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Abstract

We propose a mapping between renormalization group flows and sub-
stitution processes for underlying tilings. A substitution process is a way
to iteratively construct complicated structures like lattices and fractals.
In our work, we use two-letter substitution processes to describe renormal-
ization group flows with 2x2 matrices. We use this mapping to describe a
fractal spacetime manifold, which emerges as part of a quantum gravity
theory, by a simpler structure - a tiling. The theory we consider in this
work is Quantum Einstein Gravity, an effective quantum gravity theory.
It has a complicated renormalization group flow, one that is not easily
accessible to analytical solution.

In order to obtain the mapping, we begin with a simpler example of
a different theory from a remote field in physics: Efimov physics. This
theory describes the fractal bound states of scale-free systems, the original
being the Efimov effect, a system of 3 spinless quantum particles. In a
setup where each pair of these 3 bodies interact via short range, attractive
interaction, and their interaction range vanishes simultaneously with the
scattering length going to infinity, the system has 3-body bound states
which form a geometric series, with universal scaling. This result is sur-
prising, as only 3-body bound states exist whereas 2-body bound states
do not exist, for the system. The series of bound states form a self-similar
fractal.

Efimov physics and Quantum Einstein Gravity share an important
feature. When examining their renormalization group flows, their fractal
features correspond to a limit cycle solution appearing in their flow. Such
limit cycle solutions are periodic and they have a discrete scale invariance,
resulting in self-similar physical quantities. However, Efimov physics has a
very simple renormalization group flow, a single quadratic equation, which
makes the distinction between its bound states very clear by inspecting its
flow. We use the simplicity of the Efimov physics flow in order to construct
a mapping between a quadratic renormalization group flow into a tiling,
such that the fixed points of the flow map to a periodic tiling, while limit
cycles and aperiodic orbits in the flow map to fractal and aperiodic tilings,
respectively. We find that these results also hold for Quantum Einstein
Gravity and that the phase transition between the different tiling forms is
analogous for both theories, hence relating Efimov physics and Quantum

Einstein Gravity into the same universality class.



Nomenclature

B Renormalization group equation

A Scaling factor

D Hausdorff dimension

L Length or radius

m Mass

mg Mass of Sierpinski triangle

N Natural numbers

A; Alphabet

o Substitution operator

k Substitution step or momentum scale

n; Number of type ¢ letters in substitution rule

M Occurrence matrix

I} Length of type i tile

I}, Total length of type i letters at substitution step n
p; Density of type i letters

a Average lattice

m; (n) Number of type i letters at substitution step n
A; Occurrence matrix eigenvalues

x (n) Tiling length at substitution step n

u (n) Fluctuation of tiling length from average lattice
V; Potential strength of type @

W; (n) Work of particle on ¢ sub-tile at substitution step n
h Reduced Planck constant

FE Energy

V2 Laplace operator

I Angular momentum quantum number

d Dimension

¢ Interaction strength



1) Wave-function

u reduced mass

¢ Dimensionless interaction strength

x Radial wavefunction

0 Polar angle

¢ Azimuthal angle

& Critical dimensionless interaction strength
g Boundary condition coupling constant

Ly Boundary condition radius

 Phase

g+ Fixed points of renormalization group flow of g

gr. Discrete boundary condition coupling constant or dimensionless gravi-
tational constant

g* Fixed point of boundary condition coupling constant g or dimensionless
gravitational constant gy

Z Integers

C Complex numbers

Tr Trace over all indices with spacetime integration
L, Lie derivative w.r.t vector field v

9,,, Background metric

hy, Dynamical metric

Yuv Full metric

guv Full metric expectation value

C Ghost field

D? Covariant Laplace operator

Ry, Scale dependent cutoff

Sy Scale dependent action

Wi Scale dependent generating functional
I'y Average effective action

1";2) Scale dependent exact propagator

quad Quadratic part of average effective action



R Ricci curvature

G Correlation function of n fields

T Limit cycle period

Zn, Graviton field strength renormalization

G Newton’s constant

G, Scale dependent Newton’s constant

Ay Scale dependent cosmological constant

7 Anomalous graviton dimension

Ay, Dimensionless scale dependent cosmological constant
u; (k) Coupling constant ¢ at scale k

A* Cosmological constant fixed point



1 Introduction

The structure of our spacetime near and below the Planck scale remains a
fascinating and elusive open question in physics to this day. The issue of non-
renormalizability of gravity has plagued efforts of formulating a quantum gravity
theory for as long as quantum field theory and general relativity exist. Reuter’s
Quantum Einstein Gravity (QEG), a candidate quantum gravity theory, over-
came this barrier by using exact functional renormalization group (RG) [1] to
extract a scale-dependent metric. Reuter et al discovered that QEG predicts the
emergence of a remarkable fractal spacetime structure, with a scale dependent
dimension that approaches 2 near the Planck scale [2]. This conclusion agreed
with earlier numerical results of Ambjgrn and Loll’s theory of causal-dynamical-
triangulation (CDT) [3], as well as other quantum gravity theories [4, 5]. Both
QEG and CDT attribute fractal properties of the metric to the scale dependent
universe they describe. On the other hand, it has been speculated by Litim et
al that the dimensional reduction in QEG is related to limit cycles in its RG
flow [6]. As their name suggests, limit cycles are cyclic solutions with a discrete
period, that occur when the fixed points of the flow become complex. They are
found in a variety of self-similar phenomena, e.g. in quantum theories [7—9] and
in biology [10, 11], since their discrete scaling symmetry translates to fractal
observables. In this work we highlight the relation of the fractal spacetime of
QEG to its limit cycles by geometrically representing its RG flow. We find that
under a specific mapping [12] limit cycles present as fractal tilings.

In order to achieve this purpose we begin with a discussion of a different
fractal phenomenon that is also related to limit cycles and known as “Efimov
physics”. It is a well studied and thoroughly understood field, the use of which
proves useful to us as we formulate a simple probe of the RG flows exhibiting
limit cycles.

One of the most remarkable appearances of discrete scale invariance (DSI)
in quantum mechanics was the Efimov effect [13], discovered by and named
after Efimov in 1970. Efimov discovered that when three spinless particles had
vanishing interaction range and infinite scattering length, a set of shallow, fractal
three-body bound states with a universal discrete scaling factor emerges. The
effective description is essentially that of a quantum, massive, neutral particle
in an attractive 1/r2 potential. Since its discovery Efimov physics proved to be

ubiquitous, e.g. the case of a Dirac charged, massless fermions in a Coulomb



potential or in line depinning theory [14, 15]. Physical manifestations of the
effect are versatile, including e.g. Feshbach resonance and ultra-cold atoms [16—
19]. The RG perspective of these effective theories has been studied extensively
in e.g. [9, 20, 21]. It has been shown that the Efimov spectrum is recovered
when their flows exhibit limit cycles [8, 22, 23]. In the following, we map Efimov
physics to a tiling and then use the insight gained from studying the mapping on
its simple, analytic RG flow as a guide for the more complicated QEG case. To
better understand the relation of the limit cycles in QEG to its fractal spacetime,
we first establish the relation of the Efimov limit cycles and fractal energy levels.
To that purpose, we analyze a mapping of the RG flow of Efimov physics to
tilings generated by a dynamical substitution process.

Substitution processes had been proven to be great at capturing the prop-
erties of aperiodic and DSI physical structures, e.g. quasi-periodic and fractal
lattices [24, 25]. The basic quantity representing their dynamics is the occur-
rence matrix, which sets the rules and determines the spatial evolution of a
tiling. We use the substitutions formalism to obtain from a RG flow an occur-
rence matrix, endowed with the parameters of the Efimov limit cycle. We then
test this mapping on QEG and in both cases find that the fractal properties of

limit cycles translate into aperiodic and fractal tilings.



