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Probing exotic spin correlations by muon spin depolarization measurements
with applications to spin glass dynamics

Amit Keren,1 Galina Bazalitsky,1 Ian Campbell,2 and James S. Lord3

1Physics Department, Technion–Israel Institute of Technology, Haifa 32000, Israel
2Laboratoire des Verres, Universite´ Montpellier II, 91405 Montpellier, France

3Rutherford Appleton Laboratory, Chilton Didcot, Oxfordshire OX11 0QX, United Kingdom
~Received 15 February 2001; published 29 June 2001!

We develop a method to probe the local spin dynamic autocorrelation function, using magnetic-field-
dependent muon depolarization measurements. We apply this method to muon spin relaxation experiments in
the dilute Heisenberg spin glassAgMn (p at. %! at T.Tg , where the correlations of the Mn local magnetic
moment are strongly nonexponential. Our results clearly indicate that the dynamics of this spin glass cannot be
described by a distribution of correlation times. Therefore, we analyze the data assuming a local spin correla-
tion function which is the product of a power law times a cutoff function. The concentration and temperature
dependence of the parameters of this function are determined. Our major conclusion is that in the temperature
region close toTg the correlation function is dominated by an algebraic relaxation term.
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I. INTRODUCTION

In the vicinity of a second order magnetic phase tran
tion, the spin-spin dynamical autocorrelation function

^Si~ t !Si~0!&[q~ t !, ~1!

must take the general form1

q~ t !;t2xf ~ t/t!. ~2!

In these equationsi is a site index,̂ & is a thermal and
sample average,t is a time scale that limits the upper rang
of the decay,x can be defined in terms of the static a
dynamic critical exponents, andf is a ‘‘cutoff’’ function,
which can take different forms. In simple systems, such
isolated spins, the power law part does not exist (x50), and
f is exponential, makingq(t) exponential. In systems with
interacting spinsq(t) can be nonexponential. For examp
in a pure ferromagnet close toTc , q(t) is given by Eq.~2!
with x.0 and exponentialf. In this case, the correlatio
function of all individual spins is the same as the global o
by definition. In complex systems, with physical propert
such as time scale invariance2 or hierarchical relaxation,3

q(t) can bestronglynonexponential. An important examp
is spin glasses with frozen-in disorder, where the local en
ronments of individual spins are not identical. In this ca
numerical simulations show that the global correlation fu
tion also takes the form of Eq.~2! but f is a stretched
exponential.4,5 In addition, these simulations show that E
~2! is valid even locally butf varies from spin to spin. There
fore, they have been analyzed with more complex cu
functions, such as a sum of exponentials6 or a sum of
stretched exponentials.7

Despite this theoretical understanding of the correlat
function, the complex nature ofq(t) is frequently ignored in
the analysis of experimental systems and they are interpr
in terms of a sum of exponential relaxation rates: some s
are relaxing fast and some slowly. Indeed, the Laplace tra
form of any relaxation functionq(t) can always be defined
0163-1829/2001/64~5!/054403~8!/$20.00 64 0544
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in terms of a spectrum of relaxation times. However, t
relaxation times of the distribution are those of the modes
the system, not those of the individual spins.~To take a fa-
miliar analogy, in a pure crystal there is a spectrum of ph
non modes but any atom is vibrating in precisely the sa
complex way as any other atom.!

In this work we avoid the assumption of a distribution
correlation times and determineq(t) experimentally using
the alternative hypothesis of a unique nonexponentialq(t).
For reasons described in Sec. II our technique of choic
muon spin relaxation (mSR). Muons are implanted in a
sample initially fully polarized and are depolarized in th
neighborhood of local magnetic moments. The form of t
muon depolarization is a signature ofq(t). The practical dif-
ficulty is to establish in the general case an inversion sche
that can take one unambiguously from the muon depolar
tion pattern back to the correlation function. Accordingly, o
main objectives in this work are~I! to develop~in Sec. III! a
method by which one can determine the functional form
q(t) by measuring both the field and time dependence of
muon polarizationP(H,t); ~II ! to apply this method to a rea
Heisenberg spin glass and to determinex andt ~see Sec. IV!.

