
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 88, 060502(R) (2013)

Strong- versus weak-coupling paradigms for cuprate superconductivity
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Absolute resistivity measurements as a function of temperature from optimally doped YBa2Cu3O7−δ ,
La2−xSrxCuO4, Bi2Sr2Ca1Cu2O8−x , and (Ca0.1La0.9)(Ba1.65La0.35)Cu3Oy thin films are reported. Special attention
is given to the measurement geometrical factors and the resistivity slope between Tc and T ∗. The results are
compared with a strong-coupling theory for the resistivity derivative near Tc, which is based on hard core
bosons, and with several weak-coupling theories, which are BCS based. Surprisingly, our results agree with both
paradigms. The implications of these findings and the missing calculations needed to distinguish between the
two paradigms are discussed.

DOI: 10.1103/PhysRevB.88.060502 PACS number(s): 74.25.Bt, 74.25.Gz, 74.25.Ha

Two major discoveries were made at a very early stage
in the study of cuprate superconductivity. One was the
Uemura relation for underdoped samples.1 This relation states
that Tc ∝ λ(0)−2, where Tc is the superconducting transition
temperature, and λ(0) is the magnetic penetration depth at
zero temperature. This relation was found using the muon spin
rotation (μSR) technique. The second discovery was that for
underdoping and optimal doping, at temperatures T above T ∗,
the resistivity ρdc(T ) is a linear function of T .2,3 Near optimal
doping, T ∗ is similar to Tc and the linear relation extends
down to Tc. Later on Homes extended the Uemura relation
and showed that a broader scaling holds for both underdoped,
optimally doped, and overdoped samples: ρs(0) ∝ σ (Tc)Tc,
where ρs(0) is the superfluid density at zero temperature, and
σ (Tc) = 1/ρdc(Tc) is the conductivity at Tc.4 This observation
was based on optical conductivity measurements. In many
low doping models, ρs(0) ∝ λ−2(0).5 Therefore, the Homes
law can be expressed as λ−2(0) ∝ σ (Tc)Tc. For both Homes’
and Uemura’s laws to coexist, σ (Tc) must be universal for all
underdoped cuprates.

Two kinds of theories address the Homes law. The first kind
was provided by Tallon et al.,6 and the latter by Imry, Strongin,
and Homes,7 and by Kogan.8 They predict

λ(0)−2 = Kσ (Tc)Tc, (1)

where K ranges from 120, as in the original Homes law, to
K = 240. These theories have a few elements in common.
They assume weak coupling (WC), that the resistivity arises
mainly from disorder, that the BCS relation between the
superconducting gap and the critical temperature � ∝ Tc is
correct, and that the constant of proportionality (which varies
a bit between authors) is on the order of unity. The big
advantage of these theories is that they explain materials of
all dopings. The disadvantage is that they treat a compound
such as optimally doped YBa2Cu3O7−δ (YBCO) as a dirty
superconductor. In optimally doped YBCO, the resistivity
extrapolates to zero at T → 0 (see below), which can only
occur in the absence of impurities. In fact, no experiment shows
inhomogeneities in this compound.9 In addition, the weak-
coupling theories do not address the temperature dependence
of σ (T ) for T > Tc, which is very different from simple
metals.10

The second theory was provided by Lindner and
Auerbach (LA).11 They derived the relation ρdc(T ) =
77.378( λab(0)

q
)2 KBT

h̄c2 by using the hard core boson (HCB) model
at half boson filling (optimal doping); q = 2 is the boson
charge in units of e. The HCB model is expected to be valid for
temperatures lower than T ∗, where Cooper pairs are supposed
to start forming in the cuprates. This theory assumes a clean
system and that the resistivity arises from strong coupling
(SC) between bosons. The LA derivation generates the Homes
law for optimal doping; it also captures the linear resistivity
and provides the coefficient of proportionality quantitatively.
However, the theory is not valid for an underdoped or
overdoped compound, which is a serious disadvantage. Due
to impurities, the extrapolation to T = 0 of ρdc(T ) is finite in
some cuprates. Therefore, it is more practical to write the LA
law in a differential form:

dρdc

dT
(T > Tc) = 77.378

(
λab (0)

q

)2
KB

h̄c2
. (2)

In this Rapid Communication, we check both the WC
and SC theories, as accurately as possible, in the small
region where both are valid, namely, optimal doping. We use
direct current (dc) resistivity versus T measurements in films
of YBa2Cu3O7−δ (YBCO), (Ca0.1La0.9)(Ba1.65La 0.35)Cu3Oy

(CLBLCO), La2−xSrxCuO4 (LSCO), and Bi2Sr2Ca1Cu2O8−x

(BSCCO). We take the geometrical factors of the film into
account and check their influence experimentally. This allows
us to determine ρdc(T ) in absolute value, and to demonstrate
that our results are indeed film-geometry independent. We then
compare dρdc

dT
(Tc) to λ2

ab(0) and σ (Tc)Tc to λ−2
ab (0), as in the SC

and WC theories, respectively. λab is taken from Refs. 12–15,
respectively; the scatter in λab values as provided by different
authors is incorporated in the error bars as described below.
Our main results, given in Fig. 1, are represented by the
solid symbols. For comparison we also show dρdc

dT
(T > Tc) for

single crystals of YBCO, LSCO, BSCCO, and Tl2Ba2CuO6+δ

(TBCO) taken from Refs. 2,16,17, respectively, versus λ2
ab

for single crystal taken from Refs. 6,14,18, respectively (open
symbols).