2 From Efimov bound states to fractal tilings

2.1 Substitution processes
2.1.1 Fractals and self-similar functions

To understand fractals and self-similarity, a brief introduction to scale invariance

is required. We define a scale-invariant function,

flax) =b(a) f (z). (2.1)

Two kinds of scaling symmetries arise from this definition. The first is continuous-
scale-invariance (CSI): If a function satisfies the scaling symmetry (2.1) Va and
corresponding b (a), this scaling relation expresses the continuous self-similarity

of the function f. In particular, we have
f(azx) =aP f (2), (2.2)

where D is the Hausdorfl dimension defined as

_Inb

=g’

(2.3)
Since the scaling of f is independent of x, its solution is a homogeneous function,
f(z)=CaP. (2.4)

A simple example of continuous scale invariance is the scaling of the mass of
a string. If at length L the string has mass m, it is obvious that at length 2L
the mass of the string will become 2m. The function describing the relationship

between the mass of the string and its length satisfies
m (2L) =2m (L) .

If we were to choose any scaling for the length of the string, the mass would
always be multiplied by that same amount. It follows that a string mass is CSI,
namely

m (AL) = Am (L), V. (2.5)



While the scaling (2.1) is true for CSI functions for any a,b(a), discrete-scale-
invariant (DSI) functions only satisfy this condition for a pair of fized numbers
a,b. In physics, DSI functions most commonly describe self-similar fractals [26],
e.g. the Sierpinski triangle, whose scaling symmetry only holds for a = 2,b = 3.
These numbers describe how to obtain another Sierpinski triangle from the
original: halve the side of the original triangle n € N times. If one assigns

“mass” to the lines within the Sierpinski triangle, the

‘mass” of the resulting
triangle would then be 1/3™ of its original value, as shown in figure 2.1. It is
important to recognize that this property is unique to the set {2,3} and is not
satisfied for any other pair of numbers, namely for the mass of the Sierpinski

triangle we have

ms (2N€side) = 3Nms (Zside) ,VN €. (26)

. V.
vV vV
i'i &Vi
AL O A 6 O & 6 O

Figure 2.1: The Sierpinski triangle is a self-similar fractal. When cutting the
side into quarters (N = —2), the mass reduces to 3V = 1/9 of its original value.

The discrete scaling relation fractals adhere to expresses that a self-similar
fractal contains infinitely many copies of itself, each accessed by correctly rescal-
ing the original object. The DSI properties associated with fractals are worth
presenting from two perspectives. One can verify that the solution to (2.1) for

a limited set a,b is a power law multiplied by a log-periodic function, namely

f(z)=aPyg Gﬁiﬁ) (2.7)

where 4 (y) = 4 (y+ 1) and D is defined as in (2.3). Because the logarithm



action turns multiplication into addition, discrete self-similarity of a structure
under stretching is the discrete translational symmetry of the logarithm of the
structure.

On the other hand, one can approach the scaling of a function through its
dimensionality. Generic objects such as lines and squares have the property that
their topological and Hausdorff dimensions are equal, e.g. stretching the side of
a 2d unit square to twice its length results in a square with area 22, indicative of
a Hausdorff dimension 2. In fractals however, the topological dimension exceeds
the Hausdorff one, e.g. the Sierpinski triangle has a one dimensional topology,
but a Hausdorff dimension In3/1n 2 ~ 1.585. Tt is clear that the self-similarity is
rooted in the dimensionality of the solution. In particular, DSI is associated with
complex scaling exponents: The function ¢ of (2.7) is periodic and consequently

has a Fourier expansion,

G@y)= Y cne®™, (2.8)
so f has one as well,
fl)= Y caPHiss, (2.9)

In a sense, f is a superposition of complex dimensional functions, with dimen-
sions D,, = (Inb + i27n) /Ina. If f were CSI, 4 would have been constant and
there would be no complex exponents. We conclude that complex exponents

are a signature of DSI.

2.1.2 Traditional substitution processes

Aperiodic and self similar structures such as fractals are often generated using
iterative methods [26, 27]. A substitution process is also an iterative method,
where one repeatedly applies an action on an existing structure to produce
an infinite structure. Traditionally specified by an alphabet and a rule [28],
the substitution process replaces “letters” in a sequence (tiles) by “words” (the
rule), thereby inflating the original sequence. For the purposes of this work it

suffices to consider a simple two-letter alphabet,

{4, B}, (2.10)

and a general rule,



o (A) = Am B"2, (2.11a)
o (B) = A" B", (2.11b)

which for now applies to positive integers n; . 4, but will be generalized in
section 2.1.3 to real numbers. Operating with ¢ on an initial sequence that
is some combination of A, B, generates a longer sequence at each substitution

step,

AB = 0 (AB)=0(A)o(B)=A---AB--BA---AB---B— -+ .
——A

ni n2 ns Uz

60°

Figure 2.2: The substitution process that forms a Sierpinski triangle.

In physical applications, these letters represent e.g. atoms and molecules.
Their density or order within the sequence corresponds to the sort of physical
structure we would observe, be it a periodic lattice or an aperiodic one, e.g. the

fractal Sierpinski triangle, formed by the substitution

o (F) = FGFHF,

as shown in figure 2.2.
We associate with the letters tiles of type A, B, with respective lengths
lg‘, I&. Denoting by I, the accumulated length of tiles of type i in the sequence

at substitution step n, rules (2.11) can be translated to an occurrence matriz

10



M, acting on a vector of lengths [,,. This occurrence matrix is chosen to be

ny n
M= "1 ], (2.12)
ng Ny
specifying how the lengths of the A, B sub-tiles (words) evolve with each sub-
stitution step,
4 nili + nolB I

5 = 5 . = 5 . (2.13)
1 naly + nqlf; I7

M is insensitive to the order of letters in the rule. If we were to choose the rule
o (A) = ABA instead of 0 (A) = AAB, the resulting occurrence matrices are
identical. It is beyond the scope of this work to discuss the implications of this
feature.

The spectrum of M indicates how the lengths of sub-tiles A, B scale within
finite segments of the infinite sequence. The eigenvector related to the leading

(largest in absolute value) eigenvalue of M is

M =\ 7 (2.14)

where the eigenvectors are normalized to represent densities by demanding

pa+pp =1 (2.15)

pa,p are the asymptotic densities of tiles A, B within the infinite sequence M

generates. They can be use to define a “lattice vector” for the infinite tile,

a=1ps+1Eps. (2.16)
Forn > 1,
n | PA n
M™y = |\| + O (X", (2.17)
PB

where |A\1] > |A2| are the eigenvalues of M. We also define the length of the

sub-sequence with a total of k tiles,

z (k) = 1{'ma (k) + 18mp (k), (2.18)

11



where m; (k) are the numbers of i = {A, B} type tiles within this k-long sub-
sequence. Taking the limit of infinite n (infinite k) of x (k), it follows that

—_a (2.19)

This asymptotic relation allows us to define w (k), the fluctuation of = (k) from

a lattice with a unit cell of length a, namely
x (k) =ak +u(k). (2.20)

Recall k = k (n). From (2.18) it follows that x is the L; norm of the length of
the tiling, namely

|M™o|, = (k). (2.21)

Combining equations (2.21) and (2.20), it follows that the asymptotic scaling of
k,u (k) are

kel (2.22)
u (k) ~ ol (2.23)

When scaling u (k) — u (Ak) and substituting n = Ink/In X + O (In Ag/1In Aq)

into equation (2.23), one obtains

In k+1n A In A\

w(NE) ~ Ay T = ARy (k) (2.24)

The specific choice A\ = AP, where D is the Hausdorff dimension defined in

equation (2.3), we have

u(Ak) ~ ADu (k). (2.25)

We recover the scaling of equation (2.1) and thus reveal the asymptotic DSI of
u (k), as equation (2.25) is only satisfied for the set {A1, A2}. The most general

form of w (k) in an infinite tiling is then [29]

u (k) ~ kPF ( In & > , (2.26)

12



where F' is a log-periodic function, namely F (z + 1) = F' (z). Asymptotically,
M generates either exactly periodic, quasi-periodic or fractal tilings, depending

on the scaling of u (k).

