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Probing exotic spin correlations by muon spin depolarization measurements
with applications to spin glass dynamics
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We develop a method to probe the local spin dynamic autocorrelation function, using magnetic-field-
dependent muon depolarization measurements. We apply this method to muon spin relaxation experiments in
the dilute Heisenberg spin glagggMn (p at. % at T>Tg, where the correlations of the Mn local magnetic
moment are strongly nonexponential. Our results clearly indicate that the dynamics of this spin glass cannot be
described by a distribution of correlation times. Therefore, we analyze the data assuming a local spin correla-
tion function which is the product of a power law times a cutoff function. The concentration and temperature
dependence of the parameters of this function are determined. Our major conclusion is that in the temperature
region close tdTy the correlation function is dominated by an algebraic relaxation term.

DOI: 10.1103/PhysRevB.64.054403 PACS nuntder75.10.Nr, 76.20tq, 76.75+i

I. INTRODUCTION in terms of a spectrum of relaxation times. However, the
relaxation times of the distribution are those of the modes of
In the vicinity of a second order magnetic phase transithe system, not those of the individual spifo take a fa-

tion, the spin-spin dynamical autocorrelation function miliar analogy, in a pure crystal there is a spectrum of pho-
non modes but any atom is vibrating in precisely the same
(S(1)S(0))=q(t), (1) complex way as any other atom.

In this work we avoid the assumption of a distribution of
correlation times and determingyt) experimentally using
q(t)~tf(t/ 7). (2)  the alternative hypothesis of a unique nonexponewf{s).
For reasons described in Sec. Il our technigue of choice is
In these equations is a site index,( ) is a thermal and muon spin relaxation £SR). Muons are implanted in a
sample averager, is a time scale that limits the upper range sample initially fully polarized and are depolarized in the
of the decayx can be defined in terms of the static and neighborhood of local magnetic moments. The form of the
dynamic critical exponents, anflis a “cutoff” function,  muon depolarization is a signatureaft). The practical dif-
which can take different forms. In simple systems, such asiculty is to establish in the general case an inversion scheme
isolated spins, the power law part does not exist 0), and  that can take one unambiguously from the muon depolariza-
f is exponential, makingj(t) exponential. In systems with tjon pattern back to the correlation function. Accordingly, our
interacting spingj(t) can be nonexponential. For example, main objectives in this work ar@) to develop(in Sec. Il)) a
in a pure ferromagnet close ., q(t) is given by Eq.(2)  method by which one can determine the functional form of
with x>0 and exponentiaf. In this case, the correlation q(t) by measuring both the field and time dependence of the
function of all individual spins is the same as the global onemuon polarizatiorP(H,t); (1) to apply this method to a real
by definition. In complex systems, with physical propertiesHeisenberg spin glass and to determirand  (see Sec. IV.
such as time scale invariarfcer hierarchical relaxation, This work is a continuation of our previous publication
q(t) can bestrongly nonexponential. An important example where we demonstrated the existence of an unusual correla-
is spin glasses with frozen-in disorder, where the local envition function in the spin glaségMn (0.5 at. % atT>T, at
ronments of individual spins are not identical. In this casea single temperatuféThere it was shown that at high fields
numerical simulations show that the global correlation func(>120 G and late times, the muon polarization obeys the
tion also takes the form of Eq2) but f is a stretched scaling relation
exponentiaf-® In addition, these simulations show that Eq.
(2) is valid even locally buf varies from spin to spin. There-
fore, they have been analyzed with more complex cutoff
functions, such as a sum of exponenflaty a sum of
stretched exponentials. and this relation was traced back to the correlation function
Despite this theoretical understanding of the correlatiorgiven by Eq.(2). However, an interpretation of the param-
function, the complex nature af(t) is frequently ignored in  etersx and =~ was not provided, and no attempt was made to
the analysis of experimental systems and they are interpretatiscuss the singularity aj(t) att=0. Here we extend Ref.
in terms of a sum of exponential relaxation rates: some spin8 in four different directions(l) we address the=0 singu-
are relaxing fast and some slowly. Indeed, the Laplace trandarity, (1) we apply lower fields wher®(H,t) is most sen-
form of any relaxation functiom(t) can always be defined sitive tof, (Ill) we vary the temperatures, aifi) we ex-

must take the general fofm

P(H,t)=P(t/H™), 3
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amine three different samples éfgMn (p at. % with p ! AgMn(0.1 @ %) T=0.6K
=0.1, 0.3, and 0.5 wherg =0.51, 1.45, and 2.80 K, re-
spectively. This allows us to estimate the various parameters
of g(t) as a function op andT. Our most important finding