This work is a continuation of our previous publicatio
where we demonstrated the existence of an unusual cor
tion function in the spin glassAgMn ~0.5 at. %! at T.Tg at
a single temperature.8 There it was shown that at high field
(.120 G! and late times, the muon polarization obeys t
scaling relation

P~H,t !5P~ t/H12x!, ~3!

and this relation was traced back to the correlation funct
given by Eq.~2!. However, an interpretation of the param
etersx andt was not provided, and no attempt was made
discuss the singularity ofq(t) at t50. Here we extend Ref
8 in four different directions:~I! we address thet50 singu-
larity, ~II ! we apply lower fields whereP(H,t) is most sen-
sitive to f, ~III ! we vary the temperatures, and~IV ! we ex-
©2001 The American Physical Society03-1



-
te

II
a

er
o

or

m
e

pl
n
m
nv
p

re
er
e
nd
try

co
f
th
al
e
ib
e
a

of
a
ax

g-
re
r

er
lie
le

er
an
iq
la
d

C

us

an

al-

ing

nt
at
y-

u-
bed

ex-

KEREN, BAZALITSKY, CAMPBELL, AND LORD PHYSICAL REVIEW B 64 054403
amine three different samples ofAgMn (p at. %! with p
50.1, 0.3, and 0.5 whereTg50.51, 1.45, and 2.80 K, re
spectively. This allows us to estimate the various parame
of q(t) as a function ofp andT. Our most important finding
is thatq(t) depends on temperature mainly throughx(T) in
these samples.

II. EXPERIMENTAL ASPECTS AND RAW DATA

As demonstrated in Ref. 8 and derived again in Sec. I
clear evidence for an exotic correlation function is the sc
ing relation of Eq.~3!. In order to find this type of scaling
experimentally from the raw muon spectra with good c
tainty, one must vary the external field over two orders
magnitude. ThemSR technique is especially well adapted f
this task since the signal intensity is independent ofH, and
one can vary the magnetic field considerably, the upper li
being given by the fields available in the experimental s
ups, and the lower limit being related to the range of ap
cability of the analysis method. In addition, experime
shows that the typical time scales are of the order of a
crosecond, which falls between the ranges covered co
niently by neutron techniques and by conventional susce
bility techniques.

Our mSR experiments were performed in ISIS whe
magnetic fields up to 4 kG are available. In these exp
ments we measure the time- and field-dependent asymm
A(H,t) of the decay positrons in the directions parallel a
antiparallel to the initial muon polarization. This asymme
is proportional toP(H,t) whereH is applied in the direction
of the initial polarization, andP(H,0)51; for more details
see Ref. 8. The fields applied for each sample obey the
dition me f fH,Tg , whereme f f is the magnetic moment o
the Mn ions. This condition ensures that the impact of
fields on the local moment correlation function is minim
Standard frequency-dependent susceptibility measurem
on spin glasses show that a magnetic field has neglig
effect on the spin glass relaxation, even at quite low frequ
cies corresponding to times of the order of a millisecond;
the mSR technique is intrinsically limited to time scales
the order of a microsecond or less, we can safely ignore
direct effects of magnetic fields on the local moment rel
ation.

We have usedAgMn since Ag nuclear moments are ne
ligible and there is no need to worry about background
laxation from Ag nuclei. Although dilute, the Mn nuclea
moments are large and it turns out that the Mn nuclear t
can influence the muon depolarization signal in zero app
field. The samples were prepared by melting in a sea
quartz tube, followed by strong cold work. The samples w
transformed from buttons to sheets about 0.2 mm thick
were then annealed for a week under vacuum. This techn
is standard for ensuring complete homogenization. The g
transition temperatures were determined using a standar
susceptibility method. For thep50.3 andp50.1 concentra-
tions we were assisted by the dilution refrigerator of
Paulsen in Grenoble.

