this day. The issue of non-
renormalizability of gravity has plagued efforts of formulating a quantum gravity
theory for as long as quantum field theory and general relativity exist. Reuter’s
Quantum Einstein Gravity (QEG), a candidate quantum gravity theory, over-
came this barrier by using exact functional renormalization group (RG) [1] to
extract a scale-dependent metric. Reuter et al discovered that QEG predicts the
emergence of a remarkable fractal spacetime structure, with a scale dependent
dimension that approaches 2 near the Planck scale [2]. This conclusion agreed
with earlier numerical results of Ambjørn and Loll’s theory of causal-dynamical-
triangulation (CDT) [3], as well as other quantum gravity theories [4, 5]. Both
QEG and CDT attribute fractal properties of the metric to the scale dependent
universe they describe. On the other hand, it has been speculated by Litim et
al that the dimensional reduction in QEG is related to limit cycles in its RG
flow [6]. As their name suggests, limit cycles are cyclic solutions with a discrete
period, that occur when the fixed points of the flow become complex. They are
found in a variety of self-similar phenomena, e.g. in quantum theories [7–9] and
in biology [10, 11], since their discrete scaling symmetry translates to fractal
observables. In this work we highlight the relation of the fractal spacetime of
QEG to its limit cycles by geometrically representing its RG flow. We find that
under a specific mapping [12] limit cycles present as fractal tilings.

In order to achieve this purpose we begin with a discussion of a different
fractal phenomenon that is also related to limit cycles and known as “Efimov
physics”. It is a well studied and thoroughly understood field, the use of which
proves useful to us as we formulate a simple probe of the RG flows exhibiting
limit cycles.

One of the most remarkable appearances of discrete scale invariance (DSI)
in quantum mechanics was the Efimov effect [13], discovered by and named
after Efimov in 1970. Efimov discovered that when three spinless particles had
vanishing interaction range and infinite scattering length, a set of shallow, fractal
three-body bound states with a universal discrete scaling factor emerges. The
effective description is essentially that of a quantum, massive, neutral particle
in an attractive 1/r2 potential. Since its discovery Efimov physics proved to be
ubiquitous, e.g. the case of a Dirac charged, massless fermions in a Coulomb
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potential or in line depinning theory [14, 15]. Physical manifestations of the
effect are versatile, including e.g. Feshbach resonance and ultra-cold atoms [16–
19]. The RG perspective of these effective theories has been studied extensively
in e.g. [9, 20, 21]. It has been shown that the Efimov spectrum is recovered
when their flows exhibit limit cycles [8, 22, 23]. In the following, we map Efimov
physics to a tiling and then use the insight gained from studying the mapping on
its simple, analytic RG flow as a guide for the more complicated QEG case. To
better understand the relation of the limit cycles in QEG to its fractal spacetime,
we first establish the relation of the Efimov limit cycles and fractal energy levels.
To that purpose, we analyze a mapping of the RG flow of Efimov physics to
tilings generated by a dynamical substitution process.

Substitution processes had been proven to be great at capturing the prop-
erties of aperiodic and DSI physical structures, e.g. quasi-periodic and fractal
lattices [24, 25]. The basic quantity representing their dynamics is the occur-
rence matrix, which sets the rules and determines the spatial evolution of a
tiling. We use the substitutions formalism to obtain from a RG flow an occur-
rence matrix, endowed with the parameters of the Efimov limit cycle. We then
test this mapping on QEG and in both cases find that the fractal properties of
limit cycles translate into aperiodic and fractal tilings.

6



2 From Efimov bound states to fractal tilings

2.1 Substitution processes

2.1.1 Fractals and self-similar functions

To understand fractals and self-similarity, a brief introduction to scale invariance
is required. We define a scale-invariant function,

f (ax) = b (a) f (x) . (2.1)

Two kinds of scaling symmetries arise from this definition. The first is continuous-
scale-invariance (CSI): If a function satisfies the scaling symmetry (2.1) ∀a and
corresponding b (a), this scaling relation expresses the continuous self-similarity
of the function f . In particular, we have

f (ax) = aDf (x) , (2.2)

where D is the Hausdorff dimension defined as

D = ln b
ln a. (2.3)

Since the scaling of f is independent of x, its solution is a homogeneous function,

f (x) = CxD. (2.4)

A simple example of continuous scale invariance is the scaling of the mass of
a string. If at length L the string has mass m, it is obvious that at length 2L
the mass of the string will become 2m. The function describing the relationship
between the mass of the string and its length satisfies

m (2L) = 2m (L) .

If we were to choose any scaling for the length of the string, the mass would
always be multiplied by that same amount. It follows that a string mass is CSI,
namely

m (λL) = λm (L) ,∀λ. (2.5)
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While the scaling (2.1) is true for CSI functions for any a, b (a), discrete-scale-
invariant (DSI) functions only satisfy this condition for a pair of fixed numbers
a, b. In physics, DSI functions most commonly describe self-similar fractals [26],
e.g. the Sierpinski triangle, whose scaling symmetry only holds for a = 2, b = 3.
These numbers describe how to obtain another Sierpinski triangle from the
original: halve the side of the original triangle n ∈ N times. If one assigns
“mass” to the lines within the Sierpinski triangle, the “mass” of the resulting
triangle would then be 1/3n of its original value, as shown in figure 2.1. It is
important to recognize that this property is unique to the set {2, 3} and is not
satisfied for any other pair of numbers, namely for the mass of the Sierpinski
triangle we have

mS
(
2N`side

)
= 3NmS (`side) ,∀N ∈ Z. (2.6)

Figure 2.1: The Sierpinski triangle is a self-similar fractal. When cutting the
side into quarters (N = −2), the mass reduces to 3N = 1/9 of its original value.

The discrete scaling relation fractals adhere to expresses that a self-similar
fractal contains infinitely many copies of itself, each accessed by correctly rescal-
ing the original object. The DSI properties associated with fractals are worth
presenting from two perspectives. One can verify that the solution to (2.1) for
a limited set a, b is a power law multiplied by a log-periodic function, namely

f (x) = xDG

(
log x
log a

)
, (2.7)

where G (y) = G (y + 1) and D is defined as in (2.3). Because the logarithm
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action turns multiplication into addition, discrete self-similarity of a structure
under stretching is the discrete translational symmetry of the logarithm of the
structure.

On the other hand, one can approach the scaling of a function through its
dimensionality. Generic objects such as lines and squares have the property that
their topological and Hausdorff dimensions are equal, e.g. stretching the side of
a 2d unit square to twice its length results in a square with area 22, indicative of
a Hausdorff dimension 2. In fractals however, the topological dimension exceeds
the Hausdorff one, e.g. the Sierpinski triangle has a one dimensional topology,
but a Hausdorff dimension ln 3/ ln 2 ≈ 1.585. It is clear that the self-similarity is
rooted in the dimensionality of the solution. In particular, DSI is associated with
complex scaling exponents: The function G of (2.7) is periodic and consequently
has a Fourier expansion,

G (y) =
∞∑

n=−∞
cne

i2πny, (2.8)

so f has one as well,

f (x) =
∞∑

n=−∞
cnx

D+i 2πn
ln a . (2.9)

In a sense, f is a superposition of complex dimensional functions, with dimen-
sions Dn = (ln b+ i2πn) / ln a. If f were CSI, G would have been constant and
there would be no complex exponents. We conclude that complex exponents
are a signature of DSI.

2.1.2 Traditional substitution processes

Aperiodic and self similar structures such as fractals are often generated using
iterative methods [26, 27]. A substitution process is also an iterative method,
where one repeatedly applies an action on an existing structure to produce
an infinite structure. Traditionally specified by an alphabet and a rule [28],
the substitution process replaces “letters” in a sequence (tiles) by “words” (the
rule), thereby inflating the original sequence. For the purposes of this work it
suffices to consider a simple two-letter alphabet,

{A,B} , (2.10)

and a general rule,
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σ (A) = An1Bn2 , (2.11a)

σ (B) = An3Bn4 , (2.11b)

which for now applies to positive integers n1,...,4, but will be generalized in
section 2.1.3 to real numbers. Operating with σ on an initial sequence that
is some combination of A,B, generates a longer sequence at each substitution
step,

AB → σ (AB) = σ (A)σ (B) = A · · ·A︸ ︷︷ ︸
n1

B · · ·B︸ ︷︷ ︸
n2

A · · ·A︸ ︷︷ ︸
n3

B · · ·B︸ ︷︷ ︸
n4

→ · · · .

𝐅 𝐆

𝐇60°

Figure 2.2: The substitution process that forms a Sierpinski triangle.

