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Abstract

Functional magnetic materials are widely used in different applications which
range from data storage, spintronics to magnetic refrigeration. In the future,
the range of applications might extend and two-dimensional magnetic materials
could be incorporated into Van der Waals based heterostructures. In this work,
the magnetic ground states and properties of two families of layered magnetic
materials are investigated using bulk as well as microscopic magnetic probes.
Each of the two families studied in this work presents a separate topic.

The first family are the MAB phases — a class of ternary borides with the
formula M5AlB5 where M is a transition metal. Interest in these phases spurred
recently with the discovery of a near room temperature magnetocaloric effect in
Fe;AlB,. Herein, the magnetic phase diagram of the (Fe;_,Mn,), AlB5 solid
solution is investigated using neutron diffraction and magnetization measure-
ments. Three different ground states are found as function of x: a ferromagnetic
state for x < 0.1, a canted antiferromagnetic state for 0.1 < z < 0.5 and a sim-
ple antiferromagnetic state for x > 0.5. The observed phase diagram in the z—T
plane is qualitatively reproduced using a mean field calculation. Addition of
Mn into the solution is found to decrease the magnetocaloric effect but broaden
its temperature range, thus enabling control and tuning of its relative cooling
power. Introduction to the MAB phases is given in section 1.1 while results and
analysis are given in chapter 5.

The second family of materials are the rare-earth containing i-MAX phases.
These are a family of layered ceramics with the formula (M02 /3RE4 /3)2 AlC,
where RE is a rare-earth. These are newly discovered materials which serve as
potential parent compounds for 2D derivatives. The magnetic ground states of
(M02/3RE1/3)2 AlC with RE = Nd, Th, Ho and Er are identified as transverse
spin density waves using neutron powder diffraction, however the same technique
cannot be used on RE = Gd as it is a strong neutron absorber. Muon spin
rotation measurements on these compounds with the addition of RE = Gd
reveal that only in RE = Nd or Gd the magnetic moments are static over
a time scale of a few ps. The possible magnetic structures of RE = Gd are
obtained by combining muon spin rotation results with (DFT) based muon
site calculations, magnetic symmetry analysis and neutron diffraction results on
sister compounds. Two possible magnetic configurations for RE = Gd are found
with a magnetic moment of 6.5 + 0.5 ug at 1.5 K. Analysis of the temperature
dependence of the magnetization gives a ratio of ~ 102 between out-of-plane
and in-plane interaction energies, thus identifying the RE = Gd compound as a
nearly two dimensional antiferromagnet. Thus, RE = Gd is identified as the best
candidate for providing a high moment 2D magnet from the currently available
i-MAX compounds. Background information on the i-MAX phases is given in
section 1.2 while results and analysis are given in chapter 6.



Symbols and Abbreviations

Abbreviations

wSR Muon spin rotation

AFM Antiferromagnetism / Antiferromagnetic
BT Base temperature

DFT Density functional theory

FM  Ferromagnetism / Ferromagnetic
MC  Magnetocaloric

MFT Mean field theory

NPD Neutron powder diffraction

PM  Paramagnet

RCP  Relative cooling power

RT Room temperature

SBMFT Schwinger boson mean field theory

SDW Spin density wave

TM  Transition metal

XRD X-ray diffraction

Symbols

B Inverse temperature

BE,U Bogoliubov operators

XD Character of representation D

A Variational gap parameter

3—6 Differential scattering cross section
r Magnetic representation

Yn,Yu Neutron, muon gyromagnetic ratios
Vi Band dispersion

A Molecular field constant

X-ray or neutron wavelength



Total angular momentum

Orbital angular momentum
Scattering function

Structure factor

Gibbs free energy

Projection operator

Point group symmetry element
Entropy

Kinetic energy

Partition function

Bohr magneton

Nuclear magneton

Energy transfer / Larmor frequency
Spin wave dispersion relation
Electronic density

Neutron scattering cross section
Density of states

Nearest neighbor / atomic position
Momentum transfer / scattering vector
Lattice translation vector
Reciprocal lattice vector

Magnetic field

Lattice momentum / propagation vector
Magnetic interaction operator
Magnetic correlation length

Muon asymmetry

Nuclear scattering length

Schwinger boson operator
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Spin wave velocity

C(T,h) Specific heat
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Helmbholtz free energy
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g-factor
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Bose occupation number

Muon polarization

Heat

Atomic / nuclear position
Atomic spin

Temperature

Potential energy
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1 Introduction

1.1 The M>;AlB, compounds

The M>AlBy compounds (M = Fe, Mn, Cr) belong to a family of ternary and
quaternary transition metal (TM) borides which are called MAB phases [1].
They crystallize in the orthorhombic C'mmm space group with the M, Al and
B atoms occupying the 47, 2a and 4i sites, respectively (Figure 1.1). The unit
cell contains two formula units which form layers of MB slabs separated by
layers of Al.

Although these compounds were discovered during the 60’s and 70’s [2-
4], they remained unexplored until recent years. Interest in the M>AlBs was
spurred with the discovery of room temperature (RT) ferromagnetism (FM)
in FeoAlB, in 2011 [5]. Since FesAlBy is composed of cheap and abundant
elements and is FM below RT, it was seen as a potential material for magnetic
refrigeration based on the magnetocaloric (MC) effect [6].

Initial magnetization measurements on arc melted Fes AIBy have resulted in
an MC effect (adiabatic temperature change, see Sec. 3) of ~ 2K under an ap-
plied field of 2 T [6], with much more magnetic studies performed on differently
synthesized samples (see Ref. [1] and references therein). In an attempt to find
ways of influencing the magnetic properties of FegAlB,, additional studies were
performed on other M>AIB; compounds including (Fe;_,Mn,)2AIBs (0 < z <
1) [7, 8], (Fel_xCOx)2A1B2 (O S x S 03) [9], and FegAll_g_x(Ge,Ga)ng [10]
The admixture of Mn or Co into the M site was shown to decrease the transition
temperature down to 43 K for 60% Mn, while addition of Ga and Ge into the Al
site yielded more than a two-fold increase in the adiabatic temperature change.

Figure 1.1: The layered structure of M>AlBy (space group Cmmm).

Despite the numerous magnetization studies on Feo AlBs, its magnetic struc-
ture was not known for a few years until it was observed by neutron powder
diffraction (NPD) in 2016 [11]. It was found to be FM with a magnetic moment
of ~ 1.4 up directed along the a axis. This result agreed with density functional



theory (DFT) calculations [12] which showed that the a axis is the easy axis in
Fey AIB, and that the magnetic moment originates from a large spin polarization
of the density of states at the Fermi level [7].

DFT calculations [12] have also predicted that MnyAlBs is antiferromagnetic
(AFM) and that for z > 0.2 the ground state of (Fe;_,Mn, ), AlBs changes from
a FM to an AFM. AC susceptibility measurements of (Fe;_,Mn,)2AlBy [8] as
function of temperature have shown indications of a spin-glass state at T, ~
40K for x = 0.25. It was postulated that AFM interactions induced by the
addition of Mn atoms, and the triangular arrangement of the M atoms in the
ab plane (Figure 1.1) gives rise to frustration in the system. An additional
magnetization study combined with DFT calculations of (Fep 5Mng 5)2AlB2 has
suggested that it is a disordered ferrimagnet [13] however the magnetic states
of (Fe;_,Mn,)2AlB; for any x > 0 have not yet been directly observed.

In this work we have set to investigate the magnetic phase diagram of
(Fe;_;Mn,)2AlBs in the z—T plane using NPD and magnetization measure-
ments. The obtained results are analyzed in the framework of mean field theory
(MFT). Finally, the impact of Mn substitution on the MC effect is analyzed,
and possible ways to control the MC properties of the (Fe;_,Mn, )2 AlB5 system
are discussed.

Experimental details and a summary of this work can be found in Ref. [14]
and [15], while the results are presented in Sec. 5. This work gives the first
direct observation of the magnetic structure of MnyAlBs and its solid solutions,
which was hypothesized but never observed, using NPD. The agreement be-
tween experiment and theory confirms the validity of DFT calculations on the
(Fe;_;Mn, )2 AlBs system. Measurement of the MC properties of the solid so-
lution adds to the growing database of MC materials [16], which will help in
designing a working magnetic-cooling based refrigerator.

1.2 Rare earth based :-MAX phases

MAX phases [17] are a family of ternary carbides and nitrides with the genral
formula M,,11AX,,, where M is a metal, A is an A-group element (Al, Ge, Ga,
Su, etc...) and X is C or N with n ranging from 1 to 3. With over 150 variants
[18] discovered as of recently, these compounds combine properties of metals and
ceramics [19] and can serve as parent compounds for two dimensional derivatives
called MXenes (graphene analog) [20].