2.1.3 Generalized tilings

Generalizing to a non-integer, non-positive substitution process [12], one defines

the rule

o (A) = A" B™, (2.27a)
o (B) = A*2Bb2, (2.27b)

where now, in contrast with (2.11), a;,b; are real numbers. Instead of a set
of tiles, the concept of “filling” a background unit cell structure with constant
potentials V4, Vg is chosen. The Integer part of a;, b; determines how many unit
cells will be completely filled with V4, Vg, respectively. The non integer part
determines what fraction of the Int (a;) + 1 cell is filled with either potential.
Similarly, we replace the lengths of sub-tiles I’ with another measure — the
work a particle with some “charge” exerts while moving through the potential
signature of the sequence. In a two-letter substitution with k letters, the work

done by a such a particle is

k
W, (k) = q/o V, (x)dz, j € {A, B}. (2.28)

The potentials are constant, so the total work is
W () = qVils (k). (2.20)

(2.29) provides meaning to negative powers that were made possible in (2.27);
One fills the cell with the negative of the potential in question and negative
contributions to the work cancels positive ones. In the generalized case, however,
M is not guaranteed to be diagonalizable. For a given M that is, the results of

section 2.1.2 still hold.

13



2.2 Fractal properties of Efimov physics

Although substitutions are intuitively relevant to geometrical structures, there
is much to be gained by relating them to other physical quantities. In what
follows, we present a mapping of the Efimov RG flow to substitutions, and
extract visual representations of energy levels as fractal, periodic and aperiodic
tilings.

The original derivation of the Efimov effect [30] involved the low energy
states of three identical, spinless particles, whose pair-wise interactions’ range
ro vanishes and scattering length in the s-channel ag is infinite. The three-body
problem is reduced to an effective two-body problem with an inverse-square
potential. The magnitude of the potential is independent of the precise details
of the interactions. With the lack of a characteristic scale in the problem,
and despite being unable to form pair-wise bound states, a universal geometric
spectrum of three-body bound states arises. The effective interaction Efimov
found is [17]
soff 174

‘/eff (R) = R2 B

(2.30)

where |sg| >~ 1.006 is universal. The Efimov spectrum then obeys the scaling
relation E,, = e~ 2/Isol .

The famous fractal spectrum is recovered as a limit of the 1/7? potential
Schrédinger equation. This equation is scale free by virtue of the shared inverse-
square scaling of the kinetic and potential terms. A quantum ground state can
only be obtained by implementing a cutoff that breaks the CSI of the equation,
resulting in this continuous symmetry being broken into a discrete self-similar

spectrum of bound states that converges to zero,

27

for any n € N. These bound states are only obtained for dimensionless ampli-
tudes € of the inverse-square interaction that are strictly greater than £, =
(2—d)* /4. 1In three dimensions & = 1/4, and it follows that when & =
|so|2 +1/4, the 1/r? Schrodinger equation precisely replicates the fractal Efimov
spectrum.

A direct consequence of the effective approach is a RG flow with phases of
either fixed points or limit cycle solutions, depending on the critical value &..

While the fixed points stand for other, CSI solutions to the Schrédinger equa-

14



tion, the limit cycles correspond to the fractal Efimov bound states, motivating

us to explore these periodic solutions using substitution tilings.

2.2.1 Schroédinger equation approach

Before taking the limits appropriate for Efimov bound states, we begin with the

inverse-square potential Schrodinger equation (h = 1),

- (;ﬂ ¥ C) )= By (). (231)
This Hamiltonian is highly singular at » = 0 and consequently not self-adjoint
and unphysical. The equation is scale free: (2.31) is invariant under the trans-
formation » — A, E — A72FE for any \. In fact, the only parameter 2u( is
dimensionless, resulting in (2.31) being CSI. It follows that a consequence of a
single bound state {FEy,, ¥nim (1, Ey)} is an unbounded from below continuum
of bound states {)\En,wnlm (/\r, En)\*Q)}, and a “ground state” at negative-
infinite energy. This is caused by the strongly singular interaction. To be able to
obtain the Efimov bound states, the Hamiltonian would require regularization.
In spherical coordinates, one recognizes the radial and angular contributions to

the Laplacian,

1 1/ 1 . 1
v? = —50r (r*0,) + = (Sineao (sin 00y) + Sinmaﬁ) ; (2:32)

which begs the introduction of an appropriate separation of variables,
1 m
Yt (1) = Xt (1) Y/ (0,6) . (233)

Inserting (2.32) and (2.33) into (2.31) and rearranging, we find the separated

2XZ1 (1) 2 ¢ _ iQYlm (9>¢)
r 7an B + 2ur (E — 7‘2) = 717" 0.0) (2.34)

The r.h.s is a simple eigenvalue equation for the angular momentum operator,

equation

LPY™ (0,¢) =1L+ 1) Y™ (6,6) . (2.35)

Combining equations (2.34) and (2.35), one obtains the radial equation

Xt (1) + (—2uf2 + l(l; 1)) Xt (1) = 2pE x5 (1) - (2.36)

15



Generalizing to d-dimensions, the hyperradial Schrédinger equation is

d—1 £
K+ 0+ (S 1) xr ) =0 (2.37)
with € =2u¢ —1(l+d—2),k* = —2uE.
To force self-adjointness on the Hamiltonian we introduce a short distance
cutoff. At r = Ly we impose some short-range interaction, whose explicit form

is irrelevant and with the general boundary condition [9, 21]

_ Loxp (Lo)
9(Lo) = ot (Lo (2.38)

This boundary condition immediately breaks the CSI, forcing a characteristic
length scale Ly. The Hamiltonian becomes self-adjoint and equation (2.37) now
has well defined solutions. To recover the s-wave bound states of Efimov, we

consider the radial wave-function with £ < 0 and [ = 0,

() = Ve (alj ez (ikn) +aY e (—ikr)) : (2.39)
where J, (z),Y, (z) are Bessel functions of the first and second kind, and

(d—2)*

gc: 4

(2.40)

We expect to recover Efimov bound states in the low energy limit kLo < 1.

The radial solution to leading order in kr is [31, 32]

x (r) = alkmr—\/g+\/£c—€ + a2k—\/£c—€r—\/€»¢—\/£c—£. (2.41)
For ¢ < &, inserting (2.41) into (2.38) gives

9(Lo) = V& — V& — & (2.42)
and the corresponding energy levels when E ~ 0 are

7 (9,€)
2ul

and are CSI. For ¢ > &, however, outside the boundary at r = Ly we have
(kLo)*' Vet = ¢, (2.43)

16



where ¢ is some phase whose explicit form is irrelevant. Solving for the energy

levels, we obtain the Efimov geometric series of bound states,

kp = ke Ve & n € Z, (2.44)

with ko = e?/2V 5_5°/L0. The bound states in this limit have the same form of
the DSI spectrum of Efimov physics when the branch n < 0 is chosen.

2.2.2 Renormalization group approach

In the previous subsection, our derivation resulted in a phase transition of the
short range coupling g from a constant function to an oscillatory one as £ in-
creases above £.. One expects such a transition to be present in an RG flow
that describes this system. Our goal is to obtain this RG flow and investigate
the critical behavior of g as a function of &.

For a £/r? potential, £ is dimensionless and using RG is not as useful ((2.37)
is scale free). To overcome this obstacle, we temporarily replace the inverse
square potential by £/r° and take s — 2 when we are done.

