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We report magnetization, electron-spin resonance (ESR), and muon-spin relaxation (μSR) measurements on
single crystals of the S = 1/2 (Cu+2) kagome compound Cu(1,3-benzendicarboxylate). The μSR is carried
to temperatures as low as 45 mK. The spin-Hamiltonian parameters are determined from the analysis of the
magnetization and ESR data. We find that this compound has anisotropic ferromagnetic interactions. Nevertheless,
no spin freezing is observed even at temperatures two orders of magnitude lower than the coupling constants.
In light of this finding, the relation between persistent spin dynamics and spin liquids on kagome lattices is
reexamined.
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The search for different kinds of quantum spin liquids
(SLs) continues to draw considerable experimental attention,
and new candidate SLs are reported from time to time [1–9].
Much of the search is focused on compounds with a kagome
lattice. SLs lack long-range order and are classified according
to the presence or absence of a gap to magnetic excitations.
The gapless ones, or those with a gap smaller than the
lowest experimentally available temperature, are expected to
have persistent spin dynamics (PSD) at T → 0. A major
experimental tool in the search for such states is the muon-spin
relaxation (μSR) technique. μSR is ideal for this task since it
operates at zero external field, without affecting the rotation
symmetry of the Hamiltonian. In addition, μSR can detect
the presence of long-range order and dynamic fluctuations.
PSD in μSR is manifested as a temperature-independent
spin fluctuation below some characteristic temperature. It
has been frequently used to identify materials such as SLs.
However, μSR detected PSD in some compounds that are
not necessarily SLs, such as pyrochlores [10] and molecular
magnets [11]. This observation raises a question: Can μSR
give a false-positive observation when used to identify a SL?

To address this question, we investigate the organometal-
lic hybrid kagome compound Cu(1,3-benzendicarboxylate)
[Cu(1,3-bdc)]. This compound, with the chemical formula
CuC8H4O4, has the ideal qualities of a spin-1/2 kagome
featuring a nonmagnetic 1,3-bdc ligand which links the Cu+2

kagome layers [12]. Initial magnetization measurements on
polycrystalline samples of Cu(1,3-bdc) suggested that the
mean nearest-neighbor superexchange interaction is anti-
ferromagnetic (AFM) in nature with a Curie-Weiss (CW)
temperature of �CW = −33 K, yet at low temperatures the
onset of a ferromagnetic (FM) signal was observed [12]. Re-
cently, neutron-scattering data were presented, confirming this
magnetic state [13]. Ferromagnetic correlation on a kagome
lattice means that the degree of frustration is low, and therefore
the spins should freeze at low temperatures. Nevertheless,
early μSR measurements showed only slowing down of the
spin fluctuations below Ts = 1.8 K. The measurements were
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carried out down to 0.9 K, where the magnetic state remains
dynamic with no signs of long-range order [14].

Here we study single crystals synthesized in the form of
millimeter-size flakes [12]. We combine direction-dependent
bulk magnetization and electron-spin resonance (ESR) mea-
surements to characterize the spin Hamiltonian of these
crystals. We show that Cu(1,3-bdc) is an anisotropic, slightly
frustrated ferromagnet; it is certainly not a SL. We also
extend the temperature dependence of the previous μSR
measurements and show that the dynamic fluctuations persist
down to 45 mK. This result indicates that PSD detected by
μSR can give a false positive when used to identify a SL state.

The bulk magnetization (M) measurements were performed
using a commercial superconducting quantum interference
device (SQUID) at temperatures 3 � T � 140 K with ex-
ternal fields between 0.1 � H � 25 kG applied along and
perpendicular to the kagome planes, i.e., H ‖ ĉ and H ⊥ ĉ.
The crystals were held onto a small flat glass using epoxy glue
with the ĉ direction perpendicular to the glass. The ĉ direction
is also perpendicular to the kagome plane. The crystal’s â
and b̂ directions are random. To determine the background
signal, we measured the contribution from an identical glass
with the epoxy (not shown). This measurement indicated
no temperature dependence and a negligible background
contribution compared to the sample signal.