While multiple M or A atoms can be introduced to create quaternary MAX
phases, most of these phases form solid solutions and are thus chemically dis-
ordered. An exception to this rule is the newly discovered sub-group of MAX
phases with in-plane chemical ordering, which is termed i-MAX [21]. Unlike
regular MAX phases, where M is usually a transition metal, i-MAX phases
with the formula (Moy/3RE,/3), AlC (also known as RE-i-MAX) where RE
is a rare-earth have been synthesized [22]. The complex interactions between
localized 4f electrons of the RE ion with delocalized d electrons give rise to
varying magnetic properties in the RE-i-MAX phases [22].

The RE-i-MAX phases crystallize in the monoclinic C2/c space group with
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Figure 1.2: (a) Unit cell of (MOQ/gRE1/3)2 AlC projected in the a-c plane. (b)
A projection of a single Mo-RE layer in the a-b plane. (c¢) A projection of a
single Al layer in the a-b.

the RE occupying the 8j site [Figure 1.2(a)]. The Mo atoms are situated on a
honeycomb lattice [Figure 1.2(b)], the RE atoms - on a triangular lattice, and
the Al atoms form Kagomeé-like patterns [Figure 1.2(c)]. Through the concept
of “targeted etching”, 2D sheets can be tailored to retain one or both of the
M elements (RE and Mo) [23]. Since the chemical order is retained in the
derived MXene, this makes RE-i-MAX phases potential parent materials for
2D magnetic sheets with high magnetic moments (> 5 up) available from RE-
based materials.

However, not much is known on the magnetic structure of the parent com-
pounds, let alone on the potential 2D sheets. Temperature and field dependent
magnetization and specific heat measurements [22] on (Moy/3RE3),, AIC have
shown that most compounds are magnetically ordered with transition tempera-
tures ranging from 3.6 K for RE = Er up to 28 K for RE = Tb. Curie-Weiss plots
of inverse susceptibility versus temperature gave negative Weiss temperatures
suggesting that the magnetic coupling is AFM. NPD measurements on samples
with RE = Tb and Er [22] confirmed a spin density wave mangetic structure
(SDW, see Figure 3.1) in these compounds.

In this work, the magnetic ground states of bulk (1\/[02/3RE1/3)2 AlC with
RE = Nd, Gd, Th, Dy, Ho, and Er are explored using muon spin rotation (uSR).
The series is also examined with NPD, excluding RE = Gd since it is a strong
neutron absorber. From NPD, it is found that all compounds except RE =
Gd develop transverse SDW magnetic ordering with their propagation vector
directed along the b axis. Using DFT based muon site calculations, symmetry
analysis, and information from the neutron data on RE = Nd, Tb, Ho, and Er,
the magnetic structure of RE = Gd is also determined to be a simple AFM with
an extremely small anisotropy ratio (< 10~8) between out-of-plane and in-plane
coupling. Moreover, only RE = Nd and Gd exhibit long-range static magnetic



order within the ySR time window (10psec). For the other REs, the magnetic
order fluctuates on a time scale that is longer than the typical neutron scattering
window of 107!2s but shorter than the uSR time window. These fluctuations
are observed down to a temperature of 1.5 K.

Experimental details and a summary of this work can be found in Ref. [22]
and [24], while the results are presented in Sec. 6. This work gives the first obser-
vation and characterization of the magnetic structures of the newly discovered
(Moy/3RE; /3), AIC phases using NPD. In addition, a non-standard method of
determining a magnetic structure using puSR measurements alone is presented
for RE = Gd. Without this method, the magnetic structure of RE = Gd would
have probably taken a long time to solve due to the difficulty in measuring Gd
containing compounds using NPD. The identification of RE = Gd as the best
candidate for deriving a 2D magnetic material will hopefully help focus future
research on magnetic RE-based MXenes.



2 Research objectives

2.1 The M;AlB; compounds

Research objectives in studying the (Fe;_,Mn,), AIB, system were the follow-
ing:

a. Determine the magnetic phase diagram of (Fe;_,Mn,), AlB, as function
of temperature 7" and Mn concentration x in the range 0 < z < 1.

b. Measure magnetic properties of (Fe;_,Mn,), AlB, for different values of x
and suggest how the solid solution can improve the magnetocaloric prop-
erties of FeyAlBs.

2.2 Rare earth based :-MAX phases

Research objectives in the study of (Moy/3RE3), AIC compounds were the
following:

a. Observe the magnetic structures of (Mog/3sRE;/3), AIC phases.

b. Determine which RE based i-MAX phase has the highest potential to
produce a 2D magnet.



3 Theory

3.1 Crystal structure and space groups

A general translation operator in the crystalline phase is given by

3
i=1

where 7 labels different crystal directions, n; are integers and a; are lattice vec-
tors. These discrete sets can be classified into 14 lattices called Bravais lattices
[25]. Combining the 14 Bravais lattices with one of the 32 crystallographic
point groups gives rise to 230 crystallographic space groups, which represent
the possible symmetries of crystals [25]. A symmetry element of a space group
is denoted by {R | f}, where R is a point group element.

Consider a single particle Hamiltonian in a periodic potential

n_,
H_—%V +V (7). (3.2)

If V' has the periodicity of the lattice, then H commutes with all elements
{’R\t_} of the space group. This gives us a set of quantum numbers, which
can be used to label the eigenstates of H [26]. In particular, if we consider
only the translation elements {I | F}, where [ is the identity element, then we

find that the wavefunctions can be labeled by vectors k with the corresponding
eigenstates having the form of Bloch waves [27]

Uy (7) = ug (7) e, (3.3)

where u (77— f) = ug (7). It is customary to introduce the reciprocal lattice,
which is defined by three vectors @; defined by

Following (3.1) a general vector in the reciprocal lattice is then defined by
3
7= ma, (3.5)
i=1

where m; are integers. The action of a point group element {R | 6} on a general

lattice vector ¢ gives the vector Ri, which itself is another lattice vector. Using
(3.1), (3.4), (3.5) and the trasnformation properties of ¢, one can show that the
effect of R on a reciprocal lattice vector is

{R|6} i=R"'q (3.6)

10



3.2 Magnetic structures

A magnet [27, 28] is a material in which some of the atoms possess a non-zero
magnetic moment. The magnetic moment of an atom comes from the spin and
angular momenta of its electrons. In a paramagnet (PM), the magnetic moments
fluctuate randomly resulting in no average magnetic moment. However, in the
presence of interactions between magnetic moments, the magnetic moment can
become correlated producing a regular periodic configuration within the mate-
rial. Such a periodic configuration is called a magunetic structure (Figure 3.1).
The periodicity of the magnetic structure need not be the same as the under-

ST

X
Magnetic unit cell
S I 3]
b imple
(b) Ferromagnet
Crystallographic unit cell
M 1!
(©) Simple
Antiferromagnet N
(d) Canted
Antiferromagnet
=_J
I

I
(e) Spin density wave

Figure 3.1: Examples of different magnetic structures (a) Paramagnet, (b) a
simple ferromagnet, (c) a collinear antiferromagnet, (d) a canted antiferromag-
net and (e) a spin density wave. Black square braces show the crystallographic
unit, cell while red braces show the magnetic unit cell in each type of structure.

lying crystallographic lattice. If the magnetic unit cell, the smallest repeating
unit of the magnetic structure, coincides with an integer number of crystallo-
graphic unit cells, the magnetic structure is said to be commensurate with the
crystal structure, otherwise it is incommensurate. If all the magnetic moments
are parallel to each other, the structure is said to be collinear, otherwise it is
called non-collinear.

Examples of collinear commensurate magnetic structures include a simple
FM [Figure 3.1(b)] where all magnetic moments are parallel to each other and a
simple AFM (also known as a Néel state) where the moments alternate between
parallel and anti-parallel orientations [Figure 3.1(c)]. In the former case, the
magnetic unit cell is equal to the crystallographic unit cell while in the latter

11



case, the magnetic unit cell is twice as large as the crystallographic unit cell.
Simple FM and AFM structures are commonly found in transition metals and
their compounds such as Fe, Ni, MnO and CrpO3 [27]. An example of a non-
collinear commensurate structure is the canted AFM [Figure 3.1(d)], where the
structure is a combination of a simple FM along the x direction and a simple
AFM along the y direction. An example of an incommensurate magnetic struc-
ture is the SDW [Figure 3.1(d)]. In the simplest case of a SDW, the magnitude
of the magnetic moment is given by mq cos (kz), where mg is the SDW ampli-
tude and k is the spacial frequency. Such magnetic configurations were observed
for metallic Er and Tm [29].