Introducing a scale parameter Ly < L < 0o, dimensional analysis determines
£ =& L2, (2.45)

The 8 function for £ is obtained by taking the derivative of (2.45) with respect
tolnL,
g

Be = Ld—L =(s—2)¢&. (2.46)

Combining (2.37) and (2.38) in the low energy limit, it follows that the beta

function for g is [21, 32]

d
B, = Ld% —(2—d)g—g>— L* ¢ (2.47)

The RG equations for s = 2 are then

g
dg _ . 2
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Taking 8, = 0 gives the fixed points of (2.48Db),

gx = —VE& £ V& ¢ (2.49)

with & given in (2.40).

Let us first consider £ < &.. In this regime, the fixed points g4 are real. As £
approaches &, the two fixed points merge into a single one, g* = —/&; at £ = &,
[31]. For & > &, the fixed points are complex. We solve for g by integrating
both sides of (2.48b). Then,

g(L) = —/€ — /€ — € tan (mm (LLO> - c) , (2.50)

with C = tan™" ((go — V&) /V€—&:). The solution in (2.50) is obviously

periodic, pointing of a limit cycle solution with period

g(L)=g (eJZTL). (2.51)

(2.51) exhibits log-periodic self similarity,

g(nL) =g <lnL+ \/:Lg) (2.52)

As discussed in 2.1.1, we find that g is a fractal for & > &..

2.2.3 Mapping Efimov physics to a substitution process

Let us now demonstrate how the scaling of the coupling g in both £ < &.,€ > &,
regimes manifests as substitution tilings.

We define the scaling parameter
InL =k, (2.53)

as well as the coupling,
li;

-k, (2.54)
lk

g(Inl) =g, =

with l,‘?, 1P the lengths of sub-tilings of type A, B at step k of the substitution.
Mapping (2.48b) to a substitution tiling will require a discretized evolution

equation, because the substitution process is a discrete map. At the fixed points
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gk+1 = g, and g7 = gr+19x. Inserting (2.54) into a discretized (2.48b) yields

(2—d) gk — grt19x —§ = 0. (2.55)

Combining (2.55) and (2.54), the flow can be expressed in terms of 4,5,

ZA
l’;—“zﬁ =(@2-d) - b (2.56)
k+1

We define the mapping [12]:

i i
= , (2.57)
I 1B
under which equation (2.56) becomes the ratio of a set recursion rules,
li = 2 - d) i =&, (2.58a)
2, =13 (2.58b)
Equations (2.58) are associated with an occurrence matrix
2—-d -
1k+1 =C g lk = ]\41]€7 (259)
1 0

and as demonstrated in section 2.1.3, it defines the two-letter alphabet substi-

tution process

A AC=I B¢, (2.60a)
B A (2.60D)

The spectrum of M is then

spec (M) = {~VE + Ve — & —VE - VE— €}, (2.61)

consisting of the fixed points of equation (2.49).
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2.2.4 Fixed points

Any fixed point of g (In L) satisfies g, = gg/, namely

i _ L
BB

vk, K.

It follows that an eigenvector of M corresponds to a fixed point of g. For & < &,
the two fixed points in equation (2.49) coincide with the ratio of the normalized
eigenvectors 1; o and one finds I1/IP = g1 (i = 1,2). Where & = &, (2.59) has
a single eigenvalue g* = —/&., with eigenvectors that satisfy I/ /1P* = —\/€..

£=0.05 N=28; d=3
-0.94 T T T

-0.95 - 7

-0.96 - 4

-0.98 - 7

1 I I I I I
0 5 10 15 20 25 30

N
€=025 N=28; d=3
T T

-0.5 T

-0.6

-0.7

-0.8

1 I I I I I
0 5 10 15 20 25 30
N

Figure 2.3: For d = 3, £ = 0.05 (top) and £ = 0.25 (bottom) the coupling g
converges to the fixed points gg.05 ~ —0.95,gg.25 = —0.5 over N runs of the
substitution.

Figures 2.4-(2.5) display the 2-dimensional visualization of the two-letter
tilings corresponding to the rules (2.60) for d = 3. l4,lp are the lengths of
tiles of type A, B, respectively, throughout the sequence. The interpretation

of eigenvectors as fixed points is established by comparing the evolution of the
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sequences and the coupling g. In figure 2.4, the sequences begin with some initial
condition and soon assume completely periodic evolution, consistent with the
Efimov € < ¢, regime. g converges to the stable fixed point at £ = 0.25, as seen
in figure 2.3, indicative of the link between the periodicity of a tiling and a fixed
point of the flow.

£=005 N=28 d=3 £€=005 N=28 d=3
1 o :
06 o
Cre o ~—
o o1 02 03 04 ]‘j 06 07 08 09 1 Iy T o 02 u;‘l
£=0.25; N=28; d= o =025 N=28; d=3

Figure 2.4: For d = 3, the mapped sequence of £ = 0.05 (top) and £ = 0.25
(bottom) evolves periodically, with N = 28, 30 substitution steps done to obtain
the tiles, respectively.

2.2.5 Limit Cycle solutions

For € > &, consider some initial condition decomposed into a linear combination

of the spanning eigenvectors of M,

1, = Al; + Bl,. (2.62)

We apply the substitution (2.59) n times, which transforms (2.62) into

M™,, = \PAL + A\ Bl,. (2.63)

For M;; € R with complex eigenvalues A; = A3, the amplitude can be taken

out,

M™, = |M|" (Al1e™® + Bloe ™€) . (2.64)

One discovers that whenever n = —n + 27m/© for m € Z, the vector (2.63) is

recovered up to a stretch. A global multiplicative constant does not affect the
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ratio of the vector’s components, namely g; = g, if and only if

m™m
k=ho+ 5 (2.65)

E=1;, N=28; d=3 E=1;, N=28; d=3

-0.8 7

0 5 10 15 20 25 30
N

Figure 2.5: For d = 3, ¢ = 1, the tiling formed by the mapping is a fractal (top).
g follows a limit cycle with a discrete period (bottom)

For M;; € C, the largest (in absolute value) eigenvalue dominates the evo-
lution of the sequence. For n >> 1 and |A1]| > |A2| without loss of generality, we

repeat the process of equation (2.64) and obtain

Mg |™

M™y, = [\ [" (Ailei”@ +
1

Bige_in(a/) ~ A |)\1|n IleinG‘ (266)

The same argument of the complex conjugate eigenvalues applies for a suffi-
ciently large n. Any n’ = n+ 27m/© for m € Z recovers nearly the same tiling

with increasing accuracy, up to an exponentially suppressed correction,
n+%’m
. (2.67)

The tiling equation (2.67) is quasi-periodic, its DSI recovered only in the limit

n’ _ 2Zm g A2
M1y = ) E7 M+ 0 (|32
1

n — o0.
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The discrete-periodic orbits of sequences (2.64) and (2.67) are limit cycles of
gk Where € > &, the complex eigenvalues of M in equation (2.61) correspond
to © = arctan ( (€-¢&) /50). Close to the critical point, £ — £, <« 1 and

O~ V(€ &) /S (2.68)

The scale invariance of g then follows from equation (2.65),

g(nL)=g (lnLO + %) . (2.69)

In 3 dimensions, the critical point is
& =0.25, (2.70)

and when m = 4, 8,16, ... the factor v/&. is absorbed to form an integer, recov-
ering the scaling of the limit cycle from equation (2.52).

In figure 2.5, the limit cycle of g is obtained when £ = 1 and manifests as a
self-similar tiling. When £ = 2, g is self-similar with aperiodic scaling, and the

tiling associated with it is also an aperiodic tiling (see figure 2.6).

£E=2; N=28; d=3 £E=2; N=28; d=3

x10°

20

20+ 4

-40 7

-80 7

100 I I I I I
0 5 10 15 20 25 30

N

Figure 2.6: For d = 3, £ = 2, the tiling formed by the mapping is aperiodic
(top). g is self similar with slight inconsistencies (bottom).
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2.2.6 Mapping quadratic RG flows to a substitution tiling

Having tested the mapping on the Efimov RG flow, we reformulate the results
of section 2.2.3 to suit a wider variety of flows. In particular, any system which

has a single S function for a single coupling u, of the form
Ou = Au® + Bu + C, (2.71)

can undergo the Efimov mapping [12]. The occurrence matrix extracted from
equation (2.71) is

M = . (2.72)
1 0

=l
=Q

If M is diagonalizable, its eigenvalues are

_ —B+VBZ_1AC

A 2.73
: = (273)
with normalized eigenvectors
+
v 1 A
L) = =, (2.74)
V1 + v = 1.