In physical applications, these letters represent e.g. atoms and molecules.
Their density or order within the sequence corresponds to the sort of physical
structure we would observe, be it a periodic lattice or an aperiodic one, e.g. the
fractal Sierpinski triangle, formed by the substitution

σ (F ) = FGFHF,

σ (G) = GG,

σ (H) = HH,

as shown in figure 2.2.
We associate with the letters tiles of type A,B, with respective lengths

lA0 , l
B
0 . Denoting by lin the accumulated length of tiles of type i in the sequence

at substitution step n, rules (2.11) can be translated to an occurrence matrix

10



M , acting on a vector of lengths ln. This occurrence matrix is chosen to be

M =

 n1 n2

n3 n4

 , (2.12)

specifying how the lengths of the A,B sub-tiles (words) evolve with each sub-
stitution step,

M

 lAn

lBn

 =

 n1l
A
n + n2l

B
n

n3l
B
n + n4l

A
n

 =

 lAn+1

lBn+1

 . (2.13)

M is insensitive to the order of letters in the rule. If we were to choose the rule
σ (A) = ABA instead of σ (A) = AAB, the resulting occurrence matrices are
identical. It is beyond the scope of this work to discuss the implications of this
feature.

The spectrum of M indicates how the lengths of sub-tiles A,B scale within
finite segments of the infinite sequence. The eigenvector related to the leading
(largest in absolute value) eigenvalue of M is

M

 ρA

ρB

 = λ1

 ρA

ρB

 , (2.14)

where the eigenvectors are normalized to represent densities by demanding

ρA + ρB = 1. (2.15)

ρA,B are the asymptotic densities of tiles A,B within the infinite sequence M
generates. They can be use to define a “lattice vector” for the infinite tile,

a ≡ lA0 ρA + lB0 ρB . (2.16)

For n� 1,

Mnl0 = |λ1|n
 ρA

ρB

+O (|λ2|n) , (2.17)

where |λ1| ≥ |λ2| are the eigenvalues of M . We also define the length of the
sub-sequence with a total of k tiles,

x (k) = lA0 mA (k) + lB0 mB (k) , (2.18)
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where mi (k) are the numbers of i = {A,B} type tiles within this k-long sub-
sequence. Taking the limit of infinite n (infinite k) of x (k), it follows that

lim
k(n)→∞

x (k)
k

= a. (2.19)

This asymptotic relation allows us to define u (k), the fluctuation of x (k) from
a lattice with a unit cell of length a, namely

x (k) = ak + u (k) . (2.20)

Recall k = k (n). From (2.18) it follows that x is the L1 norm of the length of
the tiling, namely

|Mnl0|1 = x (k) . (2.21)

Combining equations (2.21) and (2.20), it follows that the asymptotic scaling of
k, u (k) are

k ∼ |λ1|n , (2.22)

u (k) ∼ |λ2|n . (2.23)

When scaling u (k) → u (λk) and substituting n = ln k/ lnλ1 +O (lnλ2/ lnλ1)
into equation (2.23), one obtains

u (λk) ∼ λ
ln k+lnλ

lnλ1
2 = λ

lnλ
lnλ1
2 u (k) . (2.24)

The specific choice λ = λD1 , where D is the Hausdorff dimension defined in
equation (2.3), we have

u
(
λD1 k

)
∼ λD2 u (k) . (2.25)

We recover the scaling of equation (2.1) and thus reveal the asymptotic DSI of
u (k), as equation (2.25) is only satisfied for the set {λ1, λ2}. The most general
form of u (k) in an infinite tiling is then [29]

u (k) ∼ kDF
(

ln k
lnλ1

)
, (2.26)
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where F is a log-periodic function, namely F (x+ 1) = F (x). Asymptotically,
M generates either exactly periodic, quasi-periodic or fractal tilings, depending
on the scaling of u (k).

2.1.3 Generalized tilings

Generalizing to a non-integer, non-positive substitution process [12], one defines
the rule

σ (A) = Aa1Bb1 , (2.27a)

σ (B) = Aa2Bb2 , (2.27b)

where now, in contrast with (2.11), ai, bi are real numbers. Instead of a set
of tiles, the concept of “filling” a background unit cell structure with constant
potentials VA, VB is chosen. The Integer part of ai, bi determines how many unit
cells will be completely filled with VA, VB , respectively. The non integer part
determines what fraction of the Int (ai) + 1 cell is filled with either potential.
Similarly, we replace the lengths of sub-tiles lin with another measure – the
work a particle with some “charge” exerts while moving through the potential
signature of the sequence. In a two-letter substitution with k letters, the work
done by a such a particle is

Wj (k) = q

∫ k

0
Vj (x) dx, j ∈ {A,B} . (2.28)

The potentials are constant, so the total work is

Wj (k) = qVj lj (k) . (2.29)

(2.29) provides meaning to negative powers that were made possible in (2.27);
One fills the cell with the negative of the potential in question and negative
contributions to the work cancels positive ones. In the generalized case, however,
M is not guaranteed to be diagonalizable. For a given M that is, the results of
section 2.1.2 still hold.
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2.2 Fractal properties of Efimov physics

Although substitutions are intuitively relevant to geometrical structures, there
is much to be gained by relating them to other physical quantities. In what
follows, we present a mapping of the Efimov RG flow to substitutions, and
extract visual representations of energy levels as fractal, periodic and aperiodic
tilings.

The original derivation of the Efimov effect [30] involved the low energy
states of three identical, spinless particles, whose pair-wise interactions’ range
r0 vanishes and scattering length in the s-channel a0 is infinite. The three-body
problem is reduced to an effective two-body problem with an inverse-square
potential. The magnitude of the potential is independent of the precise details
of the interactions. With the lack of a characteristic scale in the problem,
and despite being unable to form pair-wise bound states, a universal geometric
spectrum of three-body bound states arises. The effective interaction Efimov
found is [17]

Veff (R) = −|s0|2 + 1/4
R2 , (2.30)

where |s0| ' 1.006 is universal. The Efimov spectrum then obeys the scaling
relation En = e−2πn/|s0|E0.

The famous fractal spectrum is recovered as a limit of the 1/r2 potential
Schrödinger equation. This equation is scale free by virtue of the shared inverse-
square scaling of the kinetic and potential terms. A quantum ground state can
only be obtained by implementing a cutoff that breaks the CSI of the equation,
resulting in this continuous symmetry being broken into a discrete self-similar
spectrum of bound states that converges to zero,

En = E0e
− 2π√

ξ−ξc
n
,

for any n ∈ N. These bound states are only obtained for dimensionless ampli-
tudes ξ of the inverse-square interaction that are strictly greater than ξc =
(2− d)2

/4. In three dimensions ξc = 1/4, and it follows that when ξ =
|s0|2 +1/4, the 1/r2 Schrödinger equation precisely replicates the fractal Efimov
spectrum.

A direct consequence of the effective approach is a RG flow with phases of
either fixed points or limit cycle solutions, depending on the critical value ξc.
While the fixed points stand for other, CSI solutions to the Schrödinger equa-
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tion, the limit cycles correspond to the fractal Efimov bound states, motivating
us to explore these periodic solutions using substitution tilings.

2.2.1 Schrödinger equation approach

Before taking the limits appropriate for Efimov bound states, we begin with the
inverse-square potential Schrödinger equation (~ = 1),

−
(

1
2µ∇

2 + ζ

r2

)
ψ (r) = Eψ (r) . (2.31)

This Hamiltonian is highly singular at r = 0 and consequently not self-adjoint
and unphysical. The equation is scale free: (2.31) is invariant under the trans-
formation r → λr, E → λ−2E for any λ. In fact, the only parameter 2µζ is
dimensionless, resulting in (2.31) being CSI. It follows that a consequence of a
single bound state {En, ψnlm (r, En)} is an unbounded from below continuum
of bound states

{
λEn, ψnlm

(
λr,Enλ

−2)}, and a “ground state” at negative-
infinite energy. This is caused by the strongly singular interaction. To be able to
obtain the Efimov bound states, the Hamiltonian would require regularization.
In spherical coordinates, one recognizes the radial and angular contributions to
the Laplacian,

∇2 = 1
r2 ∂r

(
r2∂r

)
+ 1
r2

(
1

sin θ∂θ (sin θ∂θ) + 1
sin2 θ

∂2
φ

)
, (2.32)

which begs the introduction of an appropriate separation of variables,

ψnlm (r) = 1
r
χnl (r)Y ml (θ, φ) . (2.33)

Inserting (2.32) and (2.33) into (2.31) and rearranging, we find the separated
equation

r2χ
′′
nl (r)
χnl (r)

+ 2µr2
(
E − ζ

r2

)
= L̂2Y ml (θ, φ)

Y ml (θ, φ) . (2.34)

The r.h.s is a simple eigenvalue equation for the angular momentum operator,

L̂2Y ml (θ, φ) = l (l + 1)Y ml (θ, φ) . (2.35)

Combining equations (2.34) and (2.35), one obtains the radial equation

χ′′nl (r) +
(
−2µ ζ

r2 + l (l + 1)
r2

)
χnl (r) = 2µEχnl (r) . (2.36)
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Generalizing to d-dimensions, the hyperradial Schrödinger equation is

χ′′nl (r) + d− 1
r

χ′nl (r) +
(
ξ

r2 − k
2
)
χnl (r) = 0, (2.37)

with ξ = 2µζ − l (l + d− 2) , k2 = −2µE.
To force self-adjointness on the Hamiltonian we introduce a short distance

cutoff. At r = L0 we impose some short-range interaction, whose explicit form
is irrelevant and with the general boundary condition [9, 21]

g (L0) ≡ L0χ
′
nl (L0)

