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Spin-echo decay in a stochastic field environment
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We derive a general formalism with which it is possible to obtain the time (t) dependence of the echo size
for a spin in a stochastic field environment. Our model is based on ‘‘strong collisions.’’ We examine in detail
two examples. In the first one the field distribution has a finite second moment, and in the second one~a
Lorentzian! it does not. We find that the echo decay in the first case is exponential int3 ast→0, and in the
second case can be approximated by the phenomenological expression exp(2@2t/T2#

b) with 1,b,2; in the
t→0 limit b52. In addition, only the first case shows aT2 minimum effect.@S0163-1829~99!02937-9#
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Spin-echo decay~SED! measurements, also known asT2,
are conducted by a variety of experimental techniques, s
as radio-frequency–muon-spin resonance (rf-mSR,1 ESR,2

nuclear qradrupole resonance~NQR!, and NMR.3 With the
recent explosion of high-Tc superconductivity research
NMR-T2 measurements in particular are receiving renew
attention, since they are very successful in probing both
normal4,5 and superconducting states6 of cuprates. These ex
periments lead to a revival of theoretical activity, focusi
on the calculation of the shape of the SED relaxation fu
tion ~wave form! for different sources of interactions such
spin lattice coupling, spin-spin coupling, and stochastic fl
tuations. For this purpose, a variety of analytical7 and
numerical8 models were applied. However, several dynam
cal features, observed experimentally, have not been
counted for. In this paper we provide insight into these f
tures by re-examining the echo decay wave form of a spi
a stochastic field environment, and use an analytical
proach based on the ‘‘strong collision’’ model~see below! to
yield quantitative understanding of SED.

An earlier exact treatment of the stochastic proble
based on a diffusionlike model, was presented by Klau
and Anderson~KA !.9 They found that for Lorentzian diffu-
sion the wave form is Gaussian, and for Gaussian diffus
the wave form is exponential int3. Although the KA ap-
proach is physically more intuitive, the final result lac
three features:~I! the SED rate depends monotonically on t
diffusion rate, although it is natural to expect that when
diffusion is either very fast or extremely slow, the echo do
not decay,~II ! the wave form does not depend on the diff
sion rate, and, therefore, it cannot change continuously~for
example, as a function of temperature!, and~III ! they could
not account for stretched exponential relaxati
exp(2@2t/T2#

b) with b,2. As we shall see, our derivatio
allows for all these phenomena, and, therefore, might be
plicable to some cases to which the diffusion model is n

In echo NMR, NQR, and ESR transverse relaxation m
surements, ap/2 pulse is applied to a system of spins pola
ized along thez direction. As a result, a net polarizatio
(Mx) along thex direction in the rotating reference fram
~RRF! is obtained. In rf-mSR the muons enter the samp
with their spin already polarized along the RRFx direction.
After the pulse~or muon arrival!, the spins evolve with time
each one in its local fieldBz , until time t when ap pulse is
PRB 600163-1829/99/60~13!/9279~4!/$15.00
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applied, sending thex component~in the RRF! of each spin
Sx to 2Sx ~and Sz to 2Sz). The spins then continue to
evolve, and ifBz is static, an echo is formed at time 2t. If,
however, the local field is dynamic, the phase acquired
the spin before thep pulse is not necessarily equal to th
phase lost after it, and the echo size diminishes as a func
of t. This situation can be quantified by

Mx~2t!5Mx~0!K cosF E
0

t

v~ t !dt2E
t

2t

v~ t !dtG L , ~1!

wherev(t)5gBz(t), g is the spin’s gyromagnetic ratio, an
^& is an average over all possible frequency trajectories.

First we would like to evaluate Eq.~1! to lowest order in
t. Assuming that the argument of the cosine is small, we
expand it to second order, and then evaluate terms suc
*0

t*0
tdt8dt9^v(t8)v(t9)& and *0

t*t
2tdt8dt9^v(t8)v(t9)&.

Assuming a correlation function of the form

^v~ t8!v~ t9!&5^v2&exp~2nut92t8u!

5^v2&~12nut92t8u1••• !, ~2!

where^v2& is the second moment of the instantaneous f
quency distribution, we find

Mx~2t!5Mx~0!S 12
2

3
^v2&nt31••• D . ~3!

Equation 3 is well known3 and will serve as a test of ou
derivation.