In the case of the LA law, we fit our data to a straight
line given by Eq. (2) with q as a fit parameter. We find
q = 1.75(15). The fit is shown in Fig. 1. We also depict in
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FIG. 1. (Color online) Solid symbols: The temperature derivative
of the resistivity of four different optimally doped cuprate films,
at T > Tc, obtained by dc measurements, as a function of their
penetration depth. The solid lines show the best linear fit to the data
(that extrapolates to the origin) and the prediction by the LA model.
The values represented by open symbols are based on single crystal
measurements. The inset shows a Homes-type law on a log-log scale
generated from the same data. To get the same scales as Homes, we
are forced to multiply λ−2 by 0.02. The original Homes observation,
given by Eq. (1), with K = 120 and with the largest K = 240 obtained
by WC predictions, are presented by solid lines.

the figure the LA prediction with q = 2. The experimentally
determined boson charge of 1.75(15)e is very similar to
theoretical charge of 2e. It means that the HCB model is
self-consistent for the cuprates, and a very good starting
point for understanding the conductivity of optimally doped
samples. We also present our results as a Homes-type plot in the
inset of Fig. 1. Since optical conductivity measures the plasma
frequency which is proportional to λ−2(0), it leaves one free
parameter. To achieve the same scales as Homes we multiply
λ−2

ab (0) by 0.02. This 2% correction is due to the difference
in the penetration depth and dc conductivity as estimated by
optical conductivity measurements and the techniques used
here.19 With this scale we find that on a log-log plot our data are
not far from Homes’, which are represented by the solid line.
We also show the WC theoretical predictions with K = 240
in Eq. (1).

It seems that both WC and SC theories are in agreement
with our experiment. Another important piece of information
is the indication of carriers with charge 2e around the
superconducting-insulator transition. This indication comes
from doping-temperature scaling relations of the resistivity.20

The emerging picture is that the superconducting state in the
cuprates is grainy, sometimes called Bose glass.20 The SC
HCB model is a good starting point for describing each grain.
The normal metal between grains, in underdoped and possibly
overdoped samples, plays an important role in determining the
conductivity above the global Tc. This metal is best described
by one of the WC theories. However, at optimal doping one
grain takes over the entire sample. When this happens the
conductivity is related only to the superconducting properties,
as Eq. (2) predicts.
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FIG. 2. (Color online) Measurements of resistance as a function
of temperature in narrow bridges of optimally doped YBCO. Bridges
1 and 8 are close to the edges of the film. Bridges 3–6 are in the center
of the film.

We now describe our experiment in more detail. A cardinal
aspect of our measurement is the determination of the absolute
value of the resistivity and resistivity derivative near Tc. One
strategy is to use single crystals, but in this case one does
not know exactly which route the current takes in the sample
between contacts, and it is difficult to precisely determine the
resistivity. Therefore, such measurements are usually done by
preparing a film and patterning a bridge on it by ion milling. It
is then assumed that the resistance is dominated by the bridge.
However, in high temperature superconductors, close to Tc,
the situation is not that simple. Figure 2 shows resistance
measurements for a set of identical bridges. For this and
other measurements, we used films grown on a 10 × 10 mm2

SrTiO3 (STO) substrate with the c axis perpendicular to the
film. Due to flux flow resistance, the transition region from
normal to the superconducting state is very rounded and it is
difficult to determine dρdc

dT
(T � Tc). There is also variation in

the resistance between different bridges. This variation is due
to the film being less thick near the edges. The inset of Fig. 2
shows the resistance at T = 245 K as a function of bridge
number. Indeed, the first and last bridges are more resistive,
but the middle ones have very similar resistance. We therefore
abandoned the bridge method, and focused on wide film
measurements which sample the film center and have very
sharp transitions, as shown in Fig. 3. However, in this case
geometrical factors have to be taken into account when
measuring resistivity.21

Our four-point probe measurement setup is shown in the
inset of Fig. 3(b). The two external contacts are used as the
current source and drain and the two internal contacts are
the voltage probes. For a single current source at the origin in
contact with a two-dimensional (2D) infinite conducting plane,
the current density at a distance r from the source is given by
J = I/(2πr). The electric field on the conducting surface is
set by J = σE. This leads to a logarithmic potential V − V0 =
− I

2π
ρdc ln r . In a current source (a) and drain (b), with equal

distance s between all probes, the potential difference is �V =
I
π
ρdc ln 2. For a finite sheet, the potential difference is found by

introducing an infinite number of images to the original current
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FIG. 3. (Color online) (a) Resistance vs temperature in films
of different dimensions and different distances between contacts.
(b) The resistivity obtained by using Eq. (4). The resistivity is
geometry independent. The inset in (b) shows the experimental setup
and the set of current images used to generate the correction factor
calculated in Eq. (3).