χnl (L0) . (2.38)

This boundary condition immediately breaks the CSI, forcing a characteristic
length scale L0. The Hamiltonian becomes self-adjoint and equation (2.37) now
has well defined solutions. To recover the s-wave bound states of Efimov, we
consider the radial wave-function with E < 0 and l = 0,

χ (r) = r−
√
ξc
(
a1J√ξc−ξ (−ikr) + a2Y√ξc−ξ (−ikr)

)
, (2.39)

where Jn (x) , Yn (x) are Bessel functions of the first and second kind, and

ξc = (d− 2)2

4 . (2.40)

We expect to recover Efimov bound states in the low energy limit kL0 � 1.
The radial solution to leading order in kr is [31, 32]

χ (r) ≈ a1k
√
ξc−ξr−

√
ξc+
√
ξc−ξ + a2k

−
√
ξc−ξr−

√
ξc−
√
ξc−ξ. (2.41)

For ξ ≤ ξc, inserting (2.41) into (2.38) gives

g (L0) = −
√
ξc −

√
ξc − ξ, (2.42)

and the corresponding energy levels when E ' 0 are

E = −F (g, ξ)
2µL2

0
,

and are CSI. For ξ > ξc however, outside the boundary at r = L0 we have

(kL0)2i
√
ξ−ξc = eiϕ, (2.43)
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where ϕ is some phase whose explicit form is irrelevant. Solving for the energy
levels, we obtain the Efimov geometric series of bound states,

kn = k0e
π√
ξ−ξc

n
, n ∈ Z, (2.44)

with k0 = eϕ/2
√
ξ−ξc/L0. The bound states in this limit have the same form of

the DSI spectrum of Efimov physics when the branch n ≤ 0 is chosen.

2.2.2 Renormalization group approach

In the previous subsection, our derivation resulted in a phase transition of the
short range coupling g from a constant function to an oscillatory one as ξ in-
creases above ξc. One expects such a transition to be present in an RG flow
that describes this system. Our goal is to obtain this RG flow and investigate
the critical behavior of g as a function of ξ.

For a ξ/r2 potential, ξ is dimensionless and using RG is not as useful ((2.37)
is scale free). To overcome this obstacle, we temporarily replace the inverse
square potential by ξ/rs and take s→ 2 when we are done.

Introducing a scale parameter L0 ≤ L <∞, dimensional analysis determines

ξ = ξ0L
s−2. (2.45)

The β function for ξ is obtained by taking the derivative of (2.45) with respect
to lnL,

βξ ≡ L
dξ

dL
= (s− 2) ξ. (2.46)

Combining (2.37) and (2.38) in the low energy limit, it follows that the beta
function for g is [21, 32]

βg ≡ L
dg

dL
= (2− d) g − g2 − L2−sξ. (2.47)

The RG equations for s = 2 are then

L
dξ

dL
= 0, (2.48a)

L
dg

dL
= (2− d) g − g2 − ξ. (2.48b)
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Taking βg = 0 gives the fixed points of (2.48b),

g± = −
√
ξc ±

√
ξc − ξ, (2.49)

with ξc given in (2.40).
Let us first consider ξ < ξc. In this regime, the fixed points g± are real. As ξ

approaches ξc, the two fixed points merge into a single one, g∗ = −
√
ξc at ξ = ξc

[31]. For ξ > ξc the fixed points are complex. We solve for g by integrating
both sides of (2.48b). Then,

g (L) = −
√
ξc −

√
ξ − ξc tan

(√
ξ − ξc ln

(
L

L0

)
− C

)
, (2.50)

with C = tan−1 ((g0 −
√
ξc
)
/
√
ξ − ξc

)
. The solution in (2.50) is obviously

periodic, pointing of a limit cycle solution with period

g (L) = g
(
e

nπ√
ξ−ξc L

)
. (2.51)

(2.51) exhibits log-periodic self similarity,

g (lnL) = g

(
lnL+ nπ√

ξ − ξc

)
. (2.52)

As discussed in 2.1.1, we find that g is a fractal for ξ > ξc.

2.2.3 Mapping Efimov physics to a substitution process

Let us now demonstrate how the scaling of the coupling g in both ξ ≤ ξc, ξ > ξc

regimes manifests as substitution tilings.
We define the scaling parameter

lnL ≡ k, (2.53)

as well as the coupling,

g (lnL) ≡ gk ≡
lAk
lBk
, (2.54)

with lAk , lBk the lengths of sub-tilings of type A,B at step k of the substitution.
Mapping (2.48b) to a substitution tiling will require a discretized evolution
equation, because the substitution process is a discrete map. At the fixed points
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gk+1 = gk and g2
k = gk+1gk. Inserting (2.54) into a discretized (2.48b) yields

(2− d) gk − gk+1gk − ξ = 0. (2.55)

Combining (2.55) and (2.54), the flow can be expressed in terms of lA, lB ,

lAk+1
lBk+1

lAk = (2− d) lAk − ξlBk . (2.56)

We define the mapping [12]:

lAk
lBk
7→

 lAk

lBk

 , (2.57)

under which equation (2.56) becomes the ratio of a set recursion rules,

lAk+1 = (2− d) lAk − ξlBk , (2.58a)

lBk+1 = lAk . (2.58b)

Equations (2.58) are associated with an occurrence matrix

lk+1 = C

 2− d −ξ
1 0

 lk ≡M lk, (2.59)

and as demonstrated in section 2.1.3, it defines the two-letter alphabet substi-
tution process

A 7→ A(2−d)B−ξ, (2.60a)

B 7→ A. (2.60b)

The spectrum of M is then

spec (M) =
{
−
√
ξc +

√
ξc − ξ,−

√
ξc −

√
ξc − ξ

}
, (2.61)

consisting of the fixed points of equation (2.49).
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2.2.4 Fixed points

Any fixed point of g (lnL) satisfies gk = gk′ , namely

lAk
lBk

= lAk′

lBk′
∀k, k′.

It follows that an eigenvector ofM corresponds to a fixed point of g. For ξ < ξc,
the two fixed points in equation (2.49) coincide with the ratio of the normalized
eigenvectors l̃1,2 and one finds l̃Ai /l̃Bi = g± (i = 1, 2). Where ξ = ξc, (2.59) has
a single eigenvalue g∗ = −

√
ξc, with eigenvectors that satisfy lA∗i /lB∗i = −

√
ξc.

Figure 2.3: For d = 3, ξ = 0.05 (top) and ξ = 0.25 (bottom) the coupling g
converges to the fixed points g0.05 ≈ −0.95, g0.25 = −0.5 over N runs of the
substitution.

Figures 2.4-(2.5) display the 2-dimensional visualization of the two-letter
tilings corresponding to the rules (2.60) for d = 3. lA, lB are the lengths of
tiles of type A,B, respectively, throughout the sequence. The interpretation
of eigenvectors as fixed points is established by comparing the evolution of the
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sequences and the coupling g. In figure 2.4, the sequences begin with some initial
condition and soon assume completely periodic evolution, consistent with the
Efimov ξ ≤ ξc regime. g converges to the stable fixed point at ξ = 0.25, as seen
in figure 2.3, indicative of the link between the periodicity of a tiling and a fixed
point of the flow.

Figure 2.4: For d = 3, the mapped sequence of ξ = 0.05 (top) and ξ = 0.25
(bottom) evolves periodically, with N = 28, 30 substitution steps done to obtain
the tiles, respectively.

2.2.5 Limit Cycle solutions

For ξ > ξc, consider some initial condition decomposed into a linear combination
of the spanning eigenvectors of M ,

lk0 = Al̃1 +B l̃2. (2.62)

We apply the substitution (2.59) n times, which transforms (2.62) into

Mnlk0 = λn1Al̃1 + λn2B l̃2. (2.63)

For Mij ∈ R with complex eigenvalues λ1 = λ∗2, the amplitude can be taken
out,

Mnlk0 = |λ1|n
(
Al̃1einΘ +B l̃2e−inΘ) . (2.64)

One discovers that whenever n = −n + 2πm/Θ for m ∈ Z, the vector (2.63) is
recovered up to a stretch. A global multiplicative constant does not affect the
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ratio of the vector’s components, namely gk = gk0 if and only if

k = k0 + πm

Θ . (2.65)

Figure 2.5: For d = 3, ξ = 1, the tiling formed by the mapping is a fractal (top).
g follows a limit cycle with a discrete period (bottom)

For Mij ∈ C, the largest (in absolute value) eigenvalue dominates the evo-
lution of the sequence. For n� 1 and |λ1| > |λ2| without loss of generality, we
repeat the process of equation (2.64) and obtain

Mnlk0 = |λ1|n
(
Al̃1einΘ +

∣∣∣∣λ2

λ1

∣∣∣∣nB l̃2e−inΘ′
)
∼ A |λ1|n l̃1einΘ. (2.66)

