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Spin-echo decay in a stochastic field environment
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We derive a general formalism with which it is possible to obtain the tim)edependence of the echo size
for a spin in a stochastic field environment. Our model is based on “strong collisions.” We examine in detail
two examples. In the first one the field distribution has a finite second moment, and in the secdiad one
Lorentzian it does not. We find that the echo decay in the first case is exponentidlda r—0, and in the
second case can be approximated by the phenomenological expressiefi2ekp{]?) with 1<8<2; in the
7—0 limit B=2. In addition, only the first case showsTa minimum effect.[S0163-18299)02937-9

Spin-echo decaySED) measurements, also known &g applied, sending the componenti(in the RRB of each spin
are conducted by a variety of experimental techniques, sucf, to —S, (and S, to —S,). The spins then continue to
as radio-frequency—muon-spin resonance (&R} ESR? evolve, and ifB, is static, an echo is formed at timer 2If,
nuclear gradrupole resonan@®QR), and NMR? With the  however, the local field is dynamic, the phase acquired by
recent explosion of high<c superconductivity research, the spin before ther pulse is not necessarily equal to the
NMR-T, measurements in particular are receiving reneweghase lost after it, and the echo size diminishes as a function
attention, since they are very successful in probing both thef 7. This situation can be quantified by
normaf-® and superconducting statesf cuprates. These ex- ,
periments lead to a revival of theoretical activity, focusing _ 4 4
on the calculation of the shape of the SED relaxation func- MX(ZT)_MX(O)<CO{ fo o(fdt= L o(hdt > @)
tion (wave form for different sources of interactions such as
spin lattice coupling, spin-spin coupling, and stochastic flucwherew(t) = yB,(t), v is the spin’s gyromagnetic ratio, and
tuations. For this purpose, a variety of analyticaind () is an average over all possible frequency trajectories.
numerical models were applied. However, several dynami- First we would like to evaluate Eql) to lowest order in
cal features, observed experimentally, have not been ac~ Assuming that the argument of the cosine is small, we can
counted for. In this paper we provide insight into these fea€xpand it to second order, and then evaluate terms such as
tures by re-examining the echo decay wave form of a spin i/ 5/ 5dt’ dt"{w(t")o(t")) and [327dt'dt"(w(t")w(t")).

a stochastic field environment, and use an analytical apAssuming a correlation function of the form
proach based on the “strong collision” modskee belowto
yield quantitative understanding of SED. (o(t)o(t")=(w®)exp(— v|t"—t'])

An earlier exact treatment of the stochastic problem, 0 n e
based on a diffusionlike model, was presented by Klauder =(@) (A=t =t +--), @
and Andersor(KA).? They found that for Lorentzian diffu- where(w?) is the second moment of the instantaneous fre-
sion the wave form is Gaussian, and for Gaussian diffusioyuency distribution, we find
the wave form is exponential in®. Although the KA ap-
proach is physically more intuitive, the final result lacks 2, 4
three featureg) the SED rate depends monotonically on the M (27)=M(0)| 1= Z({@Tv7+--- |. 3
diffusion rate, although it is natural to expect that when the
diffusion is either very fast or extremely slow, the echo doesEquation 3 is well knowh and will serve as a test of our
not decay/1l) the wave form does not depend on the diffu- derivation.
sion rate, and, therefore, it cannot change continuo(sly Next we shall evaluate Eq1) to all orders inT by mak-
example, as a function of temperatyrand(lll) they could ing some assumptions concerniagt). We quantify the dy-
not account for stretched exponential relaxationnamical fluctuation using “indirect echo” and the strong
exp(—[27T,]%) with B<2. As we shall see, our derivation collision model. Indirect echo is equivalent to the situation
allows for all these phenomena, and, therefore, might be apescribed by Eq(1) but instead of5,— — S, at then pulse,
plicable to some cases to which the diffusion model is not. the frequency is reversed (- — w); in Fig. 1(& we demon-

In echo NMR, NQR, and ESR transverse relaxation meastrate indirect echo by showing that a reversabdit = leads
surements, ar/2 pulse is applied to a system of spins polar-to S,(27)=S,(0)=1. The strong collision model accounts
ized along thez direction. As a result, a net polarization for w(t) by allowing frequency changes only at specific
(M,) along thex direction in the rotating reference frame timest;,t, .. .t,,. The probability density of finding the fre-
(RRF) is obtained. In rfx SR the muons enter the sample quency w at any time interval is taken to be the internal
with their spin already polarized along the RRFirection.  frequency distributiorp(w). A demonstration of this situa-
After the pulse(or muon arrival, the spins evolve with time, tion for a particular spin is presented in Figbl Here the
each one in its local fiel&,, until time 7 when am pulse is  spin has experienced two frequency changes at timasd
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My (t,m5te, .o them)