By the same argument of section 2.2.4, for real A, B,C and 4AC < B2, the
eigenvalues are also real and Ay are the fixed points of the flow in equa-
tion (2.71). If A,B or C are complex, or if they are real and 4AC > B2
limit cycles emerge due to complex fixed points of M. We also note that when
C = 0, the substitution process is degenerate; Either it generates a completely

periodic, one-letter sequence, or it annihilates the initial sequence entirely.
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3 Fractal spacetimes in Quantum Einstein grav-
ity

Although these two theories certainly seem unrelated, the investigation of Efi-
mov physics under the mapping was designed to grant insight on the flow of
Quantum Einstein Gravity. The following reveals that they exhibit similar
behaviors as substitution processes. Their limit cycle solutions, while quite
different, hint at some deeper connection.

QEG is unique among quantum gravity theories in its formulation. Its effec-
tive approach pushes the probing scale deeper into the UV without encountering
the usual infinities; Instead, there emerges an exotic, self-similar universe as one
approaches the Planck scale. At the center of the effective theory lies the aver-
age (scale dependent) effective action I'y. By using exact renormalization group,

one finds that this action evolves according to a Wetterich flow equation of the

form (A.15)
1 O R
0Ty = ~Tr (2;7’“ .
2 Fk + Ry

From this flow one is able to extract the flow of the gravitational and cosmologi-
cal couplings. Their flows exhibit limit cycles, which translate to DSI correlation

functions with a scaling relation

G (" w; gi, Ay k) = G (, giey M) -

Because the QEG spacetime has a limit cycle, we are able to probe this unusual
structure with our method. In the previous part of this work we defined a
mapping of quadratic RG flows, and while the RG flow of QEG turns out much
less simple to handle, we are able to extract a quadratic equation that relates
gk, M. As we did in Efimov Physics, mapping this equation to a substitution

process results in fractal tilings corresponding to the limit cycles.
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3.1 The formulation of QEG

In any quantum field theory (QFT), one seeks an appropriate gauge group.
In gravity, a theory must be invariant under diffeomorphisms, or coordinate
transformations of the metric. Unfortunately, if one wishes to find a QFT which
explains and predicts gravity, it cannot presuppose a metric, let alone one which
is well behaved and causal. How does one produce a covariant formulation of a
theory where the quantum field is a metric?

Quantum Einstein Gravity overcomes this fundamental issue by using the

background-field gauge [1]. The gravitational field is split into two metrics,

Yuv (x) = g[ﬂ/ (m) + h;w (x) s (3~1)

where h,, is a dynamical, fluctuating field and g, is a fixed, completely arbi-
trary background metric. Throughout the formulation, one can verify that no
observable quantity may ever depend on g,,,,. Diffeomorphism invariance means

the gravitational action is invariant under the coordinate transformation

5'7#1/ = £v7ﬂuv (32)

where L,, is the Lie derivative with respect to the vector field v. The particular
background-field gauge

5huu = Evhpya 5§/Ly = Evguua (33)

is chosen to guarantee a diffeomorphism invariant effective action. Combining
the background gauge and the Wetterich equation discussed in appendix A al-
lows QEG to overcome the traditional non-renormalizability of quantum gravity

and obtain a RG flow equation of the couplings.

3.1.1 Construction of the effective action for gravity

The standard form of the generating functional for connected correlation func-

tions, with the modification of scale dependence (see appendix A), is [1]

26



Wi [t",0",5,:7,,,] = In { / DhDCDC exp [~S [g+ h] — See [h37]  (3.4)

—gh [ha C7 67 g] - ASk [h7 Ca 67 ?] - Ssource]} ’

where the various terms in the action are discussed below. The usual spacetime

integration is replaced by the diffeomorphism invariant measure

/ddx\/ﬁ,

with g = det g,,,.. S is the classical action, invariant under the general coordinate

transformation
57;11/ = ‘cvfy;u/ = Upap'YuV + au'up’)/pu + al/Up’Yupa (35)
with a ghost action

Sen [1.C,T:g] =~ / /50, M 9,5, C”, (3.6)

——1/2 —
where kK = (327TG) Y , G the bare Newton’s constant and g = 7 the expectation
value of the complete metric. M is obtained from the gauge fixing condition,

using the usual Fadeev-Popov procedure. The coordinate transformation
et =L,ct, oC, =L,C,, (3.7)

combined with the metric transformation (3.3) leaves the full action invariant.

The action is equipped with a source term

Ssource = — / d®z/g {t" by +7,C" + 0" C,} (3.8)

and a gauge fixing term,

1
Sutlhig) = 5 [ d'eVGg" FuF., (39)

with gauge fixing condition F), (g, h) = 0, specified later in section 3.2.1. The
IR cutoff action is defined both for the metric and the ghosts in a quadratic
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form,

2 _
ASy = % / d*\/Ghy (RE™ [G)"77 hpo + V2 / d*z+/gC" RE" [g]", C".
(3.10)

R [g], R¥" [g] discriminate between high and low ecigenmodes of —D~ =
—g""D,,D,. The use of the energy scale of an external background field, rather
than the full metric, is chosen in order to keep the suppressing action quadratic
in hy,. This is crucial to guarantee that the flow equation formulated in ap-
pendix A involves no higher than second-order derivatives of the effective action.

The clever choice of a background gauge guarantees that the generating

functional is invariant under any coordinate transformation,

Wy [t + Lt 0" + Lo, G, + LT, G + Lo7]
=W [t", 0", T, 7). (3.11)

It contains only scalar (diffeomorphism invariant) quantities because indices
were contracted using the background field, which transforms under the gauge-
transformation (3.3) as well.

3.1.2 The average effective action - formulation and flow

To obtain the effective action I'y, we begin by taking the derivative of W, w.r.t

the sources,

_ 1 W, 1 Wy - 1 oWy

v — T = fﬂ_
Vg oo

= —=— = —=—" A2
V305, F T G don (3.12)

The Legendre transform then reads
Ly [h,€, 6 7] = / d*e\/G{t" hy + Tu + 0", } — Wi [t,0,537] . (3.13)
The effective average action is then obtained as in (A.12) by

'y m75557§] = fk m7£a57§] - Ask wa§757§} . (314)
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Under (3.3) and (3.7), it is invariant on-shell (its arguments are on-shell quan-

tities),
Di [h+ Loh, &+ L6 E+ LoEG+ Log] =Tk [1,€,67] . (3.15)

The functional RG equation is taken w.r.t all fields in the argument of T,

namely gravitons and ghosts. The Wetterich equation for QEG is then

_ ) @ p\ (g
atrk_ﬁ{Q(r +Rk) (8tRk) _ (rk +Rk)& (atRk)E5 . (3.16)
with
(2)ij _ 3°Ty _ (T en T
0 (x, —4/ 23 () 0%i () 09, (y)’ o= {hw. "€, }
and

(Bre) = w> )™ (Be), = VaREa).

In the case of gravity, the trace includes spacetime integration over the invariant

measure [ d?z\/g.