RepresentativeA(H,t) measurements in thep50.5 and
0.1 samples atT52.9 and 0.6 K, respectively, and at vario
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fields, are shown in Fig. 1 panels~a! and ~b!. Clearly, H
affects the muon polarization very strongly over more th
two orders of magnitude. The largerH the weaker the relax-
ation. This well known effect is called decoupling. The sc
ing relations of Eq.~3! are shown to hold withx→0 at high
fields and late times for thep50.5 sample in Fig. 2. Our aim
is to account for the rate of decoupling, namely, the scal
relations, quantitatively.

III. ANALYSIS

First we would like to emphasize the need for a differe
type of analysis for our data. In the Appendix we show th
the muon polarization is determined by the field-field d
namical autocorrelation function

FIG. 1. Asymmetry vs time in two samples for various longit
dinal magnetic fields. The solid lines are fits to the model descri
in the text.

FIG. 2. The asymmetry from Fig. 1~a! plotted as a function of
t/H1 for fields higher than 240 G. This plot demonstrates the
perimental validity of Eq.~3! with x→0.
3-2
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F~ t ![gm
2 ^B'

d ~ t !•B'
d ~0!&

~rather than byq), whereB'
d is the dynamic magnetic field a

the muon site perpendicular to the external fieldH, andgm
585.16 MHz/kG is the muon gyromagnetic ratio. In the hi
field and late time limit we arrive at the relation

P~H,t !5P@ t/T1~H !#, ~4!

where

1

T1~H !
5E

0

`

F~ t8!cos~gHt8!dt8. ~5!

Since in a spin glass there are no cross correlations betw
spins one expectsF(t)}q(t). Therefore, for an exponentia
correlation functionq(t) with a single correlation time we
write

F~ t !52D2 exp~2t/t!, ~6!

where

2D25gm
2 ^B'

2 &.

In this case the muon relaxation rate is given by the kno
expression

1

T1~H !
5

2D2t

11~gmtH !2
.

However, in a spin glass, the muon could stop in a vari
of environments and can experience different instantane
fields or correlation times. If we allow for a distribution ofD

and/ort we can obtain an average polarizationP̄ by

P̄~H,t !5E E r~D,t!PS 2D2tt

11~gmtH !2D dDdt.

Nevertheless, ifgmH@1/tmin, wheretmin is the shortest cor-
relation time in the distribution, we expect

P~H,t !5P~ t/H2!,

which is in contrast to the experimental observation depic
in Fig. 2. This brings us to one of the important conclusio
of our experiments: a distribution of correlation times cou
not explain our data.

The second problem with the standard analysis met
emerges from the ‘‘wiggles’’ seen in the data at early tim
and low fields. These could not be accounted for by Eq.~4!,
which does not have oscillating terms. The source of
oscillations are those muons for which the transverse m
netic field has not relaxed abruptly during the time of o
rotation. These muons will oscillate around the vector sum
both internal and external fields at a frequencyv
5gmAH21B'

d . Since atT.Tg there is a distribution ofBd

with zero average, the contribution of the dynamic field w
show up as a relaxation of the wiggles, while the frequen
of the wiggles will be atv5gmH. Roughly, if there is a
cutoff time t, then by the timet.t abrupt field relaxation
occurs for all muons. Therefore, the wiggle pattern will n
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be seen for longer times. As a result, the observation o
wiggle pattern up to timet is a proof of local moments tha
do not relax abruptly within this time scale, and so gives
model-independent estimate oft. The fit procedure de-
scribed below provides a quantitative method to include t
type of observation within the global analysis of the fiel
dependent muon depolarization.

Having demonstrated that neither the field-time scal
relations nor the wiggles in the data could be accounted
with standard analysis methods we turn to describing
alternative approach. If one does not take the long time li
that led to Eqs.~4! and~5!, one finds~see the Appendix! that
the relation betweenP(H,t) andF(t) is via the expression

P~H,t !5P0 exp@2G~H,t !t#, ~7!

where

G~H,t !t5E
0

t

~ t2t8!F~ t8!cos~gmHt8!dt8. ~8!