In general, a magnetic structure can be described by specifying the z, y
and z components of the spin operator! §l on each magnetic site i. Since the
periodicity of the magnetic structure can differ from the crystal periodicity, it
is best to describe the magnetic structure in terms of its Fourier components

N
Sp=> ST (3.7)
=1

In this description, Sy are the analogues of the Bloch waves which appeared in
(3.3) and the vectors E, for which the Fourier component is non-zero, are called
the propagation vectors of the magnetic structure. This description uses the
reciprocal lattice to describe the magnetic structure in terms of its periodicites
instead of specifying the magnetic moment on each direct lattice point. To
describe the formation of magnetic structures and calculate their properties we
shall introduce a general two-spin Hamiltonian. The energy of a periodic system
with many spins can generally be written up to second order as

H({8)) = Fotm > TS - LS T R -SG9
i=1 4,J

where <+ is used to denote a matrix and 7" stands for transpose. The first term
is a constant shift to the total energy and can be ignored, the second term
describes the interaction of the spins with a constant external field and the
third term describes the interaction between pairs of spins. While the atomic
g-factor is a scalar that depends on the atomic type (see Sec. 4.4.2), some
effective Hamiltonians [30-32] can result in anisotropic g-factors and therefore
it is written as a matrix in (3.8) to represent the general case. The sign of the
third term is chosen such that the system prefers an FM ordering for J > 0 and
an AFM ordering for J < 0. For a periodic system, the interaction J depends
only on the relative coordinate §=7 — 7;. This enables us to simplify (3.8) by
inserting the Fourier components (3.7)

1 ({Se}) = i B85 — 55 S8 68 (3.9
E

In the following we shall assume that the magnetic moment comes entirely from the spin
angular momentum. This is common in transition metals where the angular momentum is
quenched by the crystalline electric field [27].
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where we have defined

Ti=37 () e (3.10)
§
and & runs over the relative positions of relevant pairs (i, j).

3.3 Magnetic symmetry and representation theory

In addition to translational invariance, Hamiltonian (3.8) is invariant under
all symmetry operations of the crystallographic space group (when no external
field is present). We can find the eigenstates of this Hamiltonian by using its
symmetry properties [26]. From (3.3), the propagation vector is a good quantum
number to label the eigenstates of (3.9). From the second term in (3.9) we see
that the ground state of (3.8) will have a propagation vector that corresponds
to the smallest component Jgﬁ . For a Hamiltonian with periodic boundary

conditions, the vectors k all lie in the first Brillouin zone — the unique primitive
unit cell of the reciprocal lattice. After determining the propagation vector of
the ground state, we need to determine the possible magnetic configurations
ug (7) in (3.3). For this we define the propagation vector group (also known as

little group of k) Gy as the group containing all point group elements {R|6}

which leave k invariant or transform it (via (3.6)) into an equivalent vector &+,
where ¢’ is a reciprocal lattice vector

G = {R‘R‘%’:ij}. (3.11)
A linear representation D of a group G is a homomorphism given by [26]

D: G- GL(n,C)
Vg1,02 € G D(g1) e D(g2) = D (g1 * 92), (3.12)

where GL (n, C) is the general linear group of complex n X n matrices, g denotes
the elements of G, x and e denote group multiplication in G and GL (n,C), re-
spectively. Linear representations are used to define the effect of group elements
of G on wavefunctions, such as (3.3). A representation is called reducible when
all elements of D (g) can be trasnformed to have a block diagonal form, with
blocks of the same size, otherwise it is called irreducible. Once Gy is known,

the possible magnetic ground states with propagation vector k correspond to
the irreducible representations of G. An important property of representations
is that wavefunctions, which transform under symmetry opeartors of GG, by the
same irreducible representation are degenerate. To find how a given representa-
tion can be decomposed into the irreducible representations of G we define the
character [26] of a representation as

xp (g) =Tr[D(g)] . (3.13)
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We can define an inner product for characters via
1 *
o x0.} = 17 > xb, (@) xps (9), (3.14)
geG

where |G| denotes the number of elements in G. If D; and D, are irreducible
representations, then {xp,,Xxp,} = 0p, pD,- A general representation D will
decompose into irreducible representations D; in the following form

D=a1D1® - ®anDy QG = {XD?XDi}' (3.15)

To find the wavefunctions, which transform according to an irreducible repre-
sentation D;, we construct the projection operators

Pi= LS (0)D (o), (3.16)
Gl 2

where d; is the dimension of D;. By acting with P; on a general wavefunction
v we can project out the basis function w = P;v, which is an eigenstate of the
Hamiltonian and transforms according to the irreducible representation D;.

3.4 Mean-field theory of magnetism

To calculate thermodynamic properties of a Hamiltonian such as (3.8), we need
to calculate the partition function

Z="Tr[ePH]. (3.17)

Mean field theory [33] is an approximation that allows to convert a many body
Hamiltonian into an effective single particle Hamiltonian. The approximation

involves replacing the interaction term in (3.8) by S'i(?ij <§>, where () denotes

thermal averaging and is defined by

<§> —Tr [S*ie_;H] . (3.18)

The thermal average of a spin is related to the magnetization via
M= -7 (5), (3.19)

where the negative sign comes from the negative charge of the electron. The
resulting effective Hamiltonian describes a single spin in a mean field, and is
given by

HMF — 5 ST<g" B, (3.20)

where the effective magnetic field is defined by [32]

BB T K ) (DT ) 2
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To obtain the mean field coefficient W in (3.21), we have re-written the sum
over j in (3.8) as a sum over coordination shells ¢. Each coordination shell
has z. nearest neighbors with interaction strength ?c. Using the definition
of magnetization (3.19) together with (3.18), (3.20) and (3.21) we obtain the
self-consistent equations for the magnetization

N . ?B‘eff
M = up*g’ SBs (ﬁuB \738“ s) gL (3.22)
‘?Beff
where Bg is the Brillouin function defined by [33]
2841 25 + 1 1 1
Bs (2) = 55 coth (25'96) ~ 5% coth (23.%') . (3.23)

3.5 Magnetocaloric effect

The MC effect refers to the adiabatic temperature change that results from the
heating or cooling of a magnet under an application of an external field [34].
The thermodynamics of the MC cycle are depicted in Figure 3.2. The total
entropy contains three contributions: the magnetic entropy, the lattice entropy
and the electronic entropy

Stot (T7 h) = Sm (T7 h) + Slat (T) + Sel (T) - (324)

A classical magnetic refrigeration Carnot cycle [16] consists of four steps: (a) an
adiabatically applied field h; increases the temperature of the magnet from T3
to Ty, (b) the system exchanges heat with a hot sink Qney = ToAS,(T2), () as
the field is decreased back to hg the magnet is cooled back to 77, (d) the system
absorbs heat from the cold sink Qcolq = T1AS,,,(T1). The characteristics of the
MC effect can be obtained from the magnetization and its specific heat. The
total entropy of the system can be calculated from [34]

T /
Siot (T, h) = S +/ MdT’. (3.25)

0 1

Then AS,,(T) and AT,q(T) can be obtained from the plot of Sy for different
fields, as depicted in Figure 3.2. Alternatively, AS,, and AT,q can be directly
expressed in terms of magnetization and heat capacity as

AS, (T, ) = /O ' (aa]g)h, dn’ (3.26)
AT (T, h) = — /Oh ﬁ (?j{)h, dh'. (3.27)

The full derivation of these formulas is given in appendix A. In ferromagnets
OM /0T < 0 near the transition temperature, therefore AS,, is negative while
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Total entropy, S,

Temperature, T

Figure 3.2: The ST diagram of a ferromagnet near its magnetic transition. The
lines represent the total entropy at zero field hg = 0 and a finite field h; > hy.
The arrows represent the adiabatic temperature change (AT,q) and isothermal
entropy change (AS,,).

AT,q is positive. Furthermore, since |0M/IT)| is largest at the critical temper-
ature (T¢), ASy, peaks at the magnetic transition. Although the same can not
be said about AT,q, since the specific heat is also anomalous at T, it can be
shown [35] that AT,q peaks at T for small fields. From this analysis, a mag-
netic refrigerator which works well at RT requires a material with a magnetic
transition near RT.