3.1.3 Truncated flow equations

The flow equation is nearly impossible to solve without a truncation to a reason-
able subspace of the theory. The first simplifying assumption we make reduces
much of the effort, while still being very general: Neglecting the evolution of

the ghosts, with the ansatz

Ty [g7§7§aa =T} |ﬁ+§a070] +Sgh [075559§] +ng Iﬁ’g} . (317)

The chosen ansatz ensures that mixed h — C' terms in equation (3.16) vanish,

simplifying the derivative w.r.t the ghosts. One then obtains

Ty =Tx {; (02 lo.3) + BE (7)) @BE (@)~ (~x Mg+ B E) (8 [91)} :

(3.18)
This simplification is not yet sufficient for us to be able to perform computations.
We needs to limit ourselves to a specific truncation. In order to extract the flow,

we work with the Einstein-Hilbert truncation.
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3.2 The Einstein-Hilbert truncation
3.2.1 The quadratic action

The simplest example of a truncation is the EH truncation,
Ty [9,9] = 26 Zny, /ddxﬁ (—R + 2Ay) (3.19)
+ k22N, / ddm\/ZTg“”]:;j‘Bgagf,f"gw,
with the scale dependence of the action absorbed into the couplings [33],
A=Ay, G—Gr=GZy.

Z N is the field strength renormalization, and the gauge-fixing function is chosen

to be the De-Donder gauge [1],
(% D) 1=
FPhag = V25 (Dvhm - 2D#h) :

We will eventually set ¢ = g to cancel the gauge fixing term, because D,
involves the background Christoffel symbol T’ and thus ﬁﬂgaﬁ = 0. We begin
by obtaining Fz“ad[l, 34, 35]. Combined with the gauge fixing term, one finds

92 (7. 7] = Zy, w2 / A G [, (D* +28) + U, | 7, (3.20)

with

v 1 v v —V—
K",y = (0507 + 006, = "G,0] (3.21)

and

v v D 1 —ur o —  PpHV
Uto =K" 0 R+ 5 [g‘ Rpe + 3,0 R } (3.22)

o o e v rm] - L [RAR]

In the ghosts sector, the action is

San [1,C.Tsg) =~ [ die /G0, M o3I, €7, (3.29)
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where
MI9,9)", = V26 (§"°5"*Dx (9. Do + 9o D)) = 575" Drgor D) . (3.24)
Implementing the ansatz (3.17),

x'Mg,9]", = V2 (&gﬁ + [ﬁy,ﬁ‘])

— 2 (5",,52 + E“,,) . (3.25)

Having obtained the coefficient of the Laplacian in (3.20), we can now choose the
form of the cutoffs. In order to suppress IR modes of the background covariant

Laplacian, we choose

R (<D%) = Zn Ko By (<D /). (3.26a)
—2\ M —2

RE" (—D ) =R (—D /k2) , (3.26b)

where Ry, = kQR,(CO) (—ﬁQ / k2> is the cutoff type and the renormalization of the

ghosts had been neglected, i.e. Zg, = 1. R,(CO) (—ﬁz/k?) is chosen in appendix

C. The modified inverse graviton propagator is then

T + Ry = Zy,K (PE™ (-D°) — 28, + W), (3.27)

—2 _ _ —uv _—
where PE® — _D” 4 RE™ W = 2Um  — (%) o (R - %Rg‘“’) as de-
fined in appendix B. So long as W is linear in curvature, we can expand the

propagator in powers of curvature,

1 1

71 . _
PE™Y oA,
1= W "
— (Zy.K (PE® —2R,)) " N A S
( Ny, ( k k)) 7;( Pkgrav_2Ak>
— - A%Y%
— (Zn K (P _ o)) [1- — 2 4 O (R?
(-2 (1 o)
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Similarly for the ghosts,

gh
Pk

(—M 9.9] + R§" [?])71 = |, (kQR,(GO) (—EQ/kQ) —52) ~-R (3.29)

P

-1
(o, P2") <5ﬂy + };g; +0 (RQ)) .

k

3.2.2 Trace expansion

We follow [34] and combine (3.28) with the heat-kernel expansion we discuss in

appendix B. The r.h.s of (3.18) becomes

1| +o) R (-D°/k?) W
RHS =-Tr — — 1—
2 PE™ — 2, PE™ — 24,
atRk (—ﬁZ/kQ) EP )
—Pkgh 1+ @ +0 (R?)

1 /d -1 (n+9) Ry, 1 (n+ 9¢) Ry,
= 775 d%x g *QQ otav o trg 1-— *Qi — 5 trW
(4m)" f{2 (P —2h) 2T\ o)’

(3.30)

1 (n+9) Ry \ R Oy Ry,
+ *Qﬁ,l (M gtrSTl — Q% Pgh tI‘Vl

—Qa_ <8tRk> <Rtrv1> —Qu OB R+0(R?) ¢,

()’

where n = 0, Zn, /Zn, is the anomalous dimension associated with the invariant

[ d%z+/gR. The subscripts (ST), (V) imply the tracing is done over symmetric-
tensor and vector degrees of freedom, respectively. In the second equality we

used (B.2), only keeping first-order in curvature terms. We evaluate the traces,

d(d+1)

trgrl = 5 (3.31a)

tryl = d, (3.31b)
1)

W = d(dT)R. (3.31¢)
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With the insertion of equations (3.31), (3.30) becomes

1 ~|d(d+1) (n+ 04) Ry, Oy Ry,
RHS=—— [ d* — | —d ==
(4m)*/? / x\/g{ T <P,§“W — 2 4 pg

(3.32)
—|d(d+1) (n+ 0:) Ry d Oy Ry,
+ R 24 Qg—l <Pkgrav_2Ak - 6@%—1 P]gh
dd-1) (n + ) Be Oy Ry,
- 4 Qg grav -2 | Q% 0\ 2
(P — 2Ay) (Pkg )
+0 (R*)}.
On the Lh.s we take the derivative w.r.t t =Ink and set g, =7,
Oy, = 2k? / d®z+/g (~R0,Zn, + 20, (Zn,Ak)) - (3.33)

Combined with the r.h.s, one obtains the RG equation for Zy,,

Z _ a4 —_— - 5 d
at Ny (47T)d/2_1 6 Q§—1 <Pkgrav — 2A, 3 Q§_1 Pkgh
(3.34)
~d(d-1)Qy (W) —4Qy "
(PE™ — 2K,) (Pkgh)

and ZNkKk,

.1 G (n+ 0) Ry 9 Ry

Oy (ZNkAk) —§W d(d—Fl)Q% (Plf;rav_2Ak> 4 QE <P]§h >
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3.2.3 Flow equations

Using the ®-functionals defined in appendix C, we insert (C.3) into equa-

tions (3.34) and (3.35) and arrive at the flow equations

_ 9k d(d+1) &, 2
n=- (45 [77 ( 5 ‘I’%,l (—2Ag) —d(d—1) @% (—2A%)
(3.36a)
dd+1)— 4d— — _
+(T+)<plg_l (—2A) — §<1>1%_1 (0) — 2d(d — 1) 3 (~2A;) — 8% (0)] ,
1 9k 1 =1 =1
Oy = — (24 7) A + 2 )T [d (d+1)ndYy (—285) +2d (d+1) By (~2A) — 8dBy (o)} ,
(3.36b)
where the dimensionless couplings
Ay = k;_QKk, (337)
and
gk = kPG = Zy G, (3.38)
have been used. From equations (3.36) we find that
gk B1
= 3.39
"= T4 B (3.39)

with

(47r)17d/2 —1 —1 =2 =2
By (A)) = (d (d+1) By (~2A) —4dBs_, (0) — 6d(d — 1) B3 (—2A,) — 24 (0)) ,

(3.40a)
(47T)17d/2 51 52
By (Ax) = —5— (d (d+1) 8% _, (~2A) — 6d (d— 1) &3 (—2Ak)) .
(3.40Db)
The § function for gj is gotten by differentiating equation (3.38),
By (9, M) = Owge = (—n +d — 2) g, (3.41)

and when replacing 7 by (3.39), the resulting 5 functions are
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By (g,A) = % +(d—2) gk, (3.42)

and

Balg,A) = —(2+1n) A;ﬁ%d% [d (d+1) DYy (—2A4) +2d (d +1) Ty (~2A5) — 84y (0)] .