Ef ploy)do; ... f p(wnim+1)don men

><'le(wil.l e 1wn+m+1;t1T;t1! e !tn+m+l)'

This results in

My(t,mite, o them)

=g(t—th m)

m
j];[z g(tj+n_tj+n1)}

Xg(27_tn+1_tn—1){il_[1 g(ti_ti—l)}

whereg(t) is given by

g(t)= f p(w)expiot)do. (5)
The probability density of finding exactlpy+m hops at
timesty, ... thim IS
FIG. 1. A demonstration of the indirect echo when there are no
local field fluctuationga), and when the field is dynamicéb) and n+m
changes instantaneously. ext — v(t—t,sm)] H exf — v(ti—t;_;)]vdt
i=1
t, before thewr pulse and one change after thepulse att 5. n+m
As a resultS,(27) # S,(0) and on average the echo size will =" Mexp( — t) H dt;,
decrease as a function ef In this type of dynamical process i=1

the spin environment after each jump is not correlated with

the spin environment before the jump, and the correlationvhere v is the field hopping rate. Thus, the averaged spin
function is in the form of Eq.(2). By comparison, in the Polarization at time is given by

model of KA the frequency after each change depends on the

frequency before the change. o
We shall now treat the case of an ensemble of spins and My(t)= 20 20 VMM expl = vi)ly m(t, 7), (6)
average over all possible field changes, the times at which e me
they take place, and all possible fields in each time intervalynere
If there aren hops at timeg, . . . t,, before ther pulse and
m hops at timeg,, 1, ... tme, between ther and the ob- t ths -
servation timet=27, the phase acquired by the spifi, () |n’m(t,7):J dtim: - J dthJ dt,---
is T T 0
)
m X J'O dt;My(t, 7ty - tem)- (7)

On.m= Onimi1(t—thim) + 22 wj+n(tn+j _tn+j71)
: The integration limits guarantee thiat ;>t; .
n We can simplify Eq(7) by turning the time at which the
—0ni1(thr1— ) F oppa(T—t) + 2 wi(t—ti_y), m pulse is applied £) into a running variablet() whose
=t value is fixed with as function. Theé function should force
(4) the sum of time segments from zero untilo be equal to the
sum of time segments from theuntil 27, namely,

where w; is the frequency in théth time interval. The po-

larization along the RRIE axis is, therefore, n
S(t'—71)=26 (t’—tn)+izl (ti—t_1)

My(wy, ..., 0nimest Tt oo them) = Reexpi 6, ), _—

f— . — . — — 4
where Re stands for the real part; we shall omit it from now JZZ (tnj = tnej-2) = (taa =) |,

on. We first average over all possible frequencigsn the
time segmengt; _4,t;] and define wheret,, .1 Stands for 2. As a result
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27 the2 thi1 t
|n,m(2r,T)=J dtnm-.-f dtMJ dt’f dt,- - -
0 0 0 0

t
xfzdtllle(zr,t';tl...tnm)a(t'—r), )
0

and the integrand in Eq8) is a function of time differences
only.

We now introduce the integral representation of the
function

1 (= .
5(x)=EJ7xexp(|Qx)dQ, 9
and the Laplace transform o, :
Mx(s)=2f M, (27)exp —2s7)dT. (10)
0

By inserting Eq.(9) into Eq. (8), Eqg. (8) into Eq. (6), and
substituting this in Eq(10) we find that all the integrals
decouple and

1 o)
Mx(s)=5£wdﬂfz(27,2+)

ano PX [vf(z)]"[vf(z)]™ (1D
where
Z, =S+ v*iQ/2, (12)
fl(zi)=foxduexp(—zium(U), (13
and
e oy EED

z_ +z,
Finally, |»f(z)|<1, and performing the sums in EL1)
gives

— 1 * fZ(Z— vz+)
Mi(s)= Ef_xdﬂ[l—vfnz>][1—vf1<z+>]’