3.6 Density functional theory

Density functional theory [36] is a method for claculating approximate solutions
to the general many-body electronic Hamiltonian (3.28)

Ne 2  Ni 5o 2 2 2
~ D; PI 1 e ZIe 1 Z[ZJG
oSSy s ey s

o 2me I AMi 255w ST \R - Rl 214 |Ri—R,

(3.28)
=Te+ Tt + Vee + Ver + Vi1, (3.29)

where N, and N; are the number of electrons and positive ions, respectively,
me is the electron mass, My is the mass of the I'th ion, e is the electron charge,
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Zr is the atomic number of the I’th ion, ]%'Z and 7%; are the momentum and

position operators of the i’th electron and P; and R; are the momentum and
position operators of the I'th ion. In this section, we denote operators using
a hat to distinguish them from ordinary numbers. Since the mass of the ions
is much larger than the mass of the electron, the ions can be considered as
static which leads to the Born-Oppenheimer approximation ﬁ; = 0 [36]. This,

in turn, transforms R; from an operator into a regular vector, which is treated
as a parameter in the reduced Hamiltonian

Hpo = To + Vee + Ver + Urr ({EI}> ) (3.30)

where Uy is the ion-ion interaction which is now a constant.
Solving (3.30) requires finding the electronic wavefunctions ¢y ({7;}) and
energies Fj which are related by the Schrodinger equation

Hgo i) = B [¥r) - (3.31)

One approach to find approximate solutions to ¢y, is the variational principle.
In this approach, the energy of a trial wavefunction ¥ is calculated as

_ (¥ ]fnolv)

L T (3.32)

and minimized by varying parameters which define W. The resulting energy gives
an upper bound on the ground state energy and the resulting wavefunction is
an approximation to the true ground state wavefunction.

Since a wavefunction of N, electrons is a function of 3N, variables, minimiz-
ing (3.32) numerically is possible only for systems with a very small number of
electrons. DFT overcomes this limitation by introducing the electron density

P = (W0 =N [ [0 ) drad
(3.33)
where p (7) = Zf\fl ) (F— 7%) is the electron density operator. This is possible
because the energy of the system is a unique functional of p, as stated by

the Hohenberg-Kohn theorem [37] and the ground state density is found by
minimizing this functional with respect to p. The energy functional is given by

EmﬂMW=EM+EwM+EﬂM=ﬂmm+/%mmma$r@m)

where Fyyk contains the kinetic energy and electron-electron interaction energy
and its explicit form is unknown. The classical (Hartree) part of E.. can be
written in terms of p and is given by

%m:f//MmW%%MQ (3.35)



however the non-classical (exchange) term does not have an explicit form and has
to be approximated. To proceed, the density of the system is parameterized by
a set of one-electron orbitals ¢y, which give the same density as the interacting
system, and the non-interacting kinetic enery is calculated as

w1 =3 [0 (-

where the density is

) i, (7) d°r, (3.36)

AGED NG (3.37)
k
The difference

Ew =T o] =Tolp'] + Eee [0'] — En [¢] (3.38)

is called the exchange-correlation functional and is given by various approxima-
tions such as the local density approximation [38] or the generalized gradient
approximation [39]. To obtain the one-electron wavefunctions, we use the vari-
ational principle on the density functional

Ep]="Tolp'| + B [p'] + Eer [p'] + Exe [p'] (3.39)

under the orthonormality constraint (¢y|dr) = dirr which results in

6{B10] = S b [ 61 (7) bxr (7) &7 — b}
59y,
where ¢y, are Lagrange multiplers of the constraint. By choosing a suitable

basis for ¢ where ¢, - is diagonal, the variational equation results in the Kohn-
Sham [40] equations

=0, (3.40)

7h2V2 ep’ ()
2m |7 — |

Z]62

7 — Ry

&'+ Ve (M) = >

I

o (1) = eror (7)),

(3.41)
where the exchange-correlation potential V. is defined as Vi, = 55;5“. The

total energy of the system Fjq (p’, {R}}) can then be calculated from the

single electron energies € using
B (o {Rr}) = 3 ex — Bua ) + Be ') - / Ve ') o (7) dr.
k

The forces acting on the ions are given by F T = v élEtot, which would re-

quire solving the KS equations for different values of R;. A simpler method of
calculating Fy is provided by the Hellmann-Feynman [41] theorem

Fr = <\I/’

fﬁﬁlﬁKS‘ \Iﬂ> : (3.42)
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where [¥') =[], |¢x) is the non-interacting electron gound state obtained from
solving the KS equations and Hys is the KS Hamiltonian defined by (3.41).
In this work, solution of the KS equations and calculation of ionic forces is
performed using the Quantum Espresso software package [42].

3.7 Schwinger boson mean field theory

Schwinger boson mean field theory (SBMFT) [43, 44] is an approximation for
treating quantum spin Hamiltonians, which combines the approach of tradi-
tional MFT with spin wave theory. The inclusion of quantum effects in SBMFT
allows it to correctly describe lower dimensional systems where classical MFT
fails. Compared to spin wave theory, SBMFT is usually valid for a larger tem-
perature range relative to the transition temperature. We start from the Hamil-
tonian of a Heisenberg antiferromagnet on a square lattice (J > 0)

H=JY S8 (3.43)
(i)

The Schwinger boson representation of the spins is obtained from the transfor-
mation

1
st=blb,  5*=3 (b}bT - bjm) (3.44)
with the constraint

> bib, =28, (3.45)

where o € {1,]}, which assures a physical value for the spin. On a bipartite
lattice consisting of sublattices A and B, we can rotate all spins on sublattice
B around the y axis using

ij — _blj7 b¢j — ij, (346)

with j € B. Then, by defining the AFM bond operator on the rotated spins

Aij = Zbiabja (3.47)

we can write

J ¥ JzN 52 N
H = —3 ; - Aiinj + 5 + E v; < E bwbig —-251, (3.48)
ij i o

where z is the number of nearest neighbors and NV is the number of lattice sites.
The last term in (3.48) is a Lagrange multiplier, which ensures constraint (3.45)
is obeyed at each lattice site. The second term in (3.48) is a constant and we will
drop it from now on. The SBMFT approximation consists of taking a uniform
value for v on all lattice sites as well as splitting the interaction term using the
mean field approximation. Using

Aij = <./4”> + 6./4,']' (3.49)
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and dropping terms which are second order in J.4;; we obtain

Hspupr = —g S (= 1A + ()T Ay + AT () )+ 3 <Z bl bio — 25) .
(i5) 7 o

(3.50)
We define @ = —J (A4;;) /2 and assume it to be real and bond independent in
the mean field approximation. The Hamiltonian then reads

Q2

Hsppr = 2N=- —2NvS+Q ) (bwbjg + b;b}g) + 3 bl bis. (3.51)
(ij)o i

After diagonalizing (3.51) using a Bogoliubov transformation, we obtain the

final form of the SBMFT Hamiltonian

2

1
Hspurpr = Y wi (ﬁ;oﬁ,;c, + 2) + ,zNQ7 —Nv(2S+1), (3.52)
ko

where
wi =12 = (2Qy)”
_1 ik
"= d.e
&
B, = cosh by —sinh6zb'

2975
-

tanh 0y = — (3.53)

To find Q and v, the free energy is calculated as

F _ p—1 . BwE Q2
SBMFT = 08 Z In |2sinh - )| Nv(25+1)+ zN7 (3.54)
ko

and minimized by requiring 0F/9Q = 0F/0v = 0. This results in two self-
consistency equations

2.2
1 279 1\ =29
NZE: o (nk + 2) == (3.55)
1 v 1 1
NZ%<n5+2>—S+2, (3.56)
k
where
ng =1/ (e’r —1). (3.57)

It is useful to define the spin-wave velocity ¢ and energy gap A, such that the
dispersion relation becomes

wp = ey (1+8)" =72, (3.58)
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The effect of an external magnetic field along the z axis in (3.43) can be included
by an additional term —h Y, S7. The effect of an external field on the dispersion
is to replace A — A + h. The magnetization can then be computed from

. OF 1 "1+A+h 1
M = ngnoo<8h> —S+§*20/0 W (n(w(’y))+2> o(v)dv,
(3.59)
where

o(y) = %K (1-+7) (3.60)

is the density of states of a square lattice, which enters from taking the contin-
uum limit in the sum over k£ and K is an elliptic integral of the first kind.
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4 Experimental methods

4.1 The samples
4.1.1 (Fel,zan)Q A1B2

Powder samples of (Fe;_;Mn,), AlBy were prepared [15] in two versions: nat-
ural B and isotopically enriched ''B. All compositions were prepared via a
two-step reactive powder metallurgy route in a horizontal alumina tube furnace
under flowing Ar. Samples with !B (Cambridge Isotopes, 98%) were made
with nominal Mn concentrations of x = 0, 0.05, 0.1, 0.2, 0.25, 0.5, and 1. Ad-
ditionally, samples with natural B were made with nominal Mn concentrations
of  =0.2, 0.3, 0.5, 0.75, and 1.