This expression can produce the oscillations seen in the
@for the exponential case given by Eq.~6! see Ref. 9#. Moti-
vated by the success of Eq.~2! in accounting for the prelimi-
nary data of Ref. 8 we examine here the correlation funct

F~ t !52D2
te

x

~ t1te!
x
exp~2t/t l !, ~9!

where te and t l are an early and late time cutoff, respe
tively. This F(t) is properly normalized att50. From neu-
tron spin echo data,10 te is of the order of 1 ps, and approx
mately independent of temperature. Therefore, we are sa
assume that the time at which the muon polarization is fi
measured~0.1 ms) is much longer thante . In other words,
our experiment is in the limit oft@te , and we can write

F~ t !52Ci~ t !,

where

C5D2te
x

and

i~ t !5t2xexp~2t/t l !. ~10!

Now we express

G~H,t !t52D2te
xE

0

t

~ t2t8!i~ t8!cos~gHt8!dt8. ~11!

To be rigorous we should allow for a distribution of a
the parameters in the correlation function. This, of cour
will lead us nowhere. Therefore, we assume only a distri
tion of D and so assume a unique form ofq(t) for all local
spins. This assumption appears physically reasonable an
we shall see it allows us to account for our data successfu
We note that allmSR data to date were analyzed using th
assumption, and, in particular, the following distribution11

was chosen:
3-3
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r~D!5A 1

2p

D*

D2
expS 2

1

8 FD*

D G2D . ~12!

As before the average muon polarizationP̄ is given by

P̄~H,t !5P0E r~D!exp@2G~H,t !t#dD,

which leads to

P̄~H,t !5P0 exp~2@G* ~H,t !t#1/2!, ~13!

where

G* ~H,t !t52C* E
0

t

~ t2t8!i~ t8!cos~gHt8!dt8, ~14!

and

C* 5~D* !2te
x . ~15!

The difference betweenP before averaging overD and P̄
~after the average! is fundamental and is manifested in th
appearance of a power 1/2 in the exponent of Eq.~13!. In
fact, the reason for choosingr(D) given by Eq.~12! is that
experimental data agree well with Eq.~13!. In contrast, the
difference betweenG andG* is minor;C is simply replaced
by C* , namely,D is replaced byD* . In reality we do not use
Eq. ~13! but rather fit our data to

P̄~H,t !5P0 exp~2@G* ~H,t !t#b! ~16!

with b;1/2 a global parameter for all samples and tempe
tures.

It is instructive to examine Eqs.~16! and~14! numerically
for a particular example ofi(t). The integral of Eq.~14! is
well defined and could be evaluated by the improper integ
tion method.12 In Fig. 3~a! we depict the numericalP(v,t)
vs t for various values ofv5gpH where the parameters o
the correlation function areC* 51, x50.3, t l53.3, and in
Eq. ~16! b50.5 ~for other cases, see Ref. 13!. There are two
important features in this figure. First, at low frequenc
there are pronounced wiggles in the simulation waveform
early times, as in the data. The time scale on which wigg
are observed (tw), which is demonstrated on the grap
obeystw&t l . Therefore, as mentioned before,t l could be
estimated by visually inspecting the low field, early tim
data. Second, there is absolutely no difference in the po
ization betweenv50 and v50.3. In other words, at low
fields the polarization is field independent and the field i
pacts the polarization only forv.1/t l . This provides a
complementary qualitative method of estimatingt l . In fact,
both methods are well known for the pure exponential c
relation function. The point being made here is that th
methods are correct even when a power law multiplies
exponential decay term in the expression forq(t), so direct
observation of the threshold value of the field dependenc
the polarization is a complementary, model-independ
method of estimating the cutoff time.

In Fig. 3~b! we show the numericalP(v,t) vs t/v0.7 for
v>5. Clearly, at high enough frequencies and late eno
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times scaling of the form of Eq.~3! indeed holds. The critica
value above whichH and t are considered large is dete
mined by t l . Late time is t.t l , and high fields areH
.(gmt l)

21. It is therefore very important to observe wiggle
and/or a strong field effect in the data~e.g., Fig. 1! before the
cutoff time andx can be obtained unambiguously from th
scaling.