is thatq(t) depends on temperature mainly throudf) in
these samples. 0.15

0.20

II. EXPERIMENTAL ASPECTS AND RAW DATA 0.10

As demonstrated in Ref. 8 and derived again in Sec. lll a
clear evidence for an exotic correlation function is the scal-
ing relation of Eq.(3). In order to find this type of scaling
experimentally from the raw muon spectra with good cer-
tainty, one must vary the external field over two orders of
magnitude. The.SR technique is especially well adapted for
this task since the signal intensity is independenHpfind
one can vary the magnetic field considerably, the upper limit
being given by the fields available in the experimental set-
ups, and the lower limit being related to the range of appli-
cability of the analysis method. In addition, experiment 0o 2 4 ¢ 8 10 12
shows that the typical time scales are of the order of a mi-
crosecond, which falls between the ranges covered conve-
niently by neutron techniques and by conventional suscepti- FIG. 1. Asymmetry vs time in two samples for various longitu-
bility techniques. dinal magnetic fields. The solid lines are fits to the model described

Our uSR experiments were performed in ISIS wherein the text.
magnetic fields up to 4 kG are available. In these experi-
ments we measure the time- and field-dependent asymmetfiglds, are shown in Fig. 1 panels) and (b). Clearly, H
A(H,t) of the decay positrons in the directions parallel andaffects the muon polarization very strongly over more than
antiparallel to the initial muon polarization. This asymmetry two orders of magnitude. The largerthe weaker the relax-
is proportional toP(H,t) whereH is applied in the direction ation. This well known effect is called decoupling. The scal-
of the initial polarization, andP(H,0)=1; for more details ing relations of Eq(3) are shown to hold witx—0 at high
see Ref. 8. The fields applied for each sample obey the corfields and late times for the=0.5 sample in Fig. 2. Our aim
dition weiH<Ty, Where u.¢ is the magnetic moment of is to account for the rate of decoupling, namely, the scaling
the Mn ions. This condition ensures that the impact of theelations, quantitatively.
fields on the local moment correlation function is minimal.
Standard frequency-dependent susceptibility measurements
on spin glasses show that a magnetic field has negligible
effect on the spin glass relaxation, even at quite low frequen- First we would like to emphasize the need for a different
cies corresponding to times of the order of a millisecond; asype of analysis for our data. In the Appendix we show that
the uSR technique is intrinsically limited to time scales of the muon polarization is determined by the field-field dy-
the order of a microsecond or less, we can safely ignore angamical autocorrelation function
direct effects of magnetic fields on the local moment relax-
ation. 0.25 . . .

We have used\gMn since Ag nuclear moments are neg-
ligible and there is no need to worry about background re-
laxation from Ag nuclei. Although dilute, the Mn nuclear 0.20
moments are large and it turns out that the Mn nuclear term
can influence the muon depolarization signal in zero applied
field. The samples were prepared by melting in a sealed
quartz tube, followed by strong cold work. The samples were
transformed from buttons to sheets about 0.2 mm thick and
were then annealed for a week under vacuum. This technique
is standard for ensuring complete homogenization. The glass
transition temperatures were determined using a standard ac- 005 i
susceptibility method. For the=0.3 andp=0.1 concentra- 1E-4 1E-3
tions we were assisted by the dilution refrigerator of C. vH
Paulsen in Grenoble. FIG. 2. The asymmetry from Fig.(4) plotted as a function of

Representativé\(H,t) measurements in the=0.5 and  t/H? for fields higher than 240 G. This plot demonstrates the ex-
0.1 samples af=2.9 and 0.6 K, respectively, and at various perimental validity of Eq(3) with x—0.
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(I)(t)E'yi<BE(t).Bi(o)> be seen for longer times. As a result, the observation of a
J ) o wiggle pattern up to time is a proof of local moments that
(rather than by), whereB| is the dynamic magnetic field at do not relax abruptly within this time scale, and so gives a
the muon site perpendicular to the external flblldand Yu mode|-independent estimate of The fit procedure de-
=85.16 MHz/kG is the muon gyromagnetic ratio. In the highscribed below provides a quantitative method to include this
field and late time limit we arrive at the relation type of observation within the global analysis of the field-
dependent muon depolarization.
P(H.O=P[t/T(H)], (4) Having demonstrated that neither the field-time scaling
where relations nor the wiggles in the data could be accounted for
L with standard analysis methods we turn to describing our
© o, e alternative approach. If one does not take the long time limit
Ty(H) fo O(t7)cog yH)dt". ®)  thatled to Eqgs(4) and(5), one finds(see the Appendixthat