The magnetization measurements versus field at a temper-
ature of T = 2.4 K, for two field directions, are plotted in
Fig. 1. At fields higher than about 15 kG, the magnetization
saturates for both directions. For H ⊥ ĉ, the saturation is
reached at a lower field than for H ‖ ĉ. This means that the
generated internal fields are strongest when the spins are in
the kagome plane. The saturation value of the magnetization
is 1.231(5)μB . This suggests that the g factor is higher
than 2. For a free spin 1/2, the field dependence of the
magnetization M = gμB 〈S〉 is given by the Brillouin function.
This function is plotted in Fig. 1 by the dash-dotted line.
Clearly the magnetization saturates at lower applied fields
than expected for noninteracting spins in both directions. This
means that the internal field is larger than the external one
and that Cu(1,3-bdc) is a ferromagnet in our experimental
conditions.
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FIG. 1. (Color online) Magnetization of Cu(1,3-bdc) at T =
2.4 K, measured at two directions of the crystal: H ‖ ĉ (black filled
symbols) and H ⊥ ĉ (red hollow symbols). The dash-dotted line
indicates a spin-1/2 Brillouin function with g = 2.0023. The solid
line indicates a fit to a Brillouin function with an effective field [see
Eq. (2)]. The dashed (dotted) curves show the Brillouin function with
an effective field using two possible derived Hamiltonian parameters
given in Table I.

To take interactions into account, we consider a fully
anisotropic nearest-neighbor exchange Hamiltonian,

H =
∑
〈i,j〉

[
JSi · Sj + DSz

i S
z
j + E

(
Sx

i Sx
j − S

y

i S
y

j

)

+F (Si×Sj )z
] − gμB

∑
i

Si · H, (1)

where the sum is over nearest-neighbor bonds, J is the
exchange coupling, E and D are the anisotropies, and F

represents the ẑ component of the Dzyaloshinskii-Moriya
(DM) term [15], which is often the biggest [16]. The x̂
direction is along each bond, the ŷ direction is in the kagome
plane perpendicular to each bond, and the ẑ direction is
perpendicular to the kagome plane. D, E, and F are believed
to be due to spin-orbit couplings. F is a first-order and
E and D are second-order effects. Nevertheless, E and D

generate differences in the high-temperature magnetization
between different directions, which, as we show below, occur
in our system. Therefore, E and D are certainly part of the
Hamiltonian [17]. We start our analysis by assuming F = 0,
and, as we shall see, there will be no reason to relax this
assumption.

In the mean-field approximation, the magnetization on
each of the three kagome sublattices d is determined by the
effective field that this sublattice experiences, Hd

eff . This field is
due to the external field and the internal field generated by the
moments Md of the other sublattices, and is given by the
generalized Brillouin function

Md = gĤμB

2
tanh

(
gĤμB

2KBT

∣∣Hd
eff

∣∣)Ĥd
eff, (2)

where gĤ represents the direction-dependent g factor. When
the external field is in the ẑ direction, all sublattices are

FIG. 2. (Color online) Representative ESR data for the two mea-
sured directions, H ‖ ĉ (red) and H ⊥ ĉ (black), taken at T = 295 K.
The inset displays the ESR raw signal. The main panel shows the
integrated signal (absorption line). The dashed lines demonstrate the
fit to a Lorentzian function.

magnetized in that direction only, their moments are equal,
and

Heff = [H − z(J + D)Mz/(gμB)2]ẑ, (3)

regardless of d; z is the number of neighbors. A solution of
the implicit Eqs. (2) and (3) generates Mz(H,J,D,g‖). We fit
this Mz to the H ‖ ĉ data and find that

J + D = −2.04(2) K, (4)

and g‖ = 2.51(1). The fit is plotted in Fig. 1 by the solid
line. The calculated magnetization with interactions describes
the data quite well. This calculation demonstrates that the
interactions in the ẑ direction must be ferromagnetic on the
order of 1 K.