We now apply these concepts to the analysis of ourmSR
data. The analysis of the measurements shown in Fig. 1~a! is
discussed in detail using four steps. First, we estimatet l .
The wiggles in the waveform prevail fortw;2 ms, and
fields as small as 30 G (v52.5 MHz! impact the polariza-
tion. Both these observations indicate thatt l is of the order
of 1 ms. Second, we evaluatex. From the value oft l we
expect scaling to hold fort.1 ms and for fields bigger than
100 G. Indeed, in Fig. 2 whent/H1.0.01 ~and even much
earlier! all data sets collapse onto one line, meaningx→0 ~as
mentioned before!. Third, we estimateC* and b. By ex-
pandingi(t) in powers oft, performing the integral of Eq
~14! term by term for the zero field case (H50), and keep-
ing only the first term we find that

G* ~0,t !t5
2C* t22x

~22x!~12x!
1O~ t32x!.

Using this relation in Eq.~16!, and fitting the lowest field,
early time data to a stretched exponential~while holding x
fixed from the second step!, we can obtainC* and b. The
values found up to now forC* , x, t l , and b are used as
initial guesses for a global fit~at a givenT) for all applied
fields. In the global fit we allow freedom inH for fields<30
G in order to account for the sample’s susceptibility a
demagnetization, and also since our power supply does

FIG. 3. ~a! The polarization generated using Eqs.~10!, ~13!, and
~14!, for various frequenciesv5gmH. ~b! Demonstrating the theo
retical validity of Eq.~3! for high enough values ofv5gmH and
late times.
3-4
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PROBING EXOTIC SPIN CORRELATIONS BY MUON . . . PHYSICAL REVIEW B64 054403
give accurate values in such small fields. The global fit p
duces values ofx somewhat larger than those obtained fro
scaling and smaller error bars. The results of this fit pro
dure are presented in Fig. 1~a! by the solid lines. Our mode
captures the essence of the wiggles, although for some fi
it fails to capture the fine details of the waveform at ea
times. More importantly, the model accounts very well f
the data past the wiggles for more than 2.5 orders of ma
tude in field. The same analysis method is applied to
series of samples at various temperatures. We find thab
50.45(5) globally for all samples and temperatures. A s
ond example of the success of this analysis procedure is
picted in Fig. 1~b! by the solid lines.

At first sight it would appear that with so many fit param
eters no significant conclusions could be reached. In f
because a single set of fit parameters is being used to
whole family of curves and because different parame
dominate the behavior at different ranges of time and fie
the fit parameters are well pinned down. There is some
terplay between different parameters so the values are c
lated, but it turns out that the conclusions that we will rea
~relaxation dominated byx, cutoff times comparable to o
longer than a microsecond! are robust. To get fully reliable
and unique fits, certain purely experimental parame
~background and initial anisotropy for the whole range
fields used! must be well established from independent co
trol runs.

IV. RESULTS

We now turn to discuss the outcome of the fits. The pow
x is plotted vsT/Tg in Fig. 4. At all temperatures studie
~from Tg to about 2Tg) we find x values that are clearly
bigger than zero, and increase with increasingT, in qualita-
tive agreement with Ogielski’s simulations4 and with the
more recent results of Franzese and Coniglio.5 In general, at
a givenT/Tg , the powerx appears to increase with increa
ing magnetic ion concentrationp. Theoretically, near a con
tinuous phase transition the powerx is expected to relate to
the static and dynamic critical exponents throughx5(d
1h)/2z4. We findx values that are of the order of 0.15 clo

FIG. 4. x @from Eq. ~10!# plotted vs temperature for differen
samples.
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to Tg . This should be compared with the value of 0.13 th
can be estimated from exponents obtained by magnetic m
surements at low frequencies on the same type of allo14

This exponent could be expected to be independent of c
centration for dilute alloys.

As for the cutoff timet l , we have noticed thatt l changes
little as a function of the temperature over the temperat
range we have studied. This is best demonstrated in thp
50.1 sample where the waveform has strongest wiggles
strong field dependence, and is therefore most sensitiv
t l . In Figs. 5~a! and 5~b! we presentP(H,t) at three repre-
sentative fields and two different temperatures approach
Tg . Clearly, a field as small as 5 G (v50.4 MHz! impacts
the polarization at both temperatures, and there is no
change in the wiggle timetw (;10 ms) between these tem
peratures. Thust l remains longer than a few microsecon
up to T/Tg51.43. In the inset of Fig. 5~a! we show the fit
results for 1/t l for the p50.1 sample, demonstrating onc
again that we do not observe a critical temperature dep
dence. On general physical principles related to any cont
ous transition,t l should diverge asT tends to the ordering
temperature~see, for instance, Ogielski’s Ising spin gla
simulations4!. The present data simply indicate that for th
concentrations and temperature ranges studiedt l is at the
edge or out of the muon dynamic window.