] . ] ) the relation betwee®(H,t) and®(t) is via the expression
Since in a spin glass there are no cross correlations between

spins one expect® (t)«q(t). Therefore, for an exponential P(H,t)=Py exd —T'(H,t)t], (7)
correlation functiong(t) with a single correlation time we
write where
— 2 _ t
P()=24% exp(~t/7), ® r(H,t)t=f (t—t")d(t")cog y, Ht)dt'.  (8)
where 0

DA2— 2 (B2 This expression can produce the oscillations seen in the data
=7,(B1). [for the exponential case given by E§) see Ref. & Moti-

In this case the muon relaxation rate is given by the knowrvated by the success of E@) in accounting for the prelimi-
expression nary data of Ref. 8 we examine here the correlation function

1 2A%r B(t)=242
Ti(H) 1+ (y,7H)2’ (t+ 70)"

exp—t/7), 9

However, in a spin glass, the muon could stop in a varietyvhere 7. and 7; are an early and late time cutoff, respec-
of environments and can experience different instantaneou#ely. This ®(t) is properly normalized at=0. From neu-
fields or correlation times. If we allow for a distribution Af  tron spin echo daté 7 is of the order of 1 ps, and approxi-
and/orr we can obtain an average poIarizatiErby mately mdepende_nt of temperature. Therefore,_we _are_saf_e to

assume that the time at which the muon polarization is first

. 2A2 1t measured0.1 us) is much longer tham,. In other words,
P(H,t)=f f p(A, 7P dr our experiment is in the limit of> r,, and we can write

1+(y,7H )2

Nevertheless, ify,H>1/7™", wheres™" is the shortest cor- (1) =2C(1),
relation time in the distribution, we expect where

P(H,t)=P(t/H?), C=A2~

e

which is in contrast to the experimental observation depicted
I ) i . .~ ~and
in Fig. 2. This brings us to one of the important conclusions
of our experiments: a distribution of correlation times could W)=t Yexp(—t/7). (10)

not explain our data.

The second problem with the standard analysis metholow we express
emerges from the “wiggles” seen in the data at early times
and low fields. These could not be accounted for by Ej.
which does not have oscillating terms. The source of the
oscillations are those muons for which the transverse mag-
netic field has not relaxed abruptly during the time of one To be rigorous we should allow for a distribution of all
rotation. These muons will oscillate around the vector sum ofhe parameters in the correlation function. This, of course,
both internal and external fields at a frequeney  will lead us nowhere. Therefore, we assume only a distribu-
= yM\/H2+ Bla. Since atT>T, there is a distribution oBY  tion of A and so assume a unique formaqfft) for all local
with zero average, the contribution of the dynamic field will spins. This assumption appears physically reasonable and as
show up as a relaxation of the wiggles, while the frequencywe shall see it allows us to account for our data successfully.
of the wiggles will be atw=y,H. Roughly, if there is a We note that allxSR data to date were analyzed using this
cutoff time 7, then by the time> 7 abrupt field relaxation assumption, and, in particular, the following distribufibn
occurs for all muons. Therefore, the wiggle pattern will notwas chosen:

F(H,t)t:2A27§f;(t—t')b(t')cos( yHt)dt’.  (11)
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Ay 1 A* 1
p(A)= \/EFGX ~3

As before the average muon poIarizatiEn's given by

A*
A

2 t/ 0.7
) . (12 0.1 0.1 1

E(H,t)=Pof p(A)exd —T'(H,h)t]dA,

which leads to

=}
— e
P(H.=Po exp(—[I*(HOUY), (13 § 0|2
where j:é’ os A =t"exp(v33) ]
. A
F*(H,t)t=20*f (t—=t")u(t")cog yHt )dt’, (14) 0.6 ©=20, 30
0 L
041
and I
02+
C*=(A*)27%. (15 I
The difference betweeR before averaging oveA and P 0 2 4 6 8 10
(after the averageis fundamental and is manifested in the TIME
appearance of a power 1/2 in the exponent of @@). In FIG. 3. (a) The polarization generated using E¢K0), (13), and

fact, the reason for choosingA) given by Eq.(12) is that (14, for various frequencies = y,H. (b) Demonstrating the theo-
experimental data agree well with E@.3). In contrast, the retical validity of Eq.(3) for high enough values ob=y,H and
difference betweel andI'* is minor; C is simply replaced late times.