Other Hamiltonian parameters are obtained from ESR. The
ESR measurements were done in the X band (ω0 = 9.5 GHz)
at 15 � T � 300 K. The applied field was swept between
0.9 � H � 6 kG. The inset in Fig. 2 plots representative
raw ESR data taken at T = 295 K of the sample with
a diphenylpicrylhydrazyl (DPPH) reference. To obtain the
absorption line, we subtract the reference signal and integrate
the raw ESR signal over the applied field. The main panel
of Fig. 2 shows the absorption lines for the two measured
directions. A reasonable fit to the absorption line is found to
be a Lorenzian function,

χ ′′(H ) = A‖,⊥
π

δ

δ2 + (H − H‖,⊥)2
, (5)

where 2δ is the full width at half maximum and
H‖,⊥ = ω0/(g‖,⊥μB) is the resonance field. We find that
g⊥ = 2.164(2), g|| = 2.181(2), δ⊥ = 0.432(1) kG, and δ|| =
0.867(22) kG. The δ and g factor do not have temperature
dependence down to 15 K. The area A of the H ⊥ ĉ
measurement is highest, consistent with the magnetization
data, and increases upon cooling as expected. The ESR g‖,⊥
factors are larger than 2, but lower than the value determined by
the magnetization measurement. The cause of the discrepancy
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TABLE I. The Hamiltonian parameters derived from the solution
of Eqs. (6) and (4).

Solution No. J (K) D (K) E (K)

1 −2.3822 0.3421 ± 0.142 17
2 −1.7470 −0.2930 ± 0.121 75

between the magnetization and ESR g factors is not clear
to us.

At temperature higher than typical interaction strength,
the widths δ|| and δ⊥ are related to the three Hamiltonian
parameters via the moments according to

g‖,⊥μBδ‖,⊥ = π√
3
M

‖,⊥
2

√√√√M
‖,⊥
2

M
‖,⊥
4

, (6)

where M
‖,⊥
2 = −Tr([H,S⊥,‖]2)/Tr(S⊥,‖2) and M

‖,⊥
4 =

Tr([H,[H,S⊥,‖]]2)/Tr(S⊥,‖2) are the second and fourth
moments, respectively, and S⊥,‖ stands for the spin component
perpendicular or parallel to the applied field, respectively.
For the Hamiltonian of Eq. (1), on a kagome lattice, and for
each of the field orientations, we obtain the second and fourth
moments as given in Sec. 1 of the Appendix. When taking
F = 0, the second moments are given by

M⊥
2 = 4E2, (7)

M
||
2 = E2 + D2, (8)

and the fourth moments up to second order in anisotropies are
given by

M⊥
4 = 18J 2E2, (9)

M
||
4 = 9

2J 2E2 + 3J 2D2. (10)

We numerically solve Eqs. (6) and (4). All of the possible
solutions of these equations are given in Table I.

In both solutions, J + D < 0 and J ± E < 0 and, as stated
above, the interactions between spins are ferromagnetic in all
directions.

To check our conclusion and to verify the assumption
made so far, we use the calculated Hamiltonian parameters
to generate the expected field-dependent magnetization in
the perpendicular direction, 〈M⊥〉 (H,J,E,g⊥), and compare
it to the data in Fig. 1. For this purpose, we calculate the
two-component magnetization of each of the three kagome
sublattices Md for H ⊥ ĉ by solving the six coupled explicit
Eqs. (2). The Hd

eff expressions are given in Sec. 2 of the
Appendix. We then average the magnetization on the three
sublattices and project the result onto the Ĥ direction to
generate 〈M⊥〉 as measured experimentally. For all applied
field values, the result is independent of the applied field
direction in the plane. The g factor determined from the high
field data is g⊥ = 2.55(4). In Fig. 1, we show the calculated
〈M⊥〉 for the two possible sets of parameters from Table I. Only
solution 1 in the table agrees with the data. The agreement with

the data is nearly perfect. Therefore, one can fit all our data
without the need to introduce F .

We attempt to confirm these results by temperature-
dependent susceptibility χ ≡ M/H measurements for H →
0. However, the susceptibility measurements are not con-
clusive. They are presented and discussed in Sec. 3 of the
Appendix.