4.1.2 RE-i-MAX

Powder samples of (Mog/3RE;3), AIC with RE = Nd, Gd, Tb, Dy, Ho and Er
were synthesized by pressureless sintering the following elemental powders: graphite
(99.999%), Mo (99.99%) from Sigma-Aldrich, and Al (99.8%) from Alfa Aesar,
and RE (99.9%) from Stanford Advanced Materials. Stoichiometric amounts
of the elemental powders are manually mixed in an agate mortar, placed in an
alumina crucible that is in turn inserted in an alumina tube furnace through
which 5sccm of Ar is flowing. The furnace is then heated, at 5°C per minute,
up to 1500°C and held at 1500°C for 10h, before furnace cooling to RT. The
loosely sintered powders are crushed into a fine powder that is directly used for
further analysis.

(Mog/3Gdy 3), AIC single crystals were grown using a flux growth technique
in an induction-heated growth reactor and a sealed graphite crucible. Sealing
was mandatory for avoiding RE and Al evaporation, and implies to rely on
spontaneous nucleation inside the flux in order to produce the crystals. Initial
molar ratios x before carbon incorporation were zy, = 0.1, zgq = 0.4 and
xa) = 0.5. After applying a maximum temperature of 1800 °C for 1h, required
for melting the Mo element, the growth reactor was slowly cooled down to
1000 °C in 7days. The source of C was the graphite crucible walls, and typical
C concentrations in the flux ranged from zc = 0.2 — 0.4, as estimated from
weighting the crucible before and after growth. After growth, single crystals
were extracted from the solidified flux by oxidizing the latter inside a chamber
equipped with an air flux bubbling in water. Maximum lateral crystal size
rarely exceeded one millimeter, and each growth resulted in hundreds of small
single crystals with a wide distribution in size. Single crystals with a lateral
size larger than 100 pm were selected. In addition to crystals grown in those
optimal conditions, crystals produced with different growth conditions (cooling
during 2 days and slightly different flux compositions) were also collected.
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4.2 Powder X-ray diffraction

A typical X-ray diffraction (XRD) experiment consists of irradiating a powder
sample using an X-ray beam and recording the scattered intensity as function
of scattering angle 20. Crystallographic reflections are obtained when the scat-
tering angle satisfies the Bragg condition [27]

A= 2dhkl sin 9, (41)

where A is the X-ray wavelength and

2
dni = —,
||

is the distance between neighboring (hkl) planes with £ = haj + ka3 + 1@} being
the scattering vector. The angular dependence of the scattered intensity is given
by [45]

1(26) o< mpgr | Fuwt|* P (20) L (9) , (4.2)
where mp; is the multiplicty of the (hkl) reflection, Fy,x; is the structure factor

given by (4.3), P (26) is the polarization correction given by (4.4) and L (6) is
the Lorentz factor given by (4.5).

Fia (R) =3 f5 (R) e~ F0e=Ws (4.3)
é

P(20) = % (1 + cos®26) (4.4)

L(6) = m (4.5)

In (4.3), 6 runs over all atoms in the unit cell wth position § relative to the unit
cell origin and fj is the atomic form factor given by

F(R) =70 / n (7) €57 BF, (4.6)

where 7y = 2.82 x 1077 A is the calssical electron radius and n (7) is the elec-
tronic number density. The additional Wy term in (4.3) is the Debye-Waller
factor and is expanded upon in Sec. 4.4.1. The polarization factor [45, 46] arises
because the intensity of the measured X-rays depends on the angle between
the polarization of the X-ray and the scattering direction. The Lorentz factor
contains two contributions. The first, 1/siné comes from the fact that the di-
rections of crystallites in the powder are randomly distributed in the unit sphere
and represents the probability that a given crystallite will be correctly aligned
as to satisfy the Bragg condition. The second term, 1/sin 26 is the proportion
of X-rays scattered into the Debeye-Scherrer cone [45] that are counted by the
detector.

23



4.3 Magnetization measurements

A magnetization measurement [47] consists of moving a sample through a pickup
coil. A moving magnetic moment produces a time-dependent magnetic field,
which in turn induces an electric current in the pickup coil. An example of such
a setup is depicted in Figure 4.1. In this example the detection coils contain four
pickup loops with the two outer loops wound opposite to the two inner coils.
Such a configuration is called a second order gradiometer and it measures the
second time derivative of the magnetic field. The small current from the pickup
coil is detected by a superconducting quantum interference device (SQUID),
which is a current to voltage converter. In a DC magnetization measurement,

Signal

Sample

++
Sample Position

—»

Magnetic Field
g >
—==

N

| 3

[

Detection Coils
SQUID

Figure 4.1: An example of a pickup coil in the Quantum Design MPMS3 mag-
netic measurement system.

the sample is moved at a constant velocity v through the pickup coils. Assuming
the sample is small enough, its vector potential can be described in the dipole
approximation as

- M x7r

A =

: (4.7)

r3

where M is the magnetic moment of the sample. The magnetic flux passing
through the pickup coil can be calculated using Ampere’s law

¢:/§-da‘://¥.di (4.8)



For a magnetic moment aligned parallel to the axis of the coil and moving along
it, this gives
MR?

(1) = QWM7

(4.9)

where R is the radius of the coil, v is the velocity of the sample and ¢ is time. By
fitting the measured signal from the pickup coil to ¢” (¢) the magnetic moment
M can be extracted.

4.4 Neutron scattering

Since the neutron does not possess an electric charge, it does not interact with
the electrons in matter and therefore has a large penetration depth. However,
the spin of the neutron turns it into a sensitive probe for magnetism, by interact-
ing with the magnetic moments produced by electrons in matter. The mass of
the neutron m,, = 1.675 x 10727 kg results in a de-Broglie wavelength of several
angstroms, which is comparable with interatomic distances in solids. Moreover,
the spin of the neutron gives it a magnetic moment of u, = —1.913 uy which
gives magnetic scattering comparable in intensity to nuclear scattering. The
energy of thermal neutrons (=~ 25meV) is comparable to excitation energies of
dynamical processes in solids and allow the study of phonons and magnons [48].

In a general scattering experiment, a neutron beam with momentum p; and
flux @ is incident upon a sample. A detector measures the intensity of neutrons
scattered into a solid angle d). The quantity of interest is the differential
scattering cross section

do number of neutrons scattered into df

a0 ddQ

(4.10)

The scattering cross section depends on properties of the system under study
and thus its measurement allows to determine crystallographic and magnetic
properties of the system.

4.4.1 Nuclear neutron scattering

The scattering of the neutron by the nucleus [49, 50] occurs through the strong
interaction. Although an exact formula for the potential due to the strong
interaction is not known, we know that it has a very short range (on the order
of a few fm). It was therefore proposed to approximate the neutron-nucleus
interaction with the Fermi pseudopotential

2 2
v (7 = 24560 (7). (4.11)

n

To calculate the partial differential cross section of a scattering process, where
the neutron is scattered from momentum #hk; to hky, energy E; to Ey and the
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scattering system changes from state? &; to & t, we use Fermi’s golden rule

(Cmdfi(;f)&,sf Zf (27rh2)2 ‘<Ef’§f |V|E“€i> K

where w = E; — F; is the energy transfer of the neutron and E¢ is the energy
of the system in state £. For a scattering system comprised of many nuclei, the
potential is given by

(hw + Be, — Ee,), (4.12)

v => v (F— }ii), (4.13)

i
where Vi(l) is the Fermi pseudo potential of the i’th nucleus with scattering

length b; and position R; . To calculate the nuclear scattering cross section of
a crystal, we start by evaluating the matrix element in (4.12) with (4.13) which

gives
. . B2 .
(Frgs V1) = 2 <£f > et > (4.14)

where AR = hlzl — th is the neutron momentum transfer and ﬁz is the nuclear
position operator. Summing over final states £y and thermally averaging over
initial states &;, the coherent partial differential cross section can be expressed

as [49, 50] - L
g f coh
NS 4.1
<deEf ) coh kz nuc ( 7 ) Y ( 5)

where the coherent nuclear scattering function is defined as

T

Here E(t) is the nuclear position operator in the Heisenberg representation
defined by

R(t) ="t Re 0t (4.17)

where H is the Hamiltonian of the scattering system. In a crystal, the atomic
positions can be written in the general form

—

Ris(t)y=10;+0+(t), (4.18)

where l_; is the origin of the j’th unit cell, § is the atomic position in the unit
cell and o' 1s the atomic displacement from equilibrium due to thermal motion.