The same argument of the complex conjugate eigenvalues applies for a suffi-
ciently large n. Any n′ = n+ 2πm/Θ for m ∈ Z recovers nearly the same tiling
with increasing accuracy, up to an exponentially suppressed correction,

Mn′ lk0 = |λ1|
2π
Θ m

Mnlk0 +O
(∣∣∣∣λ2

λ1

∣∣∣∣n+ 2π
Θ m
)
. (2.67)

The tiling equation (2.67) is quasi-periodic, its DSI recovered only in the limit
n→∞.
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The discrete-periodic orbits of sequences (2.64) and (2.67) are limit cycles of
gk. Where ξ > ξc, the complex eigenvalues of M in equation (2.61) correspond
to Θ = arctan

(√
(ξ − ξc) /ξc

)
. Close to the critical point, ξ − ξc � 1 and

Θ ≈
√

(ξ − ξc) /ξc. (2.68)

The scale invariance of g then follows from equation (2.65),

g (lnL) = g

(
lnL0 + πm

√
ξc√

ξ − ξc

)
. (2.69)

In 3 dimensions, the critical point is

ξc = 0.25, (2.70)

and when m = 4, 8, 16, . . . the factor
√
ξc is absorbed to form an integer, recov-

ering the scaling of the limit cycle from equation (2.52).
In figure 2.5, the limit cycle of g is obtained when ξ = 1 and manifests as a

self-similar tiling. When ξ = 2, g is self-similar with aperiodic scaling, and the
tiling associated with it is also an aperiodic tiling (see figure 2.6).

Figure 2.6: For d = 3, ξ = 2, the tiling formed by the mapping is aperiodic
(top). g is self similar with slight inconsistencies (bottom).
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2.2.6 Mapping quadratic RG flows to a substitution tiling

Having tested the mapping on the Efimov RG flow, we reformulate the results
of section 2.2.3 to suit a wider variety of flows. In particular, any system which
has a single β function for a single coupling u, of the form

∂tu = Au2 +Bu+ C, (2.71)

can undergo the Efimov mapping [12]. The occurrence matrix extracted from
equation (2.71) is

M =

 −BA −CA
1 0

 . (2.72)

If M is diagonalizable, its eigenvalues are

λ± = −B ±
√
B2 − 4AC
2A , (2.73)

with normalized eigenvectors

 v±1

v±2

 = 1
1 + λ±

 λ±

1

 , (2.74)

v1 + v2 = 1.

By the same argument of section 2.2.4, for real A,B,C and 4AC ≤ B2, the
eigenvalues are also real and λ± are the fixed points of the flow in equa-
tion (2.71). If A,B or C are complex, or if they are real and 4AC > B2,
limit cycles emerge due to complex fixed points of M . We also note that when
C = 0, the substitution process is degenerate; Either it generates a completely
periodic, one-letter sequence, or it annihilates the initial sequence entirely.
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3 Fractal spacetimes in Quantum Einstein grav-

ity

Although these two theories certainly seem unrelated, the investigation of Efi-
mov physics under the mapping was designed to grant insight on the flow of
Quantum Einstein Gravity. The following reveals that they exhibit similar
behaviors as substitution processes. Their limit cycle solutions, while quite
different, hint at some deeper connection.

QEG is unique among quantum gravity theories in its formulation. Its effec-
tive approach pushes the probing scale deeper into the UV without encountering
the usual infinities; Instead, there emerges an exotic, self-similar universe as one
approaches the Planck scale. At the center of the effective theory lies the aver-
age (scale dependent) effective action Γk. By using exact renormalization group,
one finds that this action evolves according to a Wetterich flow equation of the
form (A.15)

∂tΓk = 1
2Tr

(
∂tRk

Γ(2)
k +Rk

)
.

From this flow one is able to extract the flow of the gravitational and cosmologi-
cal couplings. Their flows exhibit limit cycles, which translate to DSI correlation
functions with a scaling relation

G(n) (eTx; gk,Λk, k
)

= G(n) (x, gk,Λk) .

Because the QEG spacetime has a limit cycle, we are able to probe this unusual
structure with our method. In the previous part of this work we defined a
mapping of quadratic RG flows, and while the RG flow of QEG turns out much
less simple to handle, we are able to extract a quadratic equation that relates
gk,Λk. As we did in Efimov Physics, mapping this equation to a substitution
process results in fractal tilings corresponding to the limit cycles.
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3.1 The formulation of QEG

In any quantum field theory (QFT), one seeks an appropriate gauge group.
In gravity, a theory must be invariant under diffeomorphisms, or coordinate
transformations of the metric. Unfortunately, if one wishes to find a QFT which
explains and predicts gravity, it cannot presuppose a metric, let alone one which
is well behaved and causal. How does one produce a covariant formulation of a
theory where the quantum field is a metric?

Quantum Einstein Gravity overcomes this fundamental issue by using the
background-field gauge [1]. The gravitational field is split into two metrics,

γµν (x) = gµν (x) + hµν (x) , (3.1)

where hµν is a dynamical, fluctuating field and gµν is a fixed, completely arbi-
trary background metric. Throughout the formulation, one can verify that no
observable quantity may ever depend on gµν . Diffeomorphism invariance means
the gravitational action is invariant under the coordinate transformation

δγµν = Lυγµν , (3.2)

where Lυ is the Lie derivative with respect to the vector field υ. The particular
background-field gauge

δhµν = Lυhµν , δgµν = Lυgµν , (3.3)

is chosen to guarantee a diffeomorphism invariant effective action. Combining
the background gauge and the Wetterich equation discussed in appendix A al-
lows QEG to overcome the traditional non-renormalizability of quantum gravity
and obtain a RG flow equation of the couplings.

3.1.1 Construction of the effective action for gravity

The standard form of the generating functional for connected correlation func-
tions, with the modification of scale dependence (see appendix A), is [1]
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Wk

[
tµν , σµ, σµ; gµν

]
= ln

{∫
DhDCDC exp [−S [g + h]− Sgf [h; g] (3.4)

−Sgh
[
h,C,C; g

]
−∆Sk

[
h,C,C; g

]
− Ssource

]}
,

where the various terms in the action are discussed below. The usual spacetime
integration is replaced by the diffeomorphism invariant measure∫

ddx
√
g,

with g ≡ det gµν . S is the classical action, invariant under the general coordinate
transformation

δγµν = Lυγµν ≡ υρ∂ργµν + ∂µυ
ργρν + ∂νυ

ργµρ, (3.5)

with a ghost action

Sgh
[
h,C,C; g

]
= −κ−1

∫
ddx
√
gCµM [g, g]µν C

ν , (3.6)

where κ =
(
32πG

)−1/2, G the bare Newton’s constant and g ≡ γ the expectation
value of the complete metric. M is obtained from the gauge fixing condition,
using the usual Fadeev-Popov procedure. The coordinate transformation

δCµ = LυCµ, δCµ = LυCµ, (3.7)

combined with the metric transformation (3.3) leaves the full action invariant.
The action is equipped with a source term

Ssource = −
∫
ddx
√
g
{
tµνhµν + σµC

µ + σµCµ
}

(3.8)

and a gauge fixing term,

Sgf [h; g] = 1
2α

∫
ddx
√
ggµνFµFν , (3.9)

with gauge fixing condition Fµ (g, h) = 0, specified later in section 3.2.1. The
IR cutoff action is defined both for the metric and the ghosts in a quadratic
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form,

∆Sk = κ2

2

∫
ddx
√
ghµν (Rgrav

k [g])µνρσ hρσ +
√

2
∫
ddx
√
gC

µ
Rgh
k [g]µν C

ν .

(3.10)

Rgh
k [g] , Rgrav

k [g] discriminate between high and low eigenmodes of −D2 =
−gµνDµDν . The use of the energy scale of an external background field, rather
than the full metric, is chosen in order to keep the suppressing action quadratic
in hµν . This is crucial to guarantee that the flow equation formulated in ap-
pendix A involves no higher than second-order derivatives of the effective action.

The clever choice of a background gauge guarantees that the generating
functional is invariant under any coordinate transformation,

Wk [tµν + Lυtµν , σµ + Lυσµ, σµ + Lυσµ; g + Lυg]

= Wk [tµν , σµ, σµ; g]. (3.11)

It contains only scalar (diffeomorphism invariant) quantities because indices
were contracted using the background field, which transforms under the gauge-
transformation (3.3) as well.