We now turn to discuss the longitudinal fields (LFs) μSR
results. The data were collected at the M15 surface muon beam
line at TRIUMF using a dilution refrigerator spectrometer.
The spectra were gathered at T = 45 and T = 240 mK. In
the LF mode, the external field is applied along the initial
muon-spin direction. When the internal fields fluctuate in space
and time, the muon-spin polarization is expected to complete
less than one full oscillation, and then relax. The frequency of
oscillation increases and the relaxation rate decreases as the
field increases. This behavior is described by the dynamical
LF Kubo-Toyabe (DLFKT) function G(�,ν,t,HLF), where ν

is the field fluctuation rate, � is the static width of the local
field distribution, and HLF is the applied field [18].

Figure 3(a) shows the spectra obtained with different fields
at T = 45 mK. The data exhibits a typical DLFKT behavior
in every respect. We fit the function

A(t) = A0G(�,ν,t,HLF) + Bg (11)

FIG. 3. (Color online) (a) The raw μSR data with applied lon-
gitudinal field of 50 to 800 G; the solid lines demonstrate the fit to
Eq. (11). (b) A semilogarithmic scale of the spins fluctuation rate ν

obtained in Ref. [14] with the added points at 240 and 45 mK. Inset:
The kagome unit cell (bold red) with its three sublattices (a, b, and c),
the corresponding magnetic moment (Ma , Mb, and Mc), and angles
(α, β, γ ).
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to the data, where A0 is the asymmetry from muons in the
sample and Bg is a nonrelaxing background due to muons
stopping in the sample holder. All of the fit parameters are
shared for all of the data sets at a given temperature. The
instantaneous internal field distribution is assumed to be
Gaussian. The fit is demonstrated by the solid lines in Fig. 3(a).
We obtain that ν = 0.43(2)μs−1 and � = 19.3450(4) MHz.
The value for � is consistent with previous measurements [14],
indicating the same field distribution from the millidegrees
Kelvin to few Kelvin range. In contrast, ν decreases by a factor
of ≈8 relative to data obtained before at a temperature 20 times
larger (0.9 K) [14]. We add the new ν values to the previous
results in Fig. 3(b). The full picture clearly shows dramatic
slowing of the spin fluctuations below ≈1.8 K. However, the
system continues to fluctuate even at 0.05 K with no signs
of freezing. Between 240 and 45 mK, ν is finite, clearly
measurable by μSR, and temperature independent.

It should be pointed out that the analysis of the μSR data
was done assuming that the muon experiences only the external
field. In a ferromagnet, the local field in the muon site is
larger than the external one. Without proper knowledge of
the muon stopping site, it is difficult to estimate this local
field. Nevertheless, the successful fit with HL as the local
field suggests that the internal contribution to the local field is
much smaller than HL. In any case, analysis of our data with
a field larger than HLF could only lead to higher values of ν.
Therefore, the ν in Fig. 3(b) should be considered as the lower
limit on the real values.

The absence of frozen moment and finite fluctuation
rate ν at T → 0, on different time scales, was observed
in many kagome lattices with antiferromagnetic interac-
tions such as SCGO [1], Volborthite [2,3], Herbertsmithite
[4,5], Nd3Ga5SiO14[6], Langasite [7], Kapellasite [8], and
vanadium-oxyfluoride [9]. All of these compounds are con-
sidered to be a SL. However, the Hamiltonian in Eq. (1),
with the parameters in Table I, gives a ground state that
is fundamentally different from these spin liquids. Since
D > |E|, the spin lie in the xy plane. This allows us to
define one angle per spin, as shown in the inset of Fig. 3(b).
For positive or negative E, the spins would prefer to lie
parallel or perpendicular to a bond, respectively. However,
the ground-state energy minimum is reached when two spins
make the angles α = −β = −√

3E/(6J − E) with a bond,
and the third spin has γ = 0 and is 60 degrees away from a
bond (see Sec. 4 of the Appendix). This is a slightly frustrated
spin arrangement. A new energy minimum for all the spins
on the lattice is found every 60 degrees, but there is no local
continuous degeneracy. The energy minimum is shallow and
it takes ∼10 mK per unit cell to overcome the potential barrier
and move the entire spin system collectively between local
energy minima. This means that Cu(1,3-bdc) should order
magnetically and it is not a spin liquid, yet it produces the
same μSR signature as a SL.