2For this calculation, the harmonic crystal approximation is used and therefore the states
of the scattering system are defined by a collection of quantum numbers ng , which denote
the number of phonons with momentum ¢ and polarization s.
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In the harmonic crystal approximation [28], the displacement operator can be
expanded in terms of phonon modes as

1
. R 1 . .
() = ( ) > [é’s ag e/ (Tli—wiat) 4 gwd o o=i@h—waet)|

J 2MsN — N 7,5%q,s
(4.19)
where M; is the mass of the nucleus, ¢ is the wavector of the phonon mode, € is
the phonon polarization vector, s = 1,...,3r with v being the number of atoms

in the unit cell is the polarization index, and a and af are ladder operators
for annihiliation and creation of phonons, respectively. Using (4.18) and (4.19)
in (4.16) and retaining only the elastic term in the expansion of the thermal
average [50], gives

2

Z bée—iﬁge—Wg /e—iwtdt
5
(2

3
- 7;) FRIPY 6 (R — )8 (hw) (4.20)

1 1 L (7T

oh /= —_ Sl =1

S;?IC (li,w) = %T‘f .-Ie m(J J)
JJ

v,

where vg is the unit cell volume, ¢ runs over all reciprocal lattice vectors and
F is the nuclear structure factor. The 6 (F — §) term is obtained from the
lattice summation and gives the Laue condition for diffraction from a crystal
[27]. The nuclear structure factor F is defined analogously to (4.3) as

FR) = bse ™o Ws, (4.21)
5

where W;s is the Debeye-Waller factor of nucleus § and is given by

e (u3) = e 2Ws, (4.22)

where (u2) denotes the mean squared displacement of atom 4. This term de-
creases the observed intensity of Bragg peaks in the diffraction profile due to
the momentary deviation of a given nucleus from its ideal equilibrium position.
The appeareance of x? in the exponential means that this correction affects
the scattering intensity of reflections which occur at higher x values (or high
scattering angles).

4.4.2 Magnetic neutron scattering

The magnetic interaction between the neutron spin and an unpaired electron in
the crystal is given by [50, 51]

. N 5 Mo R = gXR lﬁxR
Vin=—[n-B= 1IN gl BT (Vx( 2 >+h 7| (4.23)
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where ¢, ~ 1.913 is the neutron g-factor, g. ~ 2 is the electron g-factor, & and
§ are the neutron and electron spin operators, respectively, R is the distance
between the neutron and electron, R is a unit vector along R and 7 is the
momentum of the electron. The magnetic scattering cross section is calculated
by following the same steps as in the nuclear case. First, we calculate the matrix
element in (4.12) which gives

<kf (2 o) m‘l_f'> = —gurod - Q 1, (4.24)

where
RxQxFR (4.25)

Q1
B
S
N\
=N
X
Vo)
<~
X
=N
_|_
3
X
=N
N——
1l

and ry is the classical electron radius given in Sec. (4.2). It can be shown [50] that
Q=-MR)/ gelB,; where M (R) is the Fourier transform of the magnetization
density operator. QJ_ is the component of Q perpendicular to the scattering
vector, and therefore (4.24) signifies that only the perpendicular component of
the magnetization produces scattering.

The partial differential scattering cross section can then be expressed in an
analagous fashion to (4.15) by defining the magnetic scattering function

S5t (K.0) = (nr0)* 3 s = o) 5oz [ NZ( 7 ®) (3007 )

af

o <em.§j(o)em-[§ (t) > <Sa (© )Sﬁ (t)> oWt gy (4.26)

where fj is the magnetic form factor of atom j which is defined in analogy with
(4.6) as

F(R) = / 7 (7) €T, (4.27)
where 7 (7) is the normalized density of unpaired electrons in the atom. From

normalization, f (%) = 1. In the dipole approximation [50, 51], f (&) can be
written as

f@%ﬂﬂ@+g;”bw% (4.28)

where j, and j, are spherical Bessel functions of the first kind. §j refers to the
total angular momentum (spin and orbital) operator of atom j and

g=1+ %S (4.29)

is the Landé g-factor with

JAJ+1)-LIL+1)+S(S+1)
JT+1) ’

gs = (4.30)
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where J, L and S are the total, orbital and spin angular momentum quantum
numbers, respectively.

Comparison of (4.26) with (4.16) shows two main differences. First, the
nuclear scattering length b is replaced by %7 f (K). Unlike nuclear scattering,
this term depends on the scattering direction which is a consequence of the
long-range nature of the magnetic interaction (4.23). Second, the scattering also

depends on the spin-spin correlation function <SJ0‘ (0) Sf, (t)> As an example,
the differential cross section for elastic scattering from a paramagnet is

2

d
o e 2Ws Ss(Ss+ 1), (4.31)

2 ﬁ
-3 gafa R)

gnTO

where § runs over all atoms in the unit cell and Wy is the Debeye-Waller fac-
tor defined in (4.22). Equation (4.31) shows that magnetic scattering in the
paramagnetic phase does not produce Bragg peaks and only contributes to the
background counts. Unlike nuclear scattering, however, this background count
depends on the scattering angle and is reduced once the material forms long-
range magnetic order.

For a general magnetic structure which can be broken down into Fourier
components (3.7), the magnetic scattering function is given by

e’

Shhag (Fow) = =
0

mag

mJ_,qm ‘ Z 0 3) - - Qm) o (hw) ) (432)

qm

where ¢, is a reciprocal lattice vector and ¢, are propagation vectors that
describe the magnetic structure. The form of (4.32) is similar to its nuclear
counterpart (4.20) apart from two differences. First, the lattice sum results in
the term 63 (K — ¢. — §,,,) instead of (3 (K — §.) as in the nuclear case. This
means that neutrons will scatter with momentum transfer given by K = ¢, + G,
and may therefore appear as satellite reflections of the base crystallographic
reflections or, for ¢, = 0, add to the intensity of the nuclear reflections. Second,
the intensity of the magnetic reflections is proporti(;nal to the perpendicular

component of the magnetic structure factor’fm 1,§.| which is defined as

Pt (R) = Foni (B) = (Fonsn (R) - ) &, (4.33)
with the magnetic structure factor given by

fm,d‘m (—» gnTO Zf5 ,—{ /j —iﬁge—Ws’ (434)

where & is a unit vector along <, J runs over all atoms in the unit cell and fig,, 5
is the Fourier component of the magnetic moment on atom ¢ given in units of
up- Therefore, measuring the positions and intensities of magnetic Bragg peaks
gives us direct information on the periodicity of the magnetic structure and the
magnetic moments.
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4.5 Muon spin rotation

Muon spin rotation [52] is a technique that allows to measure the magnetic field
distribution inside a sample. Positive muons (™) and neutrinos are produced
via a weak decay from a pion 7" — T + v,. Since only left-handed neutrinos
exist, a consequence of conservation of angular momentum is that the created
muons are 100% polarized. When implanted into a sample, the muon spin com-
ponent perpendicular to the internal magnetic field B is rotated with precession

frequency
w=v,B, (4.35)

where 7, ~ 850 MHz/T is the muon gyromagnetic ratio. Assuming the initial
muon polarization is directed along z, the component of the polarization of the
muon ensemble along z in a uniform magnetic field is given by

P, (t) = cos® 0 + sin® 0 cos (7, Bt) (4.36)

where cosf = 2 - B. For a general field distribution f (E), the polarization

component is obtained by integrating Eq. (4.36) which gives
P, (t) = /f (ﬁ) [cos® 0 + sin® 0 cos (7, Bt)] d’B. (4.37)

To measure P (t) along a given direction, the number of decay positrons
D (t) from muons stopped in the sample is recorded in two detectors D; and
D5, which are placed opposite to each other with the sample in between. The
normals of both detectors are oriented along the desired measurement axis. The
number of counts in each detector can be written as

_tln2

D; (t) = Noe~ "+ P (t) + NBC, (4.38)

where Ny is the number of muons stopped in the sample, 7, is the half-life of the
muon and NBY is the background signal of the detector. P (t) is then obtained
from the detector asymmetry, which is defined by

o= D10 = NPS) — a[D (1) — N
U =D, ()~ NP T a [Da (1) — NEO]

(4.39)

where « is a correction factor which compensates for the difference between
detector efficiencies and solid angles and is determined experimentally.