by C*, namely,A is replaced byA*. In reality we do not use

Eq. (13) but rather fit our data to times scaling of the form of Eq3) indeed holds. The critical
_ value above whichH andt are considered large is deter-
P(H,t)=Pg exp —[I'*(H,t)t]?) (16) mined by 7,. Late time ist>r, and high fields areH

. _ >(y,m) ~1 1tis therefore very important to observe wiggles
m:gsﬁ 1/2 a global parameter for all samples and temperaEand/or a strong field effect in the da&g., Fig. ) before the

It is instructive to examine Eqé16) and(14) numerically cutoff time andx can be obtained unambiguously from the

for a particular example of(t). The integral of Eq(14) is ~ >CANd

: . ! We now apply these concepts to the analysis of @8R
well defined and could be evaluated by the improper integra-, . L s
tion method? In Fig. 3@ we depict the numericaP(w.1) data. The analysis of the measurements shown in Fay.id

Vst for various values ofo= y,H where the parameters of discussed in detail using four steps. First, we estimate
X ; P . The wiggles in the waveform prevail for,~2 us, and
the correlation function ar€* =1, x=0.3, 7;=3.3, and in 99 P wo o H

Eq. (16) 8= 0.5 (for other cases, see Ref. )1 Fhere are two fields as small as 30 Gu(=2.5 MH2) impact the polariza-

important features in this figure. First, at low fre uenciestion' Both these observations indicate thats of the order
P gure. ’ q f 1 us. Second, we evaluate From the value ofr; we

there are pronounced wiggles in the simulation waveform agxpect scaling to hold for>1 ws and for fields bigger than
early times, as in the data. The time scale on which wigglei00 G. Indeed, in Fig. 2 whetiH>0.01 (and even much

are observed (), which is demonstrated on the graph, earlie) all data sets collapse onto one line, meanirg0 (as
obeyst,,< 7. Therefore, as mentioned beforg, could be . nap . . RY
; . ; : : . mentioned before Third, we estimateC* and 8. By ex-
estimated by visually inspecting the low field, early time . . : .
. [Qandmgb(t) in powers oft, performing the integral of Eq.
(14) term by term for the zero field casél&0), and keep-

ization betweenw=0 and w=0.3. In other words, at low ing only the first term we find that

fields the polarization is field independent and the field im-
pacts the polarization only fow>1/7. This provides a 2C*t2-x
complementary qualitative method of estimatifg In fact, r“nt= 2=01=x%
both methods are well known for the pure exponential cor-
relation function. The point being made here is that thes&Jsing this relation in Eq(16), and fitting the lowest field,
methods are correct even when a power law multiplies thearly time data to a stretched exponentiahile holding x
exponential decay term in the expression dgt), so direct fixed from the second stgpwe can obtairC* and 8. The
observation of the threshold value of the field dependence ofalues found up to now fo€*, x, r,, and 8 are used as
the polarization is a complementary, model-independeninitial guesses for a global fitat a givenT) for all applied
method of estimating the cutoff time. fields. In the global fit we allow freedom i for fields <30

In Fig. 3(b) we show the numericaP(w,t) vst/w®’ for G in order to account for the sample’s susceptibility and
w=5. Clearly, at high enough frequencies and late enougldemagnetization, and also since our power supply does not

+0O(t37%).
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Tt T T AgMn@0.1%
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0.15
< 04t & . :
0.10
K
R .z l 2 0.05
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FIG. 4. x [from Eq. (10)] plotted vs temperature for different
samples. 0.15 F
give accurate values in such small fields. The global fit pro- 0.10
duces values ot somewhat larger than those obtained from
scaling and smaller error bars. The results of this fit proce- 0.05
dure are presented in Fig(al by the solid lines. Our model
captures the essence of the wiggles, although for some fields U e e e L B s |
it fails to capture the fine details of the waveform at early 0 2 4 6 8§ 10 12
times. More importantly, the model accounts very well for Time (uSeC)

the data past the wiggles for more than 2.5 orders of magni-

tude in field. The same analysis method is applied to our FIG. 5. Demonstrating that neither the wiggling tityenor the
series of samples at various temperatures. We find ghat sensitivity of the polarization to the field are varying with tempera-
=0.45(5) globally for all samples and temperatures. A secture. The inset shows the late cutoff timpas given by Eq(10)
ond example of the success of this analysis procedure is d&ersusT/Tg for the p=0.1 sample.

picted in Fig. 1b) by the solid lines.