(3.43)
3.2.4 The RG flow of QEG in d =4
20
1.5F
o 1.0r
0.5+
0.0+
-01 0.0 0.1 0‘2 0.3 0.4 0‘.5
A
Figure 3.1: RG flow in the phase space of g, Ay in d = 4.
The Gaussian and non-Gaussian fixed points (NGFP) for g, Ay are
g"=0,A"=0, (3.44)
g* =0.707, A* = 0.193, (3.45)
with additional complex fixed points,
g* =4.69+1.33i, A* = —0.078 £+ 0.603i. (3.46)

For a complete phase portrait with an explicitly marked limit cycle the reader
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is referred to [6]. As argued in e.g. [1, 2, 33], there exists a NGFP in the flow
profile such that at this point g*A* = 0.136, in agreement with the universal

quantity found in [36]. Linearizing the flow around the fixed points such that

Bi = Zsz (G (k) =37, (3.47)

where i,j = g, A, and
Bij = 8]62 (Z*) 5 (348)

one obtains from (3.47) the relation
Opui (k) = 0;i (u*) (uj (k) = 5) . (3.49)
J

where wu; (k),u} are the couplings and their fixed points, respectively. The

general solution to equation (3.49) is [2]

0r
i (k) =uy +Y_ CrV/! (20) 7 (3.50)
I

with integration constants C; and some reference scale ko. VI are the right
eigenvectors of B, with eigenvalues —6;, and because B is not necessarily sym-
metric, they can be both real and complex. Equation (3.50) reflects the leading-
order scaling of the flow near the fixed points, with 6; referred to as “critical
exponents” since, in second-order phase transitions, they are linear in the critical

exponents [37]. Near the NGFP (3.45),
O = 1.47 + 3.04i, (3.51)

indicating the NGFP is UV attractive (3¢ > 0). The complex critical expo-
nents reveal that trajectories emanating from the NGFP are, to leading order,
spiral trajectories which have the DSI form of 2.1.1. From figure 3.1 and equa-
tion (3.50) one concludes that in the vicinity of the NGFP the couplings behave
like self-similar fractals. The critical exponents of the complex flow solutions
are

—3.07 — 4.26i, —2.29 — 0.91,

both with a negative real part, indicating that the limit cycle is UV repulsive

and emanates spiral trajectories as well.
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To understand the meaning of a limit cycle in the flow of a quantum-

gravitational theory, we recall the Callan-Symanzic equation,

Ok + B (gr) Dy, + B (Ag) D, — nn) G (2 g, Ak, k) = 0, (3.52)

where G (; g, Ay, k) is the n-point correlation function of the gravitational

field. When = — e*z it follows that

(—0x + B (gk) Dg, + B (Ax) On, — ) G™) (e a3 giy Ak, k) = 0. (3.53)

This scaling relation is formally solved by integration [38] to give

g (gk: Ak (gr))
G™ (era; gi (0), Ay (0), k) =exp n/ dgM 3.54
( < (), A (0), k) 91(0) "By (g5, Ak (gr)) (3.54)
When gi and Ag have a limit cycle with period T, they satisfy
9k (0) = g (T) , A (0) = Ap (T) . (3.55)

Replacing T for A in equation (3.54) results in the n-point function repeating

itself periodically,

G™ (eTz; g, Ak, k) = G (2, g, Ag) - (3.56)

T we conclude that the corre-

Since this scaling symmetry only holds for A = e
lation functions of QEG are DSI functions. In particular, on the limit cycle the

spacetime is a fractal,
(g (e72)) = (g (2)) - (3.57)
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3.3 The QEG flow as a substitution tiling

-10 -5 0 5 10

Figure 3.2: Left: Jmgi(A) as a function of =z + iy = A. Right:
Jmgg (ReA) , Regy (ReA) .

We consider ) = 0, a valid assumption near a stationary point of the flow. A

vanishing flow in A results in a quadratic equation for g,

—3+ A (3+2A+56A2 —2A)?
+A(B+2A+ )+1447T2A(1 2A)

2
= — 12 _—
0= —gi + 12mg) 107 — 20A 107 — 20A

If we assume gy is also close to its fixed points, we can use g7 ~ gx119x and

obtain

—3+ A (3+2A +56A2 —2A)?
+ ( + + ) + 1447T2A(172A)'
107 — 20A 107 — 20A

Jk+19k = grl2m (3.58)

Note that the form of (3.58) resembles that of the Efimov mapping, with the
QEG occurrence matrix being

—3+A(34+2A+56A%) A(1—2A)2
127 107—20A 1447 107—20A ] (3.59)

1 0

Mgrc =
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A=01; N=28

0
23388
1

-2 ™~ 2,33 [ +
lp ~ lp —
%
2362

23364

o 1 2 3 4 5 6 7 8 il 35372 353725 35373 353735 35374 353745
la x10* la x10*

Figure 3.3: At A = 0.1, gy is periodic.

We wish to interpret the eigenvectors of Mgrq as the fixed points like we
did for Efimov physics. Unfortunately, their dependence on A is much more

complicated.

A=0.193; N =28

o 5 10 15 20 25 30

A=0.193; N =28 A=0.193; N =28
T~

gt Criyy s

-6000
4328
-8000

43285
~10000
o 2000 4000 6000 8000 10000 12000 61348 6135 61352 61354 61356 61358 6136

Ly la

Figure 3.4: At A = 0.193, g; is periodic.

It is illuminating, however, to replace A by the fixed points found in sec-
tion 3.2.4, as it turns out that the ratio of entries of eigenvectors indeed agrees
with the fixed points of gi. Figure 3.2 illustrates the dependence of Jmgy (A)
and gx (A) on A.
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A=-0.1; N=28

Figure 3.5: At A = —0.1, g is quasi-periodic.

Figure 3.6: At A = —1, g is aperiodic.

It is evident in the plotted sequences for different values of A in figures 3.3-
3.8, alongside respective values of g, that various different scaling behaviors
occur. We recover the same phase transition of periodic to fractal tilings, cor-
responding to the proximity of A to its fixed points or to its limit cycle, respec-

tively.
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A =—-0.078 +0.603i; N =28 A = —0.078 +0.603i; N =28
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Figure 3.7: At A = —0.078 + 0.6031, |gi| is periodic, but its argument arg (gx)
is discretely self similar.

For A = —0.078 £ 0.6034, the point of the limit cycle, we find a fractal tiling
in the argument of the complex functions that make g,¢4,¢p. We present in
figure 3.8 the subsequent zoom-ins into this fractal, which unvail its discrete

self-similarity explicitly.

o A=-0078+0.603;; N =28 . A=-0078+0.603; N =28
arg(ts), ] e
W R BT
s A=-0078+0603; N =28 o A=-0.078+0.603i; N =28
- ™ o N

Figure 3.8: For A = —0.078 + 0.603i, close-ups of each segment of this fractal
look precisely like the original shape.
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4 Conclusions

We have studied a mapping from RG flows to substitution processes and tested
it on two seemingly unrelated subjects - Efimov physics and the Einstein-Hilbert
truncation of QEG. We obtained tilings for each theory, in both cases observing
the same phase transition from CSI to DSI tilings. The occurrence matrix for
Efimov had £ as a control parameter in its phase transition, and a critical value
identical to that of the transition of its flow from real to complex fixed points,
& =¢&.. In QEG we were not able to produce a control parameter and a critical
value due to the complex nature of the Einstein-Hilbert flow. We obtained the
phase transition by replacing different values of the cosmological constant A into
the occurrence matrix, and found correlation between fractal tilings and limit
cycles in the flow. In order to obtain this fractal tiling one must supplement
known values of fixed points into the matrix, which was not necessary in the
Efimov case. Furthermore, the mapping predicts the fixed points of a quadratic
flow such as Efimov, but unable to achieve the same for QEG. Because the
Einstein-Hilbert flow can only be solved numerically, other truncations should be
considered and tested with our mapping. Doing so would confirm the correlation
of fractal tilings with limit cycle solutions (or their absence!) even in cases with
no analytical solution to the flow, and strengthen our claim the QEG belongs
to Efimov physics.