3.1.2 The average effective action - formulation and flow

To obtain the effective action Γ̃k, we begin by taking the derivative of Wk w.r.t
the sources,

hµν = 1√
g

δWk

δtµν
, ξµ = 1√

g

δWk

δσµ
, ξµ = 1√

g

δWk

δσµ
. (3.12)

The Legendre transform then reads

Γ̃k
[
h, ξ, ξ; g

]
=
∫
ddx
√
g
{
tµνhµν + σµξ

µ + σµξµ
}
−Wk [t, σ, σ; g] . (3.13)

The effective average action is then obtained as in (A.12) by

Γk
[
h, ξ, ξ; g

]
= Γ̃k

[
h, ξ, ξ; g

]
−∆Sk

[
h, ξ, ξ; g

]
. (3.14)
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Under (3.3) and (3.7), it is invariant on-shell (its arguments are on-shell quan-
tities),

Γk
[
h+ Lυh, ξ + Lυξ, ξ + Lυξ; g + Lυg

]
= Γk

[
h, ξ, ξ; g

]
. (3.15)

The functional RG equation is taken w.r.t all fields in the argument of Γk,
namely gravitons and ghosts. The Wetterich equation for QEG is then

∂tΓk = Tr
{

1
2

(
Γ(2)
k + R̂k

)−1

hh

(
∂tR̂k

)
hh
−
(

Γ(2)
k + R̂k

)−1

ξξ

(
∂tR̂k

)
ξξ

}
, (3.16)

with

Γ(2)ij
k (x, y) ≡ 1√

g (x) g (y)
δ2Γk

δϕi (x) δϕj (y) , ϕ ≡
{
hµν , ξ

µ, ξµ
}

and (
R̂µνρσk

)
hh
≡ κ2 (Rgrav

k [g])µνρσ ,
(
R̂k

)
ξξ
≡
√

2Rgh
k [g] .

In the case of gravity, the trace includes spacetime integration over the invariant
measure

∫
ddx
√
g.

3.1.3 Truncated flow equations

The flow equation is nearly impossible to solve without a truncation to a reason-
able subspace of the theory. The first simplifying assumption we make reduces
much of the effort, while still being very general: Neglecting the evolution of
the ghosts, with the ansatz

Γk
[
g, g, ξ, ξ

]
= Γk

[
h+ g, 0, 0

]
+ Sgh

[
0, ξ, ξ; g

]
+ Sgf

[
h; g
]
. (3.17)

The chosen ansatz ensures that mixed h − C terms in equation (3.16) vanish,
simplifying the derivative w.r.t the ghosts. One then obtains

∂tΓk = Tr
{

1
2

(
Γ(2)
k [g, g] +Rgrav

k [g]
)−1

(∂tRgrav
k [g])−

(
−κ−1M [g, g] +Rgh

k [g]
)−1 (

∂tR
gh
k [g]

)}
.

(3.18)
This simplification is not yet sufficient for us to be able to perform computations.
We needs to limit ourselves to a specific truncation. In order to extract the flow,
we work with the Einstein-Hilbert truncation.
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3.2 The Einstein-Hilbert truncation

3.2.1 The quadratic action

The simplest example of a truncation is the EH truncation,

Γk [g, g] = 2κ2ZNk

∫
ddx
√
g
(
−R+ 2Λk

)
(3.19)

+ κ2ZNk

∫
ddx
√
ggµνFαβµ gαβFρσν gρσ,

with the scale dependence of the action absorbed into the couplings [33],

Λ→ Λk, G→ Gk = GZ−1
Nk
.

ZNk is the field strength renormalization, and the gauge-fixing function is chosen
to be the De-Donder gauge [1],

Fαβµ hαβ =
√

2κ
(
Dγh

γ
µ −

1
2Dµh

)
.

We will eventually set g = g to cancel the gauge fixing term, because Dµ

involves the background Christoffel symbol Γ and thus Dµgαβ = 0 . We begin
by obtaining Γquad

k [1, 34, 35]. Combined with the gauge fixing term, one finds

Γquad
k

[
h; g
]

= ZNkκ
2
∫
ddx
√
ghµν

[
−Kµν

ρσ

(
D

2 + 2Λk
)

+ Uµνρσ

]
h
ρσ
, (3.20)

with
Kµν

ρσ = 1
4
[
δµρ δ

ν
σ + δµσδ

ν
ρ − gµνgρσ

]
, (3.21)

and

Uµνρσ =Kµν
ρσR+ 1

2

[
gµνRρσ + gρσR

µν
]

(3.22)

− 1
4

[
δµρR

ν

σ + δνρR
µ

σ + δµσR
ν

ρ + δνσR
µ

ρ

]
− 1

2

[
R
µ ν

ρ σ +R
µ ν

σ ρ

]
.

In the ghosts sector, the action is

Sgh
[
h,C,C; g

]
= −κ−1

∫
ddx
√
gCµM [g, g]µν C

ν , (3.23)
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where

M [g, g]µν =
√

2κ
(
gµρgσλDλ (gρνDσ + gσνDρ)− gρσgµλDλgσνDρ

)
. (3.24)

Implementing the ansatz (3.17),

κ−1M [g, g]µν =
√

2
(
δµνD

2 +
[
Dν , D

µ
])

=
√

2
(
δµνD

2 +R
µ

ν

)
. (3.25)

Having obtained the coefficient of the Laplacian in (3.20), we can now choose the
form of the cutoffs. In order to suppress IR modes of the background covariant
Laplacian, we choose

Rgrav
k

µν
ρσ

(
−D2) = ZNkK

µν
ρσRk

(
−D2

/k2
)
, (3.26a)

Rgh
k

(
−D2)µ

ν
= δµνRk

(
−D2

/k2
)
, (3.26b)

where Rk = k2R
(0)
k

(
−D2

/k2
)
is the cutoff type and the renormalization of the

ghosts had been neglected, i.e. Zgh = 1. R(0)
k

(
−D2

/k2
)
is chosen in appendix

C. The modified inverse graviton propagator is then

Γ(2)
k + Rk = ZNkK

(
P grav
k

(
−D2)− 2Λk + W

)
, (3.27)

where P grav
k = −D2 + Rgrav

k ,W = 2Uµνρσ −
(
d−4
d−2

)
gρσ

(
R
µν − 1

2Rg
µν
)
as de-

fined in appendix B. So long as W is linear in curvature, we can expand the
propagator in powers of curvature,

(
Γ(2)
k + Rk

)−1
=
(
ZNkK

(
P grav
k − 2Λk

))−1 1
1 + W

P grav
k
−2Λk

(3.28)

=
(
ZNkK

(
P grav
k − 2Λk

))−1
∞∑
n=0

(
− W
P grav
k − 2Λk

)n

=
(
ZNkK

(
P grav
k − 2Λk

))−1
(

1− W
P grav
k − 2Λk

+O
(
R2)) .
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Similarly for the ghosts,

(
−M [g, g] +Rgh

k [g]
)−1

=

δµν
P gh
k︷ ︸︸ ︷(

k2R
(0)
k

(
−D2

/k2
)
−D2)−Rµν


−1

(3.29)

≡
(
δµρP

gh
k

)−1
(
δρν + R

ρ

ν

P gh
k

+O
(
R2)) .

3.2.2 Trace expansion

We follow [34] and combine (3.28) with the heat-kernel expansion we discuss in
appendix B. The r.h.s of (3.18) becomes

RHS =1
2Tr

 (η + ∂t)Rk
(
−D2

/k2
)

P grav
k − 2Λk

(
1− W

P grav
k − 2Λk

)
-Tr

∂tRk
(
−D2

/k2
)

P gh
k

(
1 + R

ρ

ν

P gh
k

) +O
(
R2)

= 1
(4π)d/2

∫
ddx
√
g

{
1
2Q d

2

(
(η + ∂t)Rk
P grav
k − 2Λk

)
trST1−

1
2Q d

2

(
(η + ∂t)Rk(
P grav
k − 2Λk

)2
)
trW

(3.30)

+ 1
2Q d

2−1

(
(η + ∂t)Rk
P grav
k − 2Λk

)
R

6 trST1−Q d
2

(
∂tRk

P gh
k

)
trV1

−Q d
2−1

(
∂tRk

P gh
k

)(
R

6 trV1
)
−Q d

2

 ∂tRk(
P gh
k

)2

R+O
(
R2)

 ,

where η ≡ ∂tZNk/ZNk is the anomalous dimension associated with the invariant∫
ddx
√
gR. The subscripts (ST) , (V) imply the tracing is done over symmetric-

tensor and vector degrees of freedom, respectively. In the second equality we
used (B.2), only keeping first-order in curvature terms. We evaluate the traces,

trST1 = d (d+ 1)
2 , (3.31a)

trV1 = d, (3.31b)

trW = d (d− 1)
2 R. (3.31c)

32



With the insertion of equations (3.31), (3.30) becomes

RHS = 1
(4π)d/2

∫
ddx
√
g

{
d (d+ 1)

4 Q d
2

(
(η + ∂t)Rk
P grav
k − 2Λk

)
− dQ d

2

(
∂tRk

P gh
k

)

(3.32)

+R

[
d (d+ 1)

24 Q d
2−1

(
(η + ∂t)Rk
P grav
k − 2Λk

)
− d

6Q d
2−1

(
∂tRk

P gh
k

)

−d (d− 1)
4 Q d

2

(
(η + ∂t)Rk(
P grav
k − 2Λk

)2
)
−Q d

2

 ∂tRk(
P gh
k

)2




+O
(
R2)} .