In summary, the Cu(1,3-bdc), with Cu+2 spin-1/2 situated
on a kagome lattice, exhibits anisotropic but ferromagnetic
interactions in all directions. μSR does not detect long-range
order and indicates persistent spin dynamics down to 45
mK, as expected from a spin liquid. The same behavior was
observed in many kagome lattices with AFM interactions.
The absence of muon-spin oscillations can be assigned to

multiple muon sites. However, the PSD is very surprising
since a kagome lattice with ferromagnetic interactions has
a very small degree of frustration, lacks continuous local
degeneracy, and is not a spin liquid. Thus, our experiment
suggests that μSR on its own can falsely identify spin liquid
on a kagome lattice. Cu(1,3-bdc) is an example of a kagome
system with long-range magnetic order and PSD at T → 0.
This unusual behavior could be a new effect or a result of
excitations caused by the muon itself as it is introduced into the
sample.

This work was supported by the Israel USA Binational
Science Foundation. We would like to thank Young S. Lee
and Joel S. Helton for providing us with the samples. The
authors wishes to thank the TRIUMF staff for help with the
μSR experiments. Helpful discussions with Sarah Dunsiger
are greatly acknowledged.

APPENDIX

In this Appendix, we expand some of the results used in the
main text.

1. Moments

The evaluation of the linewidths in ESR at high tem-
peratures involves calculating the second- and fourth-order
moments to be used in Eq. (6) in the main text. Thus we
need to evaluate the first- and second-order commutators
of the total spin component in a given direction and the
Hamiltonian. It is straightforward to see that for a spin-1/2
Hamiltonian, the first-order commutator gives rise to two-spin
terms. The second-order commutator gives rise to single-spin
or three-spin terms, depending on whether a bond term, from
the Hamiltonian, and a two-spin term, from the first-order
commutator, share two sites or one.

The evaluation of the traces involves careful bookkeeping
of all the different terms possible. We accomplished that by
writing a Mathematica program which evaluates all the terms
that can arise and computes the trace. The program evaluates
the moments for a general Hamiltonian of spin-1/2 sites. It is
assumed that the lattice can be grouped into clusters of sites,
which can be seen as sublattices corresponding to a particular
Bravais lattice site. The Hamiltonian is then specified as the
sum of interactions within a cluster and between clusters. Thus
we assume that the Hamiltonian has translation invariance.
The input to the program specifies all the site indices and
coupling coefficients (nine in number, for SiαSjβ) for all
the different bonds involving spins from the Bravais lattice
site at the origin. The rest of the bonds on the lattice and
their contributions to the trace can be evaluated given the
translation invariance. Thus the evaluation is quite general
and can be extended to several other systems with more
general Hamiltonians, such as those containing all the compo-
nents of the DM interaction and also longer-range exchange
interactions.

The moments in this paper have been evaluated for
the anisotropic kagome Hamiltonian with three exchange-
coupling constants and a Dzyaloshinski-Moriya (DM) term

205116-4



DYNAMIC SPIN FLUCTUATIONS AT T → 0 . . . PHYSICAL REVIEW B 89, 205116 (2014)

given in Eq. (1) of the main text. They are given by

M⊥
2 = 4E2, (A1)

M
||
2 = F 2 + E2 + D2, (A2)

M⊥
4 = 18J 2E2 + 28E4 + 10F 2E2 + 8

√
3FE2J

+ 4
√

3FE2D + 20JDE2 + 8E2D2, (A3)

M
||
4 = 11

2
F 4 − JDE2 + 9

2
J 2E2 + 3J 2D2

+ 2JD3 − 5
√

3

2
FE2D + 13

4
E4 + 5

2
D4

+ 41

4
F 2E2 + 2F 2J 2 + 3F 2D2 + 25

4
E2D2. (A4)

2. Effective fields

The kagome lattice is constructed from three sublattices.
They are presented in Fig. 3(b) of the paper. The effective
fields in the three different sublattices are