4.5.1 Powders

For a powder sample, the direction of B is uniformly distributed in the unit
sphere, and therefore integration gives

P, (t) = % + ; /p(B) cos (v, Bt) B*dB, (4.40)
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where p (B) is the distribution of field magnitudes. Equation (4.40) shows that
p(B) can be obtained by Fourier transforming the observed time dependent
polarization signal. Two polarization functions for the cases encountered in this
work are detailed below:

Collinear ferromagnet/antiferromaget: In this case, the muons expe-
rience a single magnetic field magnitude and the magnetic field distribution is
given by

1
p(B) = ﬁé(B — By). (4.41)
The corresponding polarization function is therefore
AFM L, 2
P (t) = 3 + 3 cos (vuBot) . (4.42)

Spin density wave: In this case, the magnetic field between different unit
cells shows the same periodicity as the underlying magnetic structure (Fig-
ure 4.2). For a transverse SDW in one dimension, we have

B (z) = Bgcos (kx). (4.43)

The magnetic field distribution of | B| is found by using the rule for transforma-
tion of random variables

p(B)dB = 4f (z) dx. (4.44)

Here  is uniformly distributed along [0, 27| with f(z) = #=. The factor of

4 accounts for the fact that (4.44) is only valid when B (x) is a monotonic

function of & which occurs in one quarter of the interval [07 2?”] (Figure 4.2,
shaded areas). The field distribution in case of an SDW is therefore given by

dx 2
B)=4f(z) — = 4.45
PB4 @) | = s (4.43)
with the corresponding polarization function
PPV (1) = Jo (v Bot) , (4.46)

where Jj is a zero’th order Bessel function of the first kind.

In real samples, the magnetic field distribution is not as ideal as in equa-
tions (4.41) and (4.45). Local defects, impurities and lattice vibrations cause
the muon polarization to lose coherence over time and P, decays over time. Em-
pirically, in this work, two decay rates are observed and are modeled by simple
exponents e *** and e~*st, where F and S stand for fast and slow decay rates,
respectively. The total uSR signal studied in this work is therefore of the form

P, (t) = Pre **'F (v, Bot) + Pse 5", (4.47)

where FF (z) depends on the type of oscillation observed and can be either cos (z),
Jo (z) or 1 if no oscillations are observed, and Pr + Pg = 1.
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Figure 4.2: Graphical illustration of the magnetic field and its absolute value in
the SDW case.

4.5.2 Single crystals

In a single crystal, the magnetic field is pointing along a constant direction
B = Bsinncos xi + Bsinnsin x§ + B cos n2. (4.48)

In the measurements performed in this work, the sample was measured using

two perpendicular sets of detectors (Figure 4.3). The initial muon asymmetry
is given by

Ay = A% sin €2 + AQg cos (2. (4.49)

Here, A}, and A%y denote the maximal asymmetry along each pair of detectors.

In the following, it is assumed that the sample is made up of a large num-

ber crystal flakes which lie in the x-y plane. The flakes are not oriented and

therefore y is uniformly distrubuted along the unit circle. Time evolution of the
asymmetry, given an arbitrary magnetic field is given by

At;¢mx) = Ajes 4 Ay 1e7 " cos (v, Bt) + A se#tsin (v, Bt), (4.50)

where /Y“ = (/TO . B) B is the component of the asymmetry, parallel to the

magnetic field; fﬁ’l = /To — /T”, and /TL,Q =B x /TLJ are the two perpendic-
ular components. In this work, single crystal flakes of (Mog/3Gdy/3),, AIC with
normals along the aj direction were placed on the sample holder. The crystal
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Figure 4.3: Schematic representation of the detector geometry. The different
pairs of detectors are shown as grey rectangles, the sample as a dark yellow disk.
Arrows indicate the x and z axes with the y axis pointing into the page. The
magnetic field of the sample is shown as a dark yellow arrow and the direction of
the muon spin as a purple arrow. The purple line shows the precession motion
of the spin about the magnetic field.

a3 direction is therefore parallel to the z axis, however the flakes are randomly
oriented in the z-y plane. Therefore, the total evolution of the asymmetry is
obtained by averaging over x

o 2T

1 .
Aavg(t(an):% ; A(t;¢,m, x) dx. (4.51)

The asymmetry along each pair of detectors is obtained by projecting /Tavg along
the corresponding axes. By plugging (4.48), (4.49) and (4.50) into (4.51), we
obtain

—

1
Aup (t) = Agyg - 2 = ZA%D sin¢ [e7*#" cos (v, Bt) (3 + cos 2n) + 2e~*5" sin® ]
(4.52)
App (t) = Aavg - 2 = Abg cos ¢ [e 7 cos (v, Bt) sin® i + e st cos? ] . (4.53)

If there is more than one muon site in the unit cell, the muons might feel
different magnetic fields 5; where j = 1...v labels the v muon sites. The
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observed asymmetry is then obtained by averaging over all muon sites with the
final result

— 1 1o
Aup (t) = ZA%D sin (; Z [e_’\Ft cos (v, Bjt) (3 + cos2n;) + 2e st sin? 77]} + ABS (©)
j=1

(4.54)

_ 1<
Apg (t) = A%B cos(— E [e_’\Ft cos (7, Bjt) sin® n; + e~ st cog? Uj] + Agg €).
v
j=1

(4.55)

The additional ABY terms represent a background signal which comes from
muons which missed the sample. Temperature dependentce of the muon asym-
metry for both detector pairs is fitted empirically using

A(T,8) = AR (T) cos 3B (T)t 4 9P) e (T4 AR (1) e (Dl A w11,
(4.56)
where D denotes the pair of detectors UD or FB and T is the temperature.
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5 Results and analysis of (Fe;_,Mn,), AIB, mea-
surements

5.1 X-ray and neutron diffraction

Both XRD and NPD measurements are analyzed using Rietveld refinement [53]
as implemented in the FULLPROF suite [54]. The observed number of counts N
is modeled using

N (20) = T (20n41) 2 (20 — 26hi1) + B (20) (5.1)
hkl

where 20y, is the position of a reflection, I (26) is given by (4.2)% with the
structure factors given by equations (4.3), (4.21) and (4.33) for X-ray, neutron
and magnetic scattering, resepctively, 2 models the peak shape of the diffrac-
tometer and B represents the background. The structural model of the sample,
resolution parameters of the diffractometer and background are obtained by
minimizing the least squares distance between observed and calculated number
of counts

X2 = sz [Nobs (201) - Ncalc (201)]2 (52)

with weights w; =1/ af, where o; are the measurement errors.

XRD measurements of different (Fe;_,Mn,), AlIB, samples (Figure 5.1) show
that the MAB phase is the dominant phase, with small amounts (=~ 5%) of
non-magunetic impurities. The identified impurities are a-Al,O3 (space group
R-3c) and (Fe;_,Mn,), Al;3 (space group C2/m). The only exception is the
(Fep.sMng 5), Al''B, sample. The !B, which was used to make this sample
contained SiOy contamination which resulted in a large amount of impurities.
Refinement of the RT NPD measurements of the !B samples shows that the
refined x (Table 5.1) agrees with the nominal z to within a relative error of 5%.
This indicates that the (Fe;_,Mn,), AlB, system is thermodynamically stable
in the entire x range.

At RT, the LPs of (Fe;_;Mn,), AlB, show a nonlinear and nonmonotonic
dependence on x (Figure 5.2), which deviates from Vegard’s law [55]. The unit

cell volume (Table 5.1) expands from = 92.5 & for Fe2AIB2 up to ~ 93.5 & for
MnsAlBs. The a and ¢ LPs expand before contracting, while the b LP contracts
before expanding. The transition point in all cases is for x in the range 0.2-0.5.
The deviation of the LPs from Vegard’s law for large x correlates with magnetic
transitions which are observed in the (Fel,IMngE)2 AlBs system and is therefore
attributed to magnetostriction [27, 28].

Low temperature NPD measurements of (Fe;_,Mn,), AlBy (cf. Figure 5.3
for z = 0.2) show a number of main changes from the RT diffraction. For
samples with = < 0.2, an increase in the intensity of the (001) reflection is
observed when cooling below 310K, 260 K and 220K for x = 0, 0.1 and 0.2,

3For neutrons, the polarization factor is equal to unity.
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Table 5.1: Refined unit cell volume (V'), nominal and refined Mn occupancy
(x), and weight percent (Wt%) of (Fei_;Mn,), AlIB, phase at room tempera-
ture obtained by XRD and NPD. Numbers in brackets indicate statistical 1o
uncertainties of the Rietveld refinement.