On the l.h.s we take the derivative w.r.t t = ln k and set gµν = gµν ,

∂tΓk = 2κ2
∫
ddx
√
g
(
−R∂tZNk + 2∂t

(
ZNkΛk

))
. (3.33)

Combined with the r.h.s, one obtains the RG equation for ZNk ,

∂tZNk =− G

(4π)d/2−1

[
d (d+ 1)

6 Q d
2−1

(
(η + ∂t)Rk
P grav
k − 2Λk

)
− 2d

3 Q d
2−1

(
∂tRk

P gh
k

)

(3.34)

−d (d− 1)Q d
2

(
(η + ∂t)Rk(
P grav
k − 2Λk

)2
)
− 4Q d

2

 ∂tRk(
P gh
k

)2


 ,

and ZNkΛk,

∂t
(
ZNkΛk

)
=1

2
G

(4π)d/2−1

[
d (d+ 1)Q d

2

(
(η + ∂t)Rk
P grav
k − 2Λk

)
− 4dQ d

2

(
∂tRk

P gh
k

)]
.

(3.35)
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3.2.3 Flow equations

Using the Φ-functionals defined in appendix C, we insert (C.3) into equa-
tions (3.34) and (3.35) and arrive at the flow equations

η =− gk

(4π)d/2−1

[
η

(
d (d+ 1)

6 Φ̃1
d
2−1 (−2Λk)− d (d− 1) Φ̃2

d
2

(−2Λk)
)
(3.36a)

+d (d+ 1)
3 Φ1

d
2−1 (−2Λk)− 4d

3 Φ1
d
2−1 (0)− 2d (d− 1) Φ2

d
2

(−2Λk)− 8Φ2
d
2

(0)
]
,

∂tΛk =− (2 + η) Λk + 1
2

gk

(4π)d/2−1

[
d (d+ 1) ηΦ̃1

d
2

(−2Λk) + 2d (d+ 1) Φ1
d
2

(−2Λk)− 8dΦ1
d
2

(0)
]
,

(3.36b)

where the dimensionless couplings

Λk ≡ k−2Λk, (3.37)

and
gk ≡ kd−2Gk = Z−1

Nk
Gkd−2, (3.38)

have been used. From equations (3.36) we find that

η = − gkB1

1 + gkB2
, (3.39)

with

B1 (Λk) = (4π)1−d/2

3

(
d (d+ 1) Φ1

d
2−1 (−2Λk)− 4dΦ1

d
2−1 (0)− 6d (d− 1) Φ2

d
2

(−2Λk)− 24Φ2
d
2

(0)
)
,

(3.40a)

B2 (Λk) = (4π)1−d/2

6

(
d (d+ 1) Φ̃1

d
2−1 (−2Λk)− 6d (d− 1) Φ̃2

d
2

(−2Λk)
)
.

(3.40b)

The β function for gk is gotten by differentiating equation (3.38),

βg (g,Λ) = ∂tgk = (−η + d− 2) gk, (3.41)

and when replacing η by (3.39), the resulting β functions are
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βg (g,Λ) = g2
kB1 (Λk)

1 + gkB2 (Λk) + (d− 2) gk, (3.42)

and

βΛ (g,Λ) = − (2 + η) Λk+1
2

gk

(4π)d/2−1

[
d (d+ 1) ηΦ̃1

d
2

(−2Λk) + 2d (d+ 1) Φ1
d
2

(−2Λk)− 8dΦ1
d
2

(0)
]
.

(3.43)

3.2.4 The RG flow of QEG in d = 4
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Figure 3.1: RG flow in the phase space of gk,Λk in d = 4.

The Gaussian and non-Gaussian fixed points (NGFP) for gk,Λk are

g∗ = 0,Λ∗ = 0, (3.44)

g∗ = 0.707,Λ∗ = 0.193, (3.45)

with additional complex fixed points,

g∗ = 4.69± 1.33i,Λ∗ = −0.078± 0.603i. (3.46)

For a complete phase portrait with an explicitly marked limit cycle the reader
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is referred to [6]. As argued in e.g. [1, 2, 33], there exists a NGFP in the flow
profile such that at this point g∗Λ∗ = 0.136, in agreement with the universal
quantity found in [36]. Linearizing the flow around the fixed points such that

βi =
∑
i

Bij (j (k)− j∗) , (3.47)

where i, j = g,Λ, and
Bij ≡ ∂jβi (i∗) , (3.48)

one obtains from (3.47) the relation

∂tui (k) =
∑
j

∂jβi (u∗)
(
uj (k)− u∗j

)
, (3.49)

where ui (k) , u∗i are the couplings and their fixed points, respectively. The
general solution to equation (3.49) is [2]

ui (k) = u∗i +
∑
I

CIV
I
i

(
k0

k

)θI
, (3.50)

with integration constants CI and some reference scale k0. V Ii are the right
eigenvectors of B, with eigenvalues −θI , and because B is not necessarily sym-
metric, they can be both real and complex. Equation (3.50) reflects the leading-
order scaling of the flow near the fixed points, with θI referred to as “critical
exponents” since, in second-order phase transitions, they are linear in the critical
exponents [37]. Near the NGFP (3.45),

θ± = 1.47± 3.04i, (3.51)

indicating the NGFP is UV attractive (Reθ > 0). The complex critical expo-
nents reveal that trajectories emanating from the NGFP are, to leading order,
spiral trajectories which have the DSI form of 2.1.1. From figure 3.1 and equa-
tion (3.50) one concludes that in the vicinity of the NGFP the couplings behave
like self-similar fractals. The critical exponents of the complex flow solutions
are

−3.07− 4.26i,−2.29− 0.91i,

both with a negative real part, indicating that the limit cycle is UV repulsive
and emanates spiral trajectories as well.
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To understand the meaning of a limit cycle in the flow of a quantum-
gravitational theory, we recall the Callan-Symanzic equation,

(∂ln k + β (gk) ∂gk + β (Λk) ∂Λk − nη)G(n) (x; gk,Λk, k) = 0, (3.52)

where G(n) (x; gk,Λk, k) is the n-point correlation function of the gravitational
field. When x→ eλx it follows that

(−∂λ + β (gk) ∂gk + β (Λk) ∂Λk − nη)G(n) (eλx; gk,Λk, k
)

= 0. (3.53)

This scaling relation is formally solved by integration [38] to give

G(n) (eλx; gk (0) ,Λk (0) , k
)

= exp
[
n

∫ gk(λ)

gk(0)
dgk

η (gk,Λk (gk))
βg (gk,Λk (gk))

]
(3.54)

× G(n) (x, gk (λ) ,Λk (λ)) .

When gk and Λk have a limit cycle with period T , they satisfy

gk (0) = gk (T ) ,Λk (0) = Λk (T ) . (3.55)

Replacing T for λ in equation (3.54) results in the n-point function repeating
itself periodically,

G(n) (eTx; gk,Λk, k
)

= G(n) (x, gk,Λk) . (3.56)

Since this scaling symmetry only holds for λ = eT , we conclude that the corre-
lation functions of QEG are DSI functions. In particular, on the limit cycle the
spacetime is a fractal, 〈

gµν
(
eTx

)〉
= 〈gµν (x)〉 . (3.57)
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3.3 The QEG flow as a substitution tiling

Figure 3.2: Left: Imgk (Λ) as a function of x + iy ≡ Λ. Right:
Imgk (ReΛ) ,Regk (ReΛ) .

We consider βΛ ≈ 0, a valid assumption near a stationary point of the flow. A
vanishing flow in Λ results in a quadratic equation for gk,

0 = −g2
k + 12πgk

−3 + Λ
(
3 + 2Λ + 56Λ2)

107− 20Λ + 144π2 Λ (1− 2Λ)2

107− 20Λ .

If we assume gk is also close to its fixed points, we can use g2
k ≈ gk+1gk and

obtain

gk+1gk = gk12π
−3 + Λ

(
3 + 2Λ + 56Λ2)

107− 20Λ + 144π2 Λ (1− 2Λ)2

107− 20Λ . (3.58)

Note that the form of (3.58) resembles that of the Efimov mapping, with the
QEG occurrence matrix being

MQEG =

 12π−3+Λ(3+2Λ+56Λ2)
107−20Λ 144π2 Λ(1−2Λ)2

107−20Λ

1 0

 . (3.59)
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Figure 3.3: At Λ = 0.1, gk is periodic.

We wish to interpret the eigenvectors of MQEG as the fixed points like we
did for Efimov physics. Unfortunately, their dependence on Λ is much more
complicated.

Figure 3.4: At Λ = 0.193, gk is periodic.

It is illuminating, however, to replace Λ by the fixed points found in sec-
tion 3.2.4, as it turns out that the ratio of entries of eigenvectors indeed agrees
with the fixed points of gk. Figure 3.2 illustrates the dependence of Imgk (Λ)
and gk (Λ) on Λ.
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Figure 3.5: At Λ = −0.1, gk is quasi-periodic.

Figure 3.6: At Λ = −1, gk is aperiodic.

It is evident in the plotted sequences for different values of Λ in figures 3.3-
3.8, alongside respective values of g, that various different scaling behaviors
occur. We recover the same phase transition of periodic to fractal tilings, cor-
responding to the proximity of Λ to its fixed points or to its limit cycle, respec-
tively.
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Figure 3.7: At Λ = −0.078 ± 0.603i, |gk| is periodic, but its argument arg (gk)
is discretely self similar.