Next we shall evaluate Eq.~1! to all orders int by mak-
ing some assumptions concerningv(t). We quantify the dy-
namical fluctuation using ‘‘indirect echo’’ and the stron
collision model. Indirect echo is equivalent to the situati
described by Eq.~1! but instead ofSx→2Sx at thep pulse,
the frequency is reversed (v→2v); in Fig. 1~a! we demon-
strate indirect echo by showing that a reversal ofv at t leads
to Sx(2t)5Sx(0)[1. The strong collision model accoun
for v(t) by allowing frequency changes only at speci
timest1 ,t2 . . . tn . The probability density of finding the fre
quencyv at any time interval is taken to be the intern
frequency distributionr(v). A demonstration of this situa
tion for a particular spin is presented in Fig. 1~b!. Here the
spin has experienced two frequency changes at timest1 and
9279 ©1999 The American Physical Society
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t2 before thep pulse and one change after thep pulse att3.
As a resultSx(2t)ÞSx(0) and on average the echo size w
decrease as a function oft. In this type of dynamical proces
the spin environment after each jump is not correlated w
the spin environment before the jump, and the correlat
function is in the form of Eq.~2!. By comparison, in the
model of KA the frequency after each change depends on
frequency before the change.

We shall now treat the case of an ensemble of spins
average over all possible field changes, the times at wh
they take place, and all possible fields in each time inter
If there aren hops at timest1, . . . ,tn before thep pulse and
m hops at timestn11 , . . . ,tm1n between thep and the ob-
servation timet52t, the phase acquired by the spin (un,m)
is

un,m5vn1m11~ t2tn1m!1(
j 52

m

v j 1n~ tn1 j2tn1 j 21!

2vn11~ tn112t!1vn11~t2tn!1(
i 51

n

v i~ t i2t i 21!,

~4!

wherev i is the frequency in thei th time interval. The po-
larization along the RRFx axis is, therefore,

Mx~v1 , . . . ,vn1m11 ;t,t;t1 , . . . ,tn1m![ Re exp~ iun,m!,

where Re stands for the real part; we shall omit it from n
on. We first average over all possible frequenciesv i in the
time segment@ t i 21 ,t i # and define

FIG. 1. A demonstration of the indirect echo when there are
local field fluctuations~a!, and when the field is dynamical~b! and
changes instantaneously.
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Mx~ t,t;t1 , . . . ,tn1m!

[E r~v1!dv1 . . . E r~vn1m11!dvn1m11

3Mx~v1 , . . . ,vn1m11 ;t,t;t1 , . . . ,tn1m11!.

This results in

Mx~ t,t;t1 , . . . ,tn1m!

5g~ t2tn1m!F)
j 52

m

g~ t j 1n2t j 1n21!G
3g~2t2tn112tn21!F)

i 51

n

g~ t i2t i 21!G ,

whereg(t) is given by

g~ t !5E
2`

`

r~v!exp~ ivt !dv. ~5!

The probability density of finding exactlyn1m hops at
times t1 , . . . ,tn1m is

exp@2n~ t2tn1m!# )
i 51

n1m

exp@2n~ t i2t i 21!#n dti

5nn1m exp~2nt ! )
i 51

n1m

dti ,

wheren is the field hopping rate. Thus, the averaged s
polarization at timet is given by

Mx~ t !5 (
n50

`

(
m50

`

nn1m exp~2nt !I n,m~ t,t!, ~6!

where

I n,m~ t,t!5E
t

t

dtn1m•••E
t

tn12
dtn11E

0

t

dtn•••

3E
0

t2
dt1Mx~ t,t;t1 , . . . ,tn1m!. ~7!

The integration limits guarantee thatt i 11.t i .
We can simplify Eq.~7! by turning the time at which the

p pulse is applied (t) into a running variable (t8) whose
value is fixed with ad function. Thed function should force
the sum of time segments from zero untilt to be equal to the
sum of time segments from thet until 2t, namely,

d~ t82t!52dS ~ t82tn!1(
i 51

n

~ t i2t i 21!

2 (
j 52

m11

~ tn1 j2tn1 j 21!2~ tn112t8!D ,

wheretn1m11 stands for 2t. As a result
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I n,m~2t,t!5E
0

2t

dtn1m•••E
0

tn12
dtn11E

0

tn11
dt8E

0

t8
dtn•••

3E
0

t2
dt1Mx~2t,t8;t1 . . . tn1m!d~ t82t!, ~8!

and the integrand in Eq.~8! is a function of time differences
only.

We now introduce the integral representation of thed
function

d~x!5
1

2pE2`

`

exp~ iVx!dV, ~9!

and the Laplace transform ofMx :

M̄ x~s!52E
0

`

Mx~2t!exp~22st!dt. ~10!

By inserting Eq.~9! into Eq. ~8!, Eq. ~8! into Eq. ~6!, and
substituting this in Eq.~10! we find that all the integrals
decouple and

M̄ x~s!5
1

2pE2`

`

dV f 2~z2 ,z1!

3 (
n50

`

(
m50

`

@n f 1~z2!#n@n f 1~z1!#m, ~11!

where

z65s1n6 iV/2, ~12!

f 1~z6!5E
0

`

du exp~2z6u!g~u!, ~13!

and

f 2~z2 ,z1!5
f 1~z2!1 f 1~z1!

z21z1
. ~14!