Finally, we examine the parameterC* . The mean square
of the field ^B'

2 & ~or D2) at a given site should beT inde-
pendent, and so should (D* )2. If te is alsoT independent,

FIG. 5. Demonstrating that neither the wiggling timetw nor the
sensitivity of the polarization to the field are varying with tempe
ture. The inset shows the late cutoff timet l as given by Eq.~10!
versusT/Tg for the p50.1 sample.
3-5
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we expect from Eq.~15! a log10(C* ) againstx plot to be a
straight line. Indeed, a linear dependency between log10(C* )
and x is consistent with the data as shown in Fig. 6. T
slope of the line at each concentration is log10te and the
intercept is 2 log10(D* ). The values of the intercepts hav
large error bars~since we do not have data at sufficient
small x) and are therefore not presented. Nevertheles
rough estimate ofD* indicates that the condition for validity
of our analysis, namely,H.D* ~see the Appendix! holds for
H*10 G for thep50.5 and 0.3 samples, andH*1 G for the
p.0.1 sample as done here. The values of log10te are pre-
sented in the inset of Fig. 6 for the different samples. Th
values make the conjecturet@te self-consistent, although
we find te for the p50.1 sample unacceptably small. Ne
ertheless, our analysis indicates that theT dependence ofC*
is due only tox(T).

To summarize, we demonstrate that a distribution of c
relation times cannot account for the muon polarization a
function of both field and time. However, we can account
our data provided that each muon experience a local fi
correlation function given by Eq.~9!, where the only differ-
ence between different muons is in the value ofD. Our
analysis shows that out of all the parameters that determ
P(H,t), namely,x, t l , te , and D* , the only one that is
temperature dependent isx. We thus conclude that the dy
namic behavior of this family of dilute spin glasses nearTg
is controlled essentially by the temperature dependenc
the power law exponentx.
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APPENDIX FROM FIELD CORRELATIONS TO SPIN
LATTICE RELAXATION

In this Appendix we derive the expected behavior of t
polarization of a local probe, which is out of equilibrium,

FIG. 6. The prefactorC* plotted versusx on a semilogarithmic
scale@see Eq.~15!#. The temperature is an implicit parameter. T
solid curves are linear fits. Their slope is interpreted as log10te and
presented in the inset.
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a dynamic field environment. For simplicity we use a sem
classical approach. A more complete result, based on a
quantum treatment, can be found in the literature15 but there
is no detectable difference. In the semiclassical method
decompose the Hamiltonian of a spin 1/2 experiencing b
an external static fieldH and an internal dynamically fluctu
ating fieldBd(t) into

H5H01H8~ t !, ~A1!

where

H052gmSzH ~A2!

is the secular part, and the interaction part is

H852gmS•Bd~ t !. ~A3!

The time-dependent fieldBd(t) is taken to be classical andS
is the muon spin operator. When the fluctuating fields
smaller than the external field we can use time-depend
perturbation theory and write the time propagator as

U~ t !5expS 2
i

\
H0t D F12

i

hE0

t

dt8H I~ t8!

2
1

h2E0

t

dt8E
0

t8
dt9H I~ t8!H I~ t9!1•••G , ~A4!

where the perturbation Hamiltonian in the interaction pictu
is given by

H I~ t !5exp~ iH0t/\!H8~ t !exp~2 iH0t/\!. ~A5!

This Hamiltonian simplifies to

H I~ t !52gmBd~ t !SI~ t !, ~A6!

where

SI~ t !5exp~ ivSzt/\!S exp~2 ivSzt/\!

and

v52gmH.