For Λ = −0.078± 0.603i, the point of the limit cycle, we find a fractal tiling
in the argument of the complex functions that make g, `A, `B . We present in
figure 3.8 the subsequent zoom-ins into this fractal, which unvail its discrete
self-similarity explicitly.

Figure 3.8: For Λ = −0.078 ± 0.603i, close-ups of each segment of this fractal
look precisely like the original shape.
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4 Conclusions

We have studied a mapping from RG flows to substitution processes and tested
it on two seemingly unrelated subjects - Efimov physics and the Einstein-Hilbert
truncation of QEG. We obtained tilings for each theory, in both cases observing
the same phase transition from CSI to DSI tilings. The occurrence matrix for
Efimov had ξ as a control parameter in its phase transition, and a critical value
identical to that of the transition of its flow from real to complex fixed points,
ξ = ξc. In QEG we were not able to produce a control parameter and a critical
value due to the complex nature of the Einstein-Hilbert flow. We obtained the
phase transition by replacing different values of the cosmological constant Λ into
the occurrence matrix, and found correlation between fractal tilings and limit
cycles in the flow. In order to obtain this fractal tiling one must supplement
known values of fixed points into the matrix, which was not necessary in the
Efimov case. Furthermore, the mapping predicts the fixed points of a quadratic
flow such as Efimov, but unable to achieve the same for QEG. Because the
Einstein-Hilbert flow can only be solved numerically, other truncations should be
considered and tested with our mapping. Doing so would confirm the correlation
of fractal tilings with limit cycle solutions (or their absence!) even in cases with
no analytical solution to the flow, and strengthen our claim the QEG belongs
to Efimov physics.

The conclusion that limit cycles in the RG flow of a quantum gravity theory
translate to fractal tilings, begs one to wonder whether some sort of substitution
process could be the underlying structure of our spacetime. There had recently
been a surprising theory by Stephen Wolfram suggesting this very conclusion
[39]. Another quantum theory of geometry reminiscent of this description is
CDT. Although we did not examine it in this work, it is by construction a very
interesting theory to approach from a substitution perspective: it uses simplices
and matching rules as the building blocks of spacetime [40]. It might be that
the mystery surrounding the interior of black holes and physics at the Planck
length, could resolve in a universe that evolves as a substitution process.
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Appendix

A Wetterich equation

A.0.0.1 An exact evolution of the effective action We follow the proof
[41] for a set of real scalar fields {ϕa}Na=1, however one can easily generalize it to
non-Abelian, Grassmann and vector fields. For an action S [ϕ], the generating
functional W [J ] is gotten by adding an appropriate source term,

W [J ] = ln
∫
Dϕe−S(ϕ)+J·ϕ, (A.1)

with the convention that J ·ϕ ≡
∫
ddyJ (y)ϕ (y). Taking the Legendre transform

of (A.1) gives the effective action

Γ [φ] ≡ J · φ−W [J ] , (A.2)

where φ = 〈ϕ〉 = δW/δJ is the classical (expectation) value of the field. We
modify W [J ] ,Γ [φ] to depend on the momentum scale k. IR degrees of freedom
are suppressed up to this scale, to decouple the slow modes p2 � k2 from the
rest and leave the fast modes unaffected, to be integrated out. This modification
is introduced by adding a scale dependent “mass term” to the action,

∆Sk [ϕ] ≡ 1
2

∫
ddp

(2π)d
Rk (p)ϕ∗a (p)ϕa (p) , (A.3)

where we’ve used ϕ∗a (p) = ϕa (−p) for real fields. Rk (p) is a weight function,
or “mass” term, which satisfies the following conditions:

• It recovers the 1PI generating functional Γ [ϕ] in the IR limit,

lim
k2/p2→0

Rk (p) = 0,Γ (k = 0) = Γ.

• It recovers the bare microscopic action S in the UV limit,

lim
k2→∞

Rk (p) =∞,Γ (k →∞) = S.

• It only weighs down modes slower than the probing scale k,

Rk
(
p2 � k2) > 0, Rk

(
p2 � k2) = 0.
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The objective of Rk is to suppress the low modes p2 � k2, forcing this mass
term to be e.g. ∝ k2 for kinetic terms of the form −∂2, Rk

(
p2) ∝ Zkk

2 for
renormalized kinetic terms such as Zk (∂φ)2, etc.

This scale dependence results in an average effective action Γk [ϕ], with
averaging taken over volumes ∼ k−d (the coarse-graining or mass scale). The
resulting action is

Sk = S −
∫

ddp

(2π)d
J∗a (p)ϕa (p) + ∆Sk. (A.4)

Equipped with scale dependence and initial conditions, it is natural to look for
a flow equation of Γk. We define Γ̃k ,the Legendre transform of Wk,

Γ̃k [φk] =
∫

ddp

(2π)d
J∗a (p) · φak (p)−Wk [J ] , (A.5)

such that
∂Γ̃k

∂φak (p) = J∗a (p) . (A.6)

We also derive the connected two-point function through

(Gk)ab (p, p′) = δ2Wk

δJ∗a (p) δJb (p′)

= ∂φak (p)
∂Jb (p′)

= 〈ϕa (p)ϕ∗b (p′)〉 − φak (p)φ∗bk (p′) . (A.7)

Note that
δ2Γ̃k

δφ∗bk (p′) δφak (p) = ∂Jb (p)
∂φak (p′) , (A.8)

so Γ̃k and Wk satisfy the identity

∫
ddp′

(2π)d
(Gk)ab (p, p′) δ2Γ̃k

δφ∗bk (p′) δφck (p′′) = δp,p′′δ
a
c . (A.9)

To obtain the dependence of Γ̃k on k, we fix ϕk and take the derivative w.r.t
t = ln k,

∂tΓ̃k
∣∣
ϕk

= − ∂tWk|J = ∂t 〈∆Sk〉 = 1
2

∫
ddp

(2π)d
∂tRk (p) 〈ϕ∗a (p)ϕa (p)〉 , (A.10)
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and thus

∂tΓ̃k
∣∣
ϕk

= 1
2

∫
ddp

(2π)d
∂tRk (p) [(Gk)aa (p, p) + φak (p)φ∗ak (p)] . (A.11)

We now redefine

Γk = Γ̃k −
1
2

∫
ddp

(2π)d
Rk (p)φ∗ka (p)φak (p) , (A.12)

and obtain the flow of Γk,

∂tΓk|ϕk = 1
2

∫
ddp

(2π)d
∂tRk (p) (Gk)aa (p, p)

≡ 1
2Tr (Gk∂tRk) , (A.13)

where the trace sums over all indices and momenta. As a final step we use the
identity (A.9) to obtain

Gk =
(

∂2Γ̃k
∂φ∗ak∂φ

a
k

)−1

(A.14)

=
(

∂2Γk
∂φ∗ak∂φ

a
k

+Rk

)−1

.

The exact evolution equation for the effective action, commonly referred to as
the Wetterich equation, then follows:

∂tΓk = 1
2Tr

(
∂tRk

Γ(2)
k [φ] +Rk

)
. (A.15)

Note that in position space,

∆Sk [ϕ] = 1
2

∫
ddxϕ (x)Rk

(
−∂2)ϕ (x) ,

so the trace in equation (A.15) involves spacetime integration.

B Heat kernel technique

The trace involves the inverse propagator

δ2Γk
δhδh

,
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which we will consider for h = 0, since it is quadratic in h and we want to cancel
contributions from the gauge-fixing term. One needs only keep quadratic terms
in Γk, which suggests the expansion

Γk [g, g] = Γk [g, g] +O
(
h
)

+ Γquad
k

[
h; g
]

+O
(
h

3)
,

where
Γquad
k

[
h; g
]

= 1
2

∫
ddx
√
gh
δ2Γk
δhδh

h.

The appropriate choice for Rgrav, in order to suppress Γquad
k , is discussed in

section 3.2.1. It must combine with the kinetic term into the form −D2 + k2

times some function or constant which are independent of the Laplacian. Both
the quadratic contribution to the effective action and the suppression term R are
functionals of the covariant Laplacian −D2. In order to evaluate the traces on
the r.h.s of (3.18), we use the heat-kernal expansion of a Laplace-type operator,

TrW (∆) = 1
(4π)d/2

{
Q d

2
(W )B0 (∆) +Q d

2−1 (W )B2 (∆) + . . .

+Q0 (W )Bd (∆) +Q−1 (W )Bd+2 (∆) + . . .} , (B.1)

where

Qn [W ] = 1
Γ (n)

∫ ∞
0

dzzn−1W (z) , n > 0,

Q0 [W ] = W (0) ,

Q−m [W ] = (−1)mW (m) (0) , m ∈ N,

and Bn =
∫
ddx
√
gbn are the known coefficients of the heat-trace asymptotic

expansion when s → 0. bn are linear combinations of curvature tensors and
their covariant derivatives, containing 2n derivatives of the metric. We then
define

Pk (∆) ≡ −D2 +Rk (∆) ,

where Rk = κ2KRk is chosen, as discussed in (3.26a). Then, the trace reduces
to

Tr ∂tRk (∆)
Pk (∆) + q1 + W = 1

(4π)d/2
∞∑
n=0

Q d
2−n

(
∂tRk
Pk + q1

)∫
ddx
√
gb2n

(
−∇2 + W

)
.