The conclusion that limit cycles in the RG flow of a quantum gravity theory
translate to fractal tilings, begs one to wonder whether some sort of substitution
process could be the underlying structure of our spacetime. There had recently
been a surprising theory by Stephen Wolfram suggesting this very conclusion
[39]. Another quantum theory of geometry reminiscent of this description is
CDT. Although we did not examine it in this work, it is by construction a very
interesting theory to approach from a substitution perspective: it uses simplices
and matching rules as the building blocks of spacetime [40]. It might be that
the mystery surrounding the interior of black holes and physics at the Planck

length, could resolve in a universe that evolves as a substitution process.
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Appendix

A Wetterich equation

A.0.0.1 An exact evolution of the effective action We follow the proof

N

.—1, however one can easily generalize it to

[41] for a set of real scalar fields {p®}
non-Abelian, Grassmann and vector fields. For an action S [¢], the generating
functional W [J] is gotten by adding an appropriate source term,

W[J]=1In / DypeSO)+7¢, (A1)
with the convention that J-¢ = [ d%y.J (y) ¢ (y). Taking the Legendre transform
of (A.1) gives the effective action

Llgl=J-¢-WLJ], (A.2)

where ¢ = (p) = 6W/dJ is the classical (expectation) value of the field. We
modify W [J],T [¢] to depend on the momentum scale k. IR degrees of freedom
are suppressed up to this scale, to decouple the slow modes p?> < k? from the
rest and leave the fast modes unaffected, to be integrated out. This modification

is introduced by adding a scale dependent “mass term” to the action,

d
asilel =5 [ R e 009" (), (43)

where we've used ¢% (p) = pq (—p) for real fields. Ry (p) is a weight function,

or “mass” term, which satisfies the following conditions:

o It recovers the 1PI generating functional I' [¢] in the IR limit,

li =0,['(k=0)=T.
kZ/gQH_}ORk (p)=0,I'(k=0)

e It recovers the bare microscopic action S in the UV limit,

lim Ry (p) =00, (k — oc0) = S.

k2—o00
e It only weighs down modes slower than the probing scale k,
Ry, (p2 < ]432) > 0, Ry, (p2 > kQ) =0.
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The objective of Ry, is to suppress the low modes p? < k2, forcing this mass
term to be e.g. oc k? for kinetic terms of the form —9%, Ry (p?) o< Zk? for
renormalized kinetic terms such as Z, (9¢), ete.

This scale dependence results in an average effective action I'y [¢], with
averaging taken over volumes ~ k% (the coarse-graining or mass scale). The

resulting action is

d
so=s- [ (;j;’d T (p)@" (1) + AS. (A.4)

Equipped with scale dependence and initial conditions, it is natural to look for

a flow equation of I';. We define T, ,the Legendre transform of Wy,

d
Ty [on] = / (jﬂfd T2 (9) - 6% (p) — Wi ], (A5)
such that o
IV
aﬁbz (p) - Ja (p) . (A6)

We also derive the connected two-point function through

a N 52Wk
Gy 0:P) = 57577 )
_ 04 (p)
oI (p)
= (¢" (0)wy ') — ¢ (0) D3 (P) - (A7)
Note that - . »)
é Fk aJ p
_ 7 A8
S )R ) DAL ) (A5
so Iy and W}, satisfy the identity
ddp/ " , 52fk
G (p, = 5, 0°. A.
/ amyt ) Sy agy ) —

To obtain the dependence of T, on k, we fix i and take the derivative w.r.t

t=Ink,

d
Ol == Wil = 0 (88 = 5 [ S LR () el (0) ¢ (), (A0
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and thus

3 d
Al = 5 | ORGP L ) (AT

We now redefine

_ d
D= D g [ e ()61 ()41, (a12)

and obtain the flow of T,

Tr (GxO: Ry) , (A.13)

where the trace sums over all indices and momenta. As a final step we use the

identity (A.9) to obtain

1

2T )
Gy = ——— A.14
¢ <8¢:ka¢z (414

92T, )‘1
=35 5=+R) -
<8¢:ka¢z g

The ezact evolution equation for the effective action, commonly referred to as

the Wetterich equation, then follows:

1 O R
Ol = 5T (W) . (A.15)
L7 [0+ Ry

Note that in position space,
1 d 2
ASy el = 5 [ d'wp (@) Ry (=0°) ¢ (2),

so the trace in equation (A.15) involves spacetime integration.

B Heat kernel technique

The trace involves the inverse propagator

52Ty,
Shoh’
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which we will consider for h = 0, since it is quadratic in h and we want to cancel
contributions from the gauge-fixing term. One needs only keep quadratic terms

in I'g, which suggests the expansion

Tk[9,9] =Tk [7.9] + O (h) + quad [ig] +O (Eg) 7

where )
1 — 0T, —
ravad . g = f/dda: Gh——h.
¢ g = 3 VoS
The appropriate choice for RV, in order to suppress I’%uad, is discussed in

section 3.2.1. Tt must combine with the kinetic term into the form —D- + k2
times some function or constant which are independent of the Laplacian. Both
the quadratic contribution to the effective action and the suppression term R are
functionals of the covariant Laplacian _D’. In order to evaluate the traces on

the r.h.s of (3.18), we use the heat-kernal expansion of a Laplace-type operator,

W (A) = — [Qy (W) Bo (8) +Qq_, (W) By (8) + ..

(4m)¥? 172
+Qo (W) By (A)+ Q-1 (W) Bay2 (A) +...}, (B.1)
where
Qn W] = ﬁ /000 dzz""'W(2), n>0,
Qo (W] =W (0),

Q_m [W] = (=)W (0), m €N,

and B, = f dx\/gb,, are the known coefficients of the heat-trace asymptotic
expansion when s — 0. b,, are linear combinations of curvature tensors and
their covariant derivatives, containing 2n derivatives of the metric. We then
define

Pi(A)=-D + Ry (A),

where Ry, = k2K Ry, is chosen, as discussed in (3.26a). Then, the trace reduces

to

O Ry, (A) 1 > ( Oy Ry, > / d.. /= 2
T = d d bo, (—V*+W).
B, D)+l + W (40)?? ;Qg—n P+ ql /by ( +W)

(B.2)
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In section 3.2.1 we find a quadratic action of the form I‘Ef) = Kk?ZK <752 +ql + K_lU) =
k2K <752 +ql + W), with [W, ﬁQ} = 0. The only relevant heat-trace coef-

ficients are then given by [34]

by = trl,

by = %trl —trW.

Higher order coefficients are useful in other truncations not discuss in this work.

C (@Q-functionals

The formulated RG equations of the Einstein-Hilbert truncation contain some
undetermined forms, which can be written as linear combinations of the follow-

ing functionals,

0o (0)7
OP (w) = L dzz"! Ry (2) , (C.1a)
n T (n) (0) Z
0 [z + R, (2) + w}
) 0)
I (w) = By (2) : (C.1b)

1 /Ood n—1
e — 74

so that the @-functionals for n > 0 [42] are

0 (e e ) e 208 (2R ) 205 (2R
k

(C.2a)

O¢ Ry,
(m)
To be able to analytically solve for ®, we choose the optimized cutoff function

[43, 44]

— 92(n—p+1) (37 (0) — @2 (0)] . (C.2b)

n

@n

Ri (2/k%) = (K* —2) © (K* — 2),

for which
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1 1

o7 (w) = RCESNOIEEG (C.3a)
o (w) = 5 (n1—|— 2) (1 +1w)”‘ (C:3b)

We will also find it convenient to define
®, () = B (w) — @, (w) = : (C.4)

(n+1)(1+w)?
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