At first sight it would appear that with so many fit param- to Ty. This should be compared with the value of 0.13 that
eters no significant conclusions could be reached. In facan be estimated from exponents obtained by magnetic mea-
because a single set of fit parameters is being used to fit surements at low frequencies on the same type of afloy.
whole family of curves and because different parameterdhis exponent could be expected to be independent of con-
dominate the behavior at different ranges of time and fieldgentration for dilute alloys.
the fit parameters are well pinned down. There is some in- As for the cutoff timer,, we have noticed that; changes
terplay between different parameters so the values are corréittle as a function of the temperature over the temperature
lated, but it turns out that the conclusions that we will reachrange we have studied. This is best demonstrated irpthe
(relaxation dominated by, cutoff times comparable to or =0.1 sample where the waveform has strongest wiggles and
longer than a microsecop@re robust. To get fully reliable strong field dependence, and is therefore most sensitive to
and unique fits, certain purely experimental parameters;. In Figs. §a) and 8b) we presenP(H,t) at three repre-
(background and initial anisotropy for the whole range ofsentative fields and two different temperatures approaching
fields used must be well established from independent con-T,. Clearly, a field as small as 5 GoE 0.4 MH2) impacts
trol runs. the polarization at both temperatures, and there is no big
change in the wiggle timg, (~10 us) between these tem-
peratures. Thus; remains longer than a few microseconds
up to T/T4=1.43. In the inset of Fig. @ we show the fit

We now turn to discuss the outcome of the fits. The poweresults for 1f; for the p=0.1 sample, demonstrating once
x is plotted vsT/T, in Fig. 4. At all temperatures studied again that we do not observe a critical temperature depen-
(from T4 to about Zy) we find x values that are clearly dence. On general physical principles related to any continu-
bigger than zero, and increase with increasihgn qualita-  ous transition,r; should diverge aJ tends to the ordering
tive agreement with Ogielski's simulatichend with the temperature(see, for instance, Ogielski’'s Ising spin glass
more recent results of Franzese and Coniglio.general, at simulation$). The present data simply indicate that for the
a givenT/T, the powerx appears to increase with increas- concentrations and temperature ranges studjets at the
ing magnetic ion concentratigm Theoretically, near a con- edge or out of the muon dynamic window.
tinuous phase transition the poweis expected to relate to Finally, we examine the paramet€*. The mean square
the static and dynamic critical exponents through(d  of the field (B?) (or A?) at a given site should b€ inde-

+ 5)/2z*. We findx values that are of the order of 0.15 close pendent, and so should\{)?. If 7, is alsoT independent,

IV. RESULTS
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100 . a dynamic field environment. For simplicity we use a semi-

classical approach. A more complete result, based on a full
quantum treatment, can be found in the literattibmit there

is no detectable difference. In the semiclassical method we
decompose the Hamiltonian of a spin 1/2 experiencing both
an external static fieltH and an internal dynamically fluctu-

10k

" ol ating field BY(t) into
H=Ho+H' (1), (A1)
0.01k
where
-3 I R | 1 1 1 1 1
P00 01 02 03 04 05 06 07 08 Ho=—v,.SH (A2)

is the secular part, and the interaction part is
FIG. 6. The prefacto€* plotted versus on a semilogarithmic _ d

scale[see Eq(15)]. The temperature is an implicit parameter. The H'==7v,S BY1). (A3)

solid curves are linear fits. Their slope is interpreted agiand  The time-dependent field%(t) is taken to be classical argl

presented in the inset. is the muon spin operator. When the fluctuating fields are

smaller than the external field we can use time-dependent

. .
we expect from Eq(15) a 10gi(C*) againsix plot to be a perturbation theory and write the time propagator as