Method Nominal z Refinedz V (Ag) Wt%
02 92.568(5)  99(1)
0.05¢ 92.589(6)  98(3)
0.1¢ 92.905(5)  97(2)
0.2¢ 93.150(6)  98(2)
XRD 0.25¢ N/A 93.195(2) 97.4(7)
0.5 93.481(5)  96(2)
0.75° 93.657(8)  81(2)
1¢ 93.536(4)  97(2)
02 0 92.552(1)  99(1)
0.1 0.096(4)  92.908(2)  99(1)
NPD 0.2¢ 0.190(2)  93.132(2)  99(1)
0.25% 0.228(4)  93.19(2)  98(1)
0.52 0.461(3)  94.00(1)  59(1)
1° 1 93.22(4) 100

@ 11B sample
b Natural B sample
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Figure 5.1: Observed XRD patterns (symbols) and the corresponding Rietveld
refinement (solid lines) for different (Fe;_,Mn,), AIBy powders with various
x values. Reflections are labeled by their Miller indices; impurity reflections
are marked by * for a-Al;O3 and # for (Fe;_,Mn,), Al;3. The patterns for
x = 0.5 and 0.75 were measured on a natural B sample.

respectively. This increase is consistent with an FM ordering of the MAB phase
with the magnetic moments aligned along the a axis as observed previously [11].
For samples with = > 0.2, an additional reflection appears at xk = 1.08 A upon
cooling. This reflection was identified to correspond to a magnetic unit cell,
which is doubled along the ¢ axis relative to the chemical unit cell of the MAB
phase. This corresponds to an AFM magnetic structure with a propagation
vector of k = (0,0, 1/2). In addition, a slight decrease is observed in the neutron
background at low x values (compare the difference in background for k < 1.2
with k > 2.1 at different temperatures in Figure 5.3) indicating a decrease in
the paramagnetic scattering * due to the onset of long-range magnetic ordering
[50, 51].

Symmetry analysis of the irreducible representations of the little group of
k (Appendix B) results in six allowed magnetic structures. Out of these six,
only two magnetic structures correctly reproduce the observed intensity of the
(0,0,1/2) reflection. In these structures the magnetic moments in the chemical

4Since the cross section for paramagnetic scattering (4.31) is proportional to the magnetic
form factor, it gives the most contribution at low « values. Therefore, a decrease in background
at low k is an indication of a change in the magnetic ordering of the measured compound.
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Figure 5.2: Refined LPs and unit cell volumes of (Fe;_;Mn,), AlBs powders
at RT as function of x obtained from XRD (black symbols) and NPD (red
symbols). (a), (b), and (c) show the a, b, and ¢ LPs, respectively and (d) unit
cell volume. Circles indicate measurements performed on natural B samples;
squares indicate those performed on ''B samples. Samples measured with NPD
are plotted using the refined x.
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Figure 5.3: Observed NPD (symbols) of (Fey.sMng.2), AlB, at different temper-
atures and the corresponding Rietveld refinements (solid line). Solid gray and
dark red lines at 8 K and 100 K, respectively, show the calculated profile due to
the nuclear phase alone. Reflections are marked using their Miller indices and
fractional Miller indices (for AFM reflections). The reflection at x & 2.35 ATY
belongs to an unidentified impurity phase and is excluded from the refinement.

unit cell are aligned ferromagnetically and can point either along the a (Bs,) or
b (Bay) axes. To decide which of the two structures has a better agreement with
the data, the magnetic R-factors [53, 54, 56] of both structures are calculated
using

|Iobs 29hkl calc (zehkl) ‘
Rinag = 100 , 5.3
e % ‘Iobs (20hkl)| ( )

where hkl runs over magnetic reflections only, I, is the observed integrated
intensity of a reflection and I, is the calculated integrated intensity given
by (4.2). The advantage of using Rpmag over the traditional x? is that it is
based only on the contributions of the magnetic phase, while x? is dominated
by reflections from the nuclear phase and the background. The calculated R-
factors are 28 and 23 for moments directed along the a and b axes, respectively.
This comparison gives the latter structure as the most likely solution. Indeed,
magnetization measurements on MnyAlBs single crystals [57] have shown that
the magnetic moments are aligned along the b axis.

Temperature evolution of the LPs for Fe; AlB, [Figure 5.4(a)] shows an ex-
pansion of the ¢ LP upon cooling below 310 K. Combined with the onset of FM

39



ordering below this temperature, it is reasonable to conclude that this anoma-
lous thermal expansion originates from magnetostriction, as shown by Ke et
al [12] using DFT calculations, which have shown a strong dependence of the
magnetic moment in FeaAlBy on the ¢ LP. The changes in the LPs over most
of the x range are of the order of 0.25%. A similar behavior is observed for
the z = 0.1 and 0.2 samples, while an expansion of the b LP upon cooling is
observed for = 1. For z = 0.5 [Figure 5.4(b)], the ¢ LP contracts below 200 K
and expands below 100 K. This change in behavior is attributed to the FM tran-
sition observed at =~ 130 K. Except x = 1, the unit cell volume contracts below
the ordering temperature, while for = 1, the volume expands. The change of
LPs with temperature is comparable to the change with x for the a and b LPs,
however the ¢ LP increases by 1% with increasing z, thus showing a stronger
dependence on .

I 1 I 1 1 I 1 é‘ (a)
2.925 | a-
5920 <_E_E_E—EEEB _ & 1104
YO B - -2 8- ¢¢¢
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Figure 5.4: Temperature evolution of the a and ¢ LPs (left ordinate) and b
(right ordinate) of (a) FesAlBy and (b) (FegsMng5), AlBy as determined by
NPD measurements.

5.2 Magnetization measurements

Temperature dependent magnetization curves (Figure 5.5) show varying mag-
netic responses for different x values. As temperature decreases, samples with
x < 0.5 show an abrupt increase in magnetization, as expected for a FM. For
x = 0.5, the increase in magnetization is not as abrupt, while for z = 0.75 and
2 =1 the total magnetic moment is two orders of magnitude lower.
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Figure 5.5: Zero field cooled magnetization of (Fe;_,Mn,), AlB; for (a) x < 0.5,
and (b) z > 0.5.

Arrott plots (Figure 5.6) are used to determine the transition temperature of
the FM component T [58]. In an Arrott plot, the field dependent magnetization
is plotted as h/M vs M?. By expanding the thermodynamic potential ® to
fourth order and including an external magnetic field, we can write

® = ®)+aM?+bM* +0 (M°®) — hM. (5.4)
At equilibrium 9®/90M = 0 and therefore
2aM + 4bM? + O (M°) = h. (5.5)
This gives the relation
h/M = 2a+4bM? + O (M*). (5.6)

By fitting the tail (large M part) of the Arrott plot to a straight line, we can
remove higher order terms. Since a = 0 when T' = T, we expect to obtain a
straight line which passes through the origin in the Arrott plot. To find T¢,
first, (5.6) is fitted to the tail of the Arrott plot at each temperature. Then, the
temperature at which a (T) goes through zero is found from linear interpolation.
The obtained T¢’s are given in Table 5.2. For z = 0.5, no field dependent mea-
surements close to T were available and therefore extrema in dM/dT were used
to identify temperatures of magnetic events. Bounds on Ty of the AFM phase
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Figure 5.6: Arrott plots for (Fe;_,Mn,), AlBy with z = (a) 0, (b) 0.1, (c) 0.2,
(d) 0.25, and (e) 0.3. The temperature step in each sample is 5K and the
measured temperature range is written in each panel.

are obtained from NPD measurements as the FM phase completely dominates
the bulk magnetization observed using magnetization measurements.

The saturated average magnetic moment at 2 K (Table 5.2) is obtained from
high field magnetization [Figure 5.7(a)] by linear extrapolation of M as function
of 1/h curves to h = 0 (not shown). The number of data points to include in the
linear fit was reduced until the sum of squared residuals (x?) did not change. To
estimate the magnetocaloric properties of the sample, the isothermal entropy
change [Table 5.2, Figure 5.7(b)] is calculated by numerically integrating (3.26):

n—1
M; — M;_
ASy, (T, h) = Z T—iTll (hi —hi—1). (5.7)
i=0 ' "

The maximum relative cooling power (RCP, Table 5.2) is estimated by mul-
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tiplying the maximal value of AS,, by the full width at half maximum (FWHM)
of the measured AS,, curve as a function of T' [Figure 5.7(b)] [59]. The calcu-
lated RCP of FeoAlB; for a