Finally, un f (z)u,1, and performing the sums in Eq.~11!
gives

M̄ x~s!5
1

2pE2`

`

dV
f 2~z2 ,z1!

@12n f 1~z2!#@12n f 1~z1!#
, ~15!

from which we obtain the time-dependent nuclear magn
zation by

Mx~2t!5L 21
„M̄ x~s!…t52t , ~16!

whereL 21 is the inverse Laplace transform operator. Usi
Eq. ~5! and Eqs.~12!–~16! one can obtain the echo deca
knowing only the frequency distributionr(v). Now let us
examine two simple cases:

A distribution with a second moment. It is useful to ex-
amine a field distribution with a finite second moment so
to compare with Eq.~3!. One such distribution is

r~v!5
2s3

p~s414v4!
, ~17!

and its second moment is given by^v2&5s2/2. This leads to
i-

s

Mx~2t!5
s2e22nt

~s2n!~s22n!
2

ns2e2(s1n)t

2~s2n! f s
2

2
n~s223ns22n2!e2(s1n)t

4~s22n! f s
2

cos~2 f st!

2
n~s12n!e2(s1n)t

2 f s~s22n!
sin~2 f st!, ~18!

where f s
2[(s222sn2n2)/4. For f s

2,0 the result is the
same, except thatf s→ i u f su. An expansion of Eq.~18!
aroundt50 agrees with Eq.~3!, thus reinforcing the validity
of our derivation. In Fig. 2~a! we depict Eq.~18! for various
values ofn/s. It is clear from this figure that when eithe
n/s!1 or n/s@1 the echo decay rate is weak compared
n/s.1. To quantify this phenomenon we defineT2 as the
time at which the echo size decreases to 1/e. We find thatT2
is shortest forn50.88s, and at this value ofn T255.75/s.

Lorentzian distribution. In this case the equilibrium dis
tribution is taken to be

r~v!5
l

p~l21v2!
, ~19!

and we find

Mx
L~2t!5

l exp~22nt!2n exp~22lt!

l2n
, ~20!

where L stands for Lorentzian. This expression has inter
ing properties. An expansion of Eq.~20! aroundt50 gives

Mx
L~2t!512

1

2
ln~2t!21O~t3!,

which means that at early enough times the relaxation sh
is Gaussian. This result was put to use in NMR data anal
in Ref. 5. One should note that this expansion does not c
tradict Eq. ~3! since a Lorentzian does not have a seco
moment. However, forl@n the relaxation is exponential fo
lt@1 with the relaxation raten. Similarly, whenl!n the

FIG. 2. The echo decay for~a! a distribution with a second
moment @Eq. ~18!# vs 2st, and ~b! Lorentzian field distribution
@Eq. ~20!# as a function of 2lt. The solid line in panel~b! repre-
sents a fit to Eq.~21! as described in the text.
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relaxation is exponential fornt@1 with the relaxation rate
l. This suggests that experimental data which stem from
~20! can be well fitted to a stretched exponential

Mx~2t!5expS 2F2t

T2
GbD ~21!

with 1,b,2. In Fig. 2~b! we depict three data sets o
Mx

L(2t) obtained from Eq.~20! for various values ofn/l.
Unlike in the previous cases, the Lorentzian case show
continuous increase in relaxation rate with increasingn. In
this figure we also depict the best fit of the data sets to
~21!. The fits are quite good over more than an order
magnitude in echo size, and when experimental data are
ted, Eq.~20! can easily be confused with Eq.~21!. In Fig. 3
we show the parametersb and 1/(lT2) as a function ofn/l.
While T2 decreases monotonically with increasing fluctu
tion rate, the powerb goes through a maximum atn/l51.
However, it should be mentioned that the value ofb depends
on the range which is used for the fit.

It is interesting to compare our Lorentzian result with th
of KA. In the KA model the field dynamics at the site of th
observed nuclei is generated by flipping some other un
served individual spins. Therefore, in their model, it is mo
likely to undergo small field changes than large ones. T
situation KA tried to describe could still be approximated
the strong collision model ifn@l, since then many unob
served spins are flipped before the observed nuclei ev
.
ot
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considerably with time. This suggests that in reality, forn
@l, we should expectb51, as found here, and forn.l we
should expectb52 as found by KA. Between these tw
limits b should change continuously.

We thus provide a recipe for obtaining the time depe
dence of the echo size for a given frequency distribution.
examined two particular cases and found a natural expla
tion for experimental and conceptual features, such
stretched-exponential relaxation andT2 minima, which have
not been explained quantitatively before.

FIG. 3. The parameters 1/(lT2) and b which allow the best
approximation of Eq.~20! with Eq. ~21!.
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