straight line. Indeed, a linear dependency betweep Q)
and x is consistent with the data as shown in Fig. 6. The
slope of the line at each concentration is g and the U(t)=ex;{ -
intercept is 2 logy(A*). The values of the intercepts have
large error bargsince we do not have data at sufficiently
small x) and are therefore not presented. Nevertheless, a
rough estimate oA* indicates that the condition for validity
of our analysis, namel\{j > A* (see the Appendixholds for ) S ) ) )
H=10 G for thep=0.5 and 0.3 samples, akt=1 G for the yvhgre the perturbation Hamiltonian in the interaction picture
p>0.1 sample as done here. The values ofjagare pre- IS given by
sented in the inset of Fig. 6 for the different samples. These Ly ; , .
values make the conjectute> 7, self-consistent, although HAO =expliHt/A)H' (Dexp( =i Hqt/f). (AS)
we find 7, for the p=0.1 sample unacceptably small. Nev- This Hamiltonian simplifies to
ertheless, our analysis indicates that Théependence o&* | P
is due only tox(T). H (1) =—y,BY(1)S(1), (A6)
To summarize, we demonstrate that a distribution of corywhere
relation times cannot account for the muon polarization as a
function of both field and time. However, we can account for S(t)=expliwSt/f)S exp—iwS,t/h)
our data provided that each muon experience a local fiel(‘:ijmd
correlation function given by Ed9), where the only differ-
ence between different muons is in the value Aof Our w=—7y,H.
analysis shows that out of all the parameters that determine Dx
P(H.t), namely,x, 7, 7o, and A*, the only one that is EXPlicitly S(t) is given by
temperature dependent xs We thus conclude that the dy- I ey e
namic behavior of this family of dilute spin glasses n&gr S =Scog0t) —Sysin(wt),
S,(t)=S,cog wt) +S,sin(wt), (A7)

i I ! ’ logr
Mot 1—Hf0dtH(t)

1 (t '
- dt’jt dt"H'tHH' (") +--- |, (Ad)
h2Jo 0

is controlled essentially by the temperature dependence of
the power law exponent

| —
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In this Appendix we derive the expected behavior of the
polarization of a local probe, which is out of equilibrium, in H'(t)=— YulVOS—UM)S,+T(1)S,], (A8)
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where where(l)=P, and
V(t)=Bg(t)cog wt) + By(t)sin(wt), (111y=Poy2(V(t")V(t") +U(t")U(t")).
U(t) = BY(1)sin( wt) — BY(t)cog ), The meaning B (t")Bf(t")) is to holdt” andt” fixed and to
X Y average over all possible fields in the systems between these
T(t)=BY(t). times. This is a correlation function. We assume that there

o . ] ) are no cross correlations argy symmetry so the only terms
The polarization of a muon at a given site as a function ofieft to evaluate are of the form

time P,(t) is given by
(VA V() +U(t")U(t’))

P(t) =T pUT(t)o,U(1)] (A9) o Lo
where =(By(t")By(t")+By(t")By(t"))cog w(t"—t")].
We now make the assumption that the correlation function
e 1+Poo, depends only on the time difference and define
2

bt —t") = 2 Bd t’ Bd t" +Bd t’ Bd t” '
and Py is the initial polarization. ( )= BB+ By (1)By() (A13)
Equations(A9) and (A4) lead to the perturbation series _
so that finally

PO=I+I+1l+---, (A10)
where (y=— Pof;dt' f;'dt"cb(t' —t")cog w(t’ —t")].
|=Tr{po,}, (A14)
it We can eliminate one of the integrals by writing
= gJodt'Trp[H'(t'),az], (A11) S
T=t—-t’.

1 [t t’
|||=——fdt’f dt"Trp[H'(t"),[H'(t"),0,]]..
h2Jo 0 pLH (). [HT), 0 ]] This transforms the integral into

We now evaluate each term explicitly: The first term is t v t t—r
simple. Since fdt’f dt”=f drf dr’
0 0 0 0
Po, 1=2 and we arrive at
Tr{poi}= 0, i=xy

t

we getl =Py. In the second term we have (1y=- Pof d7(t—7)®(7)co wT). (A15)
0

[H'(t"),0]=iy,[V({t)oy+U(t")oy].
After the evaluation of the trace we fintl=0. For the third
term we find P,(t)=Po exd —I'(t)t], (A16)

Trp[H’(t”),[H’(t’),oZ]]=Poyi[V(t”)V(t’) expand this equation in powers bf, and compare it with
Egs.(A12) and(A15), we find
+Ut"HU(t)],

where we have used the simplifying assumption ¥Mat, I(tHt= fth(t—T)CI)(T)COE{wT). (AL7)
andT are classical fields. To progress further with the calcu- 0

lation it is helpful to introduce at this stage the ensemble . . - )
average over all possible trajectoriesBff(t). Quantities in At late times, such thab(t) is negligible, one finds that

() will denote such an average and we can write

If we now write

1 oc
F(H’t)_)ﬁ:fo d(7)codwT)dr.  (Al8)

(P)=(H)+II) (A12)
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