source and drain, as shown by the spots on dark slabs in the
inset of Fig. 3(b).21 This forces the current to run parallel
to the boundary. One then sums the potential from all
images. The current sources and drains, and their images,
are located on a lattice given by ra

nm = (mw,s + nl) and
rb
nm = (mw,nl − 2s), where w and l are the width and length

of the film, respectively. The potential difference between the
two measured contacts is given by �V = ρdcIC, where

C = 1

2π

∑
n,m

(−1)n ln

[
(mw)2 + (s + nl)2

(mw)2 + (nl − 2s)2

]
. (3)

C as a function of w for various l and a typical s is shown
in Fig. 4. In our setup, C is on the order of 3.5. Therefore, it is
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FIG. 4. (Color online) The geometrical factor C, calculated in
Eq. (3), as a function of the width w for various lengths l, and a fixed
distance between contacts s.
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FIG. 5. (Color online) V-I measurements of the YBCO film at
different temperatures, demonstrating the ohmic behavior of the film.
The inset shows an AFM image of the film topography near an etched
step.

essential to check that Eq. (3) is valid, as is done below. Another
important factor is the film thickness z, which is measured by
atomic force microscopy (AFM), as shown in the inset of
Fig. 5. Each of the films was measured from all sides, and,
unless stated otherwise, their thickness is 100 ± 5 nm. The
resistivity is given by

ρdc = 1

C

z�V

I
. (4)

Current simulations show that only 7% of the total current
passes close to the edges of the films where the resistance is
high by 7% (see the inset of Fig. 2). This leads to an error of less
than 1% on the resistivity due to the thickness measurement.

To check the validity of Eqs. (3) and (4), we produced
YBCO films of various geometries and measured their resis-
tance as presented in Fig. 3(a). The figure shows the resistance
(�V/I ) of seven different films with various heights z,
widths w, lengths l, and distances between contacts s, in units
of millimeters. Figure 3(b) depicts the resistivity ρab obtained
by Eq. (4). The resistivity is indeed geometry independent and
linear immediately above Tc.

In Fig. 5, we show V-I measurements of one of the YBCO
films. In the normal state, the films show ohmic behavior up
to a current of 140 μA. Therefore, all our measurements are
done in a current of 100 μA.

Finally, we present resistivity measurements in optimally
doped films of YBCO, LSCO, BSCCO, and CLBLCO in
Fig. 6. A pure linear behavior is observed only in YBCO,
and, as expected, the resistivity extrapolates to zero at zero
temperature. In LSCO, the substrate reduces Tc from the bulk
value considerably, due to a mismatch in lattice parameters.
This lattice mismatch also reduces the Tc of the other
compounds, but not as much as in LSCO. To simplify our
analysis, we focus on the temperature range 100–200 K,
which, for all materials, is higher than Tc, higher than the
region of fluctuating superconductivity, and lower than T ∗. In
this temperature range, the reduction of Tc in LSCO is not
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FIG. 6. (Color online) Resistivity vs temperature for four dif-
ferent optimally doped cuprates. The inset shows the temperature
derivative between 100 and 200 K, which is above Tc and below T ∗

for all materials. The average derivative is used in Fig. 1. The solid
line demonstrates that, for YBCO, ρdc(T → 0) = 0.

relevant. In the inset of Fig. 6, we present the first derivative
of the resistivity as a function of temperature. As expected,
the derivative is a constant only for YBCO. For the other
materials, the derivative varies slowly with temperature. We
treat the derivative as a statistical variable and assign to each
material an averaged resistivity slope and standard deviation
over the entire plotted range. The standard deviation is used to
generate the error bars. The summary of our thermal derivative
of the resistivity versus magnetic penetration depth results is
plotted in Fig. 1. As mentioned before, the penetration depth

is taken from the literature. For optimally doped YBCO film,
λab = 146 ± 3 nm was determined in a theory-free method
using slow muons.12 In this case, the value of λab agrees
with coated sample resonance (CSR) measurements, which
is also a theory-free method,15 and the error bar is known.
For YBCO crystal, λab = 115 ± 3 was also measured with
slow muons.18 For LSCO, there are only crystal measurements
and all values reported are scattered around 260 ± 15 nm.14

For BSCCO, the λab = 270 ± 15 nm value was taken from
CSR with its error bar.15 For BSCCO and TBCO crystals the
values of λab = 196 and λab = 162, respectively, are from
Ref. 6. They have been measured by a few techniques but no
error bar is assigned. Finally, CLBLCO was measured only
by standard μSR, where the determination of λab = 250 nm
involves theoretical arguments and the error bar is not known.13

A comparison between our experimental results and both
WC and SC theories show that both are valid for optimally
doped samples to some extent. To distinguish between the two,
the WC theories should be extended to provide σ (T > Tc).
Similarly, the SC theory should be broadened to include the
doping dependence of ρ(T > Tc). We believe that there is
room for a third theoretical approach that combines the two
paradigms into one, in order to account for the full doping and
temperature variations. As for optimal doping, the fact that
the resistivity above Tc is determined by a superconducting
quantity only is an amazing property of the cuprates.
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