Ha
eff = H − 2J

g2μ2
B

(Mb + Mc) − E

g2μ2
B

(
2Mb

x

−Mc
x +

√
3Mc

y, − 2Mb
y + Mc

y +
√

3Mc
x

)
, (A5)

Hb
eff = H − 2J

g2μ2
B

(Ma + Mc) − E

g2μ2
B

(
2Ma

x

−Mc
x −

√
3Mc

y,−2Ma
y + Mc

y −
√

3Mc
x

)
, (A6)

Hc
eff = H − 2J

g2μ2
B

(Mb + Ma) − E

g2μ2
B

(−Ma
x

−Mb
x +

√
3Ma

y −
√

3Mb
y ,Ma

y + Mb
y

+
√

3Ma
x −

√
3Mb

x

)
. (A7)

3. Susceptibility

The inverse susceptibility χ−1 as a function of temperature,
for both field orientations with an applied field of 0.1 kG, is
depicted in Fig. 4. χ−1 is clearly different between the two
directions. We performed a high-temperature fit to the inverse
Curie-Weiss (CW) law, χ (T )−1 = (T − �CW)/C, where C is
the Curie constant and �CW is the CW temperature. For the
two experiments, the fit was applied in two temperature ranges:
low T [5 K, 30 K] and high T [50 K, 100 K]. Above 100 K,
χ (T )−1 is no longer linear with T for both directions. The CW
temperature for H ‖ ĉ from the high-T range is −1.0(8) K,
and from the low-T range, it is �

||
CW = 4.03 K. The CW

temperature for H ⊥ ĉ from the high T is �⊥
CW = −49(2) K.

For low T , H ⊥ ĉ, the data is not linear and could not be fitted
reliably. The inset of Fig. 4 displays the difference between
the fitted curve and the experimental data. This difference for
[χ (T )⊥]−1 deviates greatly from 0, whereas the difference for
[χ (T )‖]−1 is close to 0. This type of analysis provides a reliable
�CW only when the temperature range used in the fit is much

FIG. 4. (Color online) The temperature dependence of the in-
verse susceptibility χ−1(T ), measured at two directions: H ‖ ĉ (filled
symbols) and H ⊥ ĉ (hollow symbols); the solid lines are fits to a the
inverse Curie-Weiss law. The inset shows the residuals from the fit at
low temperatures.

larger than the CW temperature obtained by the fit. For H ⊥ ĉ,
this condition is not obeyed in the high-temperature range.
Therefore, �⊥

CW is ambiguous. For H ‖ ĉ, both temperature
ranges are valid, but give conflicting values of �

||
CW.

The situation is even more confusing when analyzing the
Curie constant for the different directions and temperature
ranges. We found that in both temperature ranges, the
Curie constant is substantially different between the different
directions, and much smaller than expected from localized
spin 1/2 on each Cu site. We therefore abandon susceptibility
measurements as a means of characterizing the Hamiltonian.

4. Ground state

We determine the ground state in the mean-field approxi-
mation by writing

Ma = M(cos α, sin α), (A8)

Mb = M(cos β, sin β), (A9)

Mc = M(cos γ, sin γ ). (A10)

The Hamiltonian per unit cell H = − 1
2 (Ma · Heff

a + Mb ·
Heff

b + Mc · Heff
c ) in zero external field is given by

H = M2

2(gμB)2
{J [4 cos(α −β) + 4 cos(β − γ )

+ 4 cos(γ − α)] + E[4 cos(α + β) + 2
√

3 sin(α + γ )

− 2
√

3 sin(β + γ ) − 2 cos(α + γ ) − 2 cos(β + γ )]}.
(A11)

This Hamiltonian is invariant under rotations by 120 degrees
and cyclic permutations of the angles. Numerical search for the
minimum shows that it occurs at α = −β and γ = 0. Given
these relations, and that for each sublattice Heff

d is parallel to
Md , we find that α = −β = −√

3E/(6J − E).
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