(19

from which we obtain the time-dependent nuclear magneti

zation by

My(27)=L "1 My())=2,, (16)

where£ ~1 is the inverse Laplace transform operator. Using
Eq. (5) and EQs.(12—(16) one can obtain the echo decay

knowing only the frequency distribution(w). Now let us
examine two simple cases:
A distribution with a second momerit is useful to ex-
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FIG. 2. The echo decay fo@) a distribution with a second
moment[Eqg. (18)] vs 207, and (b) Lorentzian field distribution
[Eg. (20)] as a function of 2 7. The solid line in panel(b) repre-
sents a fit to Eq(21) as described in the text.
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0,26721)7' V0_2e7(0'+1/)7'

(0=1)(0-2v)  2(0—n)f2

M, (27)=

v(a?—3vo—2v%)e (7T
- 4(0__21/)]‘(2’ coq2f,7)

v(o+2v)e (@7
2f (0—2v)

where f2=(0?—20v—1?)/4. For f2<0 the result is the
same, except thaf,—i|f,|. An expansion of Eq.(18)
aroundr= 0 agrees with Eq.3), thus reinforcing the validity
of our derivation. In Fig. &) we depict Eq(18) for various
values ofv/o. It is clear from this figure that when either
vlo<1 orv/o>1 the echo decay rate is weak compared to
v/lo=1. To quantify this phenomenon we defifig as the
time at which the echo size decreases @ We find thatT,
is shortest forv=0.88r, and at this value of T,=5.75.
Lorentzian distribution In this case the equilibrium dis-
tribution is taken to be

sin(2f . 7), (18)

N
=, 19
plo)= s (19
and we find
M!;(ZT)Z Nexp —2vT)—vexXp —2\T) (20

A—v ’

where L stands for Lorentzian. This expression has interest-
ing properties. An expansion of ER0) aroundr=0 gives

My(27)=1— %M(zr)% o(7),

amine a field distribution with a finite second moment so as

to compare with Eq(3). One such distribution is

20°

m(o*+4w?) ’

plw)= (17

and its second moment is given by?) = /2. This leads to

which means that at early enough times the relaxation shape
is Gaussian. This result was put to use in NMR data analysis
in Ref. 5. One should note that this expansion does not con-
tradict Eq.(3) since a Lorentzian does not have a second
moment. However, fok> v the relaxation is exponential for
N7>1 with the relaxation rate.. Similarly, when\<v the
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relaxation is exponential forr>1 with the relaxation rate 1.0
\. This suggests that experimental data which stem from Eq. 0.8
(20) can be well fitted to a stretched exponential — 0.6l
o~
278 E 041
Mx(zr)=exp<— — (21 = 02
T2
0.0
with 1<8<2. In Fig. 2b) we depict three data sets of 1.4}
ML(27) obtained from Eq(20) for various values ofv/\. 13l
Unlike in the previous cases, the Lorentzian case shows a @,
continuous increase in relaxation rate with increasingn '
this figure we also depict the best fit of the data sets to Eq. 117
(21). The fits are quite good over more than an order of 1.0 : : ‘ ;
. . . i : 0 2 4 6 8 10
magnitude in echo size, and when experimental data are fit- viA
ted, Eq.(20) can easily be confused with EQ1). In Fig. 3
we show the parameteand 1/ T,) as a function ofv/\. FIG. 3. The parameters NT,) and 8 which allow the best

While T, decreases monotonically with increasing fluctua-approximation of Eq(20) with Eq. (21).
tion rate, the powegB goes through a maximum atx=1.
However, it should be mentioned that the valugsadepends considerably with time. This suggests that in reality, for
on the range which is used for the fit. >\, we should expeg8=1, as found here, and for=\ we

It is interesting to compare our Lorentzian result with thatshould expect3=2 as found by KA. Between these two
of KA. In the KA model the field dynamics at the site of the limits 8 should change continuously.
observed nuclei is generated by flipping some other unob- We thus provide a recipe for obtaining the time depen-
served individual spins. Therefore, in their model, it is moredence of the echo size for a given frequency distribution. We
likely to undergo small field changes than large ones. Thexamined two particular cases and found a natural explana-
situation KA tried to describe could still be approximated bytion for experimental and conceptual features, such as
the strong collision model >\, since then many unob- stretched-exponential relaxation afg minima, which have
served spins are flipped before the observed nuclei evolveot been explained quantitatively before.
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