(B.2)
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In section 3.2.1 we find a quadratic action of the form Γ(2)
k = κ2ZK

(
−D2 + q1 + K−1U

)
≡

κ2K
(
−D2 + q1 + W

)
, with

[
W, D

2] = 0. The only relevant heat-trace coef-
ficients are then given by [34]

b0 = tr1,

b2 = R

6 tr1− trW.

Higher order coefficients are useful in other truncations not discuss in this work.

C Q-functionals

The formulated RG equations of the Einstein-Hilbert truncation contain some
undetermined forms, which can be written as linear combinations of the follow-
ing functionals,

Φpn (w) ≡ 1
Γ (n)

∫ ∞
0

dzzn−1 zR
(0)′
k (z)[

z +R
(0)
k (z) + w

]p , (C.1a)

Φ̃pn (w) ≡ 1
Γ (n)

∫ ∞
0

dzzn−1 R
(0)
k (z)[

z +R
(0)
k (z) + w

]p , (C.1b)

so that the Q-functionals for n > 0 [42] are

Qn

(
(η + ∂t)Rk(
P grav
k − 2Λk

)p
)

= k2(n−p+1) [(η + 2) Φ̃pn
(
−2Λk/k2)− 2Φpn

(
−2Λk/k2)] ,

(C.2a)

Qn

 ∂tRk(
P gh
k

)p
 = 2k2(n−p+1) [Φ̃pn (0)− Φpn (0)

]
. (C.2b)

To be able to analytically solve for Φ, we choose the optimized cutoff function
[43, 44]

Rk
(
z/k2) =

(
k2 − z

)
Θ
(
k2 − z

)
,

for which
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Φpn (w) ≡ − 1
(n+ 1) Γ (n)

1
(1 + w)p

, (C.3a)

Φ̃pn (w) = 1
Γ (n+ 2)

1
(1 + w)p

. (C.3b)

We will also find it convenient to define

Φpn (w) ≡ Φ̃pn (w)− Φpn (w) = 1
Γ (n+ 1)

1
(1 + w)p

. (C.4)
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I 
 

 :תקציר מורחב

תורת היחסות הכללית ותורת הקוונטים מהוות שני תחומים מוצלחים כאשר הן נבחנות  

אחד התחומים " ,כבידה קוונטית"לחוד, אך טרם נמצאה התורה שתאחד אותן הנקראת 

הפתוחים הדומיננטיים ביותר בפיזיקה. כיום קיימות מגוון תיאוריות של כבידה קוונטית  

ת לקוונטים, למשל תורת המיתרים הידועה. במסגרת  המנסות ליישב את הסתירה בין יחסו

הצליח מרטין רויטר לקבל משוואה המתארת את   1996תורת השדות הקוונטית, בשנת 

זרימת חבורת הרנורמליזציה עבור כבידה ומצא עבור תורה זו נקודת שבת שאינה 

והיא ,  "טיתכבידת איינשטיין קוונ "טריוויאלית באנרגיות גבוהות. תורתו של רויטר קרויה 

במסגרתה ניתן למצוא את זרימת חבורת הרנורמליזציה  (ממוצעת (מהווה תורה אפקטיבית

  .עבור כבידה במדויק

זמן באנרגיות גבוהות  -תורתו של רויטר היא אחת מיני רבות שמנסות להסביר את המרחב 

ת אלו,  . למרות השוני הרב בין הניסוחים של תאוריו (או לחילופין, בסקאלות אורך קצרות )

זמן של כבידת איינשטיין הקוונטית שחוזרת על עצמה  -ישנה תכונה שמאפיינת את המרחב

- זמן הוא פרקטל. מרחב-בקרבת אורך פלאנק, הפתרון למרחב  -בשלל תיאוריות נוספות 

זמן זה הוצע כפתרון של תיאורית שדות סטטיסטית עבור כבידה, של לולאות כבידה 

זמן זה נובע מפתרון מיוחד למשוואות  -יין הקוונטית, מרחבקוונטית ועוד. בכבידת איינשט

חבורת הרנורמליזציה: מחזורי גבול. פתרונות אלו מחזוריים ומאופיינים בסימטריה בדידה 

לשינוי הסקאלה, בשונה מנקודות שבת רגילות שמאופיינות בסימטריה רציפה. הגדלים 

יקטים המאופיינים בהיותם הפיזיקליים הנגזרים ממחזורי גבול הם פרקטליים, אובי

 .סימטריים תחת שינויי סקאלה בדידים

הזמן של כבידת איינשטיין הקוונטית באמצעות  -בעבודה זו נתאר את פתרונות מרחב 

ריצופים. לשם כך, אנו מציגים מיפוי בין משוואות חבורת הרנורמליזציה ובין תהליכי 

ובכים, כגון גבישים ופרקטלים. החלפה, שהינם תהליכים איטרטיביים שמייצרים מבנים מס

תהליכי החלפה מורכבים מחוק רקורסיה שמיוצג על ידי מטריצה. אנו משתמשים במיפוי  

, 2x2שיצרנו על מנת לייצג זרימה של חבורת הרנורמליזציה באמצעות מטריצות ממימד 

כאשר עם המטריצות שמצאנו נבצע תהליך החלפה על מנת ליצור ריצופים. את המיפוי אנו  

בונים לא בשימוש משוואות הזרימה של כבידת איינשטיין הקוונטית, אלא באמצעות  

 .דוגמאת עזר: תורת אפימוב

תורת אפימוב מתארת את רמות האנרגיה של מערכת קוונטית לחלוטין. על מנת להבין 

אותה, אין צורך בידע קודם בתחום הכבידה הקוונטית. אך על אף שתורת אפימוב היא 

וד מכבידת אינשטיין הקוונטית, תורות אלו חולקות מאפיין משמעותי, בו  תחום רחוק מא 

הגדלים הפרקטליים שלהן נגזרים  - ניעזר כדי לשייך את שתיהן לאותה מחלקת שקילות 

 .מתוך פתרונות מחזורי גבול בזרימת חבורת הרנורמליזציה שלהן

וונטיים, חסרי שמתאר שלושה חלקיקים ק" ,אפקט אפימוב"תורת אפימוב נולדה מתוך 

ספין, שבין כל זוג קיימת אינטרקציה מושכת קצרת טווח. כאשר אורך הפיזור של מערכת  



II 
 

זו שואף לאינסוף ובו זמנית טווח האינטרקציה מתאפס, מופיע סט של מצבי אנרגיה 

קשורים עבור מערכת שלושת החלקיקים, על אף שאין מצבים קשורים עבור כל זוג 

אילו מהווה סדרה גאומטרית, שפקטור הגדילה שלה הוא מספר  בנפרד. סט מצבים קשורים

אוניברסלי, קרי שאינו תלוי בסוג האינטרקציה או במסות החלקיקים, למשל. המצבים 

הקשורים הללו יוצרים מבנה פרקטלי. את רמות האנרגיה של אפימוב מקבלים גם כאשר 

  .רת אפימובמופיע פתרון מחזור גבול בזרימת חבורת הרנורמליזציה של תו 

את המיפוי שאנו בונים ננסח תחילה עבור משוואות זרימת חבורת הרנורמליזציה של תורת  

אפימוב, שהינן משוואות פשוטות מאוד לעומת אלו של כבידת איינשטיין הקוונטית. 

באמצעות המיפוי שלנו נדגים כיצד רמות האנרגיה הפרקטליות של אפימוב מופיעות  

ה על ידי תהליך החלפה שייצג את זרימת חבורת הרנורמליזציה.  כריצוף מרחבי אותו נבנ

מן הדוגמה של תורת אפימוב נלמד על אופי המיפוי ועל הריצופים המתקבלים עבור  

פתרונות שונים לזרימת חבורת הרנורמליזציה ולאחר מכן, נשתמש בידע שרכשנו על מנת 

כבידת איינשטיין הקוונטית.  לבצע את אותו מיפוי על משוואות חבורת הרנורמליזציה של 

עבור שתי התיאוריות שנבחנות בעובדה זו, אנו מוצאים את אותה התנהגות תחת המיפוי  

נקודת שבת מתורגמת לריצוף מחזורי לחלוטין, ואילו מחזור גבול עובר מיפוי    -שלנו 

לריצוף פרקטלי. אנו מפרטים את התכונות שתהליכי ההחלפה הממופים מקיימים עבור 

שונים של פתרונות למשוואות הזרימה, ומוצאים שהמיפוי שלנו מתאים לכל זרימה   סוגים

ריבועית. המאפיינים המשותפים של תורת אפימוב וכבידת איינשטיין הקוונטית שאנו  

 .מוצאים מובילים אותנו לקבוע שהן משתייכות לאותה מחלקת שקילות תחת המיפוי שלנו
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