Explicitly SI(t) is given by

Sx
I ~ t !5Sxcos~vt !2Sysin~vt !,

Sy
I ~ t !5Sycos~vt !1Sxsin~vt !, ~A7!

Sz
I ~ t !5Sz .

Note thatSI(t) is the time-dependent spin operator in t
interaction picture, namely, of a muon that rotates around
external field as if there were no internal fields. It is not t
spin operatorS(t) of a muon that experiences the combin
static and dynamic fields. In other words, in order to fi
S(t) we use a perturbation expansion in terms ofSI(t). This
is the~mathematical! origin of the wiggles seen in the data
the frequency of the external field.

Using Eqs.~A6! and ~A7! we find that

H I~ t !52gm@V~ t !Sx2U~ t !Sy1T~ t !Sz#, ~A8!
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where

V~ t !5Bx
d~ t !cos~vt !1By

d~ t !sin~vt !,

U~ t !5Bx
d~ t !sin~vt !2By

d~ t !cos~vt !,

T~ t !5Bz
d~ t !.

The polarization of a muon at a given site as a function
time Pz(t) is given by

Pz~ t !5Tr@rU†~ t !szU~ t !# ~A9!

where

r5
11P0sz

2

andP0 is the initial polarization.
Equations~A9! and ~A4! lead to the perturbation series

P~ t !5I 1II 1III 1•••, ~A10!

where

I 5Tr$rsz%,

II 5
i

\E0

t

dt8Tr r@H I~ t8!,sz#, ~A11!

III 52
1

\2E0

t

dt8E
0

t8
dt9Tr r†H I~ t9!,@H I~ t8!,sz#‡..

We now evaluate each term explicitly: The first term
simple. Since

Tr$rs i%5H P0 , i 5z

0, i 5x,y
U

we getI 5P0. In the second term we have

@H I~ t8!,sz#5 igm@V~ t8!sy1U~ t8!sx#.

After the evaluation of the trace we findII 50. For the third
term we find

Tr r†H8~ t9!,@H8~ t8!,sz#‡5P0gm
2 @V~ t9!V~ t8!

1U~ t9!U~ t8!#,

where we have used the simplifying assumption thatV, U,
andT are classical fields. To progress further with the cal
lation it is helpful to introduce at this stage the ensem
average over all possible trajectories ofB'

d (t). Quantities in
^ & will denote such an average and we can write

^Pz&5^I &1^III & ~A12!
05440
f

-
e

where^I &5P0 and

^III &5P0gm
2 ^V~ t9!V~ t8!1U~ t9!U~ t8!&.

The meaninĝBi
d(t8)Bj

d(t9)& is to holdt8 andt9 fixed and to
average over all possible fields in the systems between t
times. This is a correlation function. We assume that th
are no cross correlations andx,y symmetry so the only terms
left to evaluate are of the form

^V~ t9!V~ t8!1U~ t9!U~ t8!&

5^Bx
d~ t8!Bx

d~ t9!1By
d~ t8!By

d~ t9!&cos@v~ t92t8!#.

We now make the assumption that the correlation funct
depends only on the time difference and define

F~ t82t9!5gm
2 ^Bx

d~ t8!Bx
d~ t9!1By

d~ t8!By
d~ t9!&,

~A13!

so that finally

^III &52P0E
0

t

dt8E
0

t8
dt9F~ t82t9!cos@v~ t82t9!#.

~A14!

We can eliminate one of the integrals by writing

t5t82t9,

t85t2t8.

This transforms the integral into

E
0

t

dt8E
0

t8
dt95E

0

t

dtE
0

t2t

dt8

and we arrive at

^III &52P0E
0

t

dt~ t2t!F~t!cos~vt!. ~A15!

If we now write

Pz~ t !5P0 exp@2G~ t !t#, ~A16!

expand this equation in powers ofG, and compare it with
Eqs.~A12! and ~A15!, we find

G~ t !t5E
0

t

dt~ t2t!F~t!cos~vt!. ~A17!

At late times, such thatF(t) is negligible, one finds that

G~H,t !→ 1

T1~H !
5E

0

`

F~t!cos~vt!dt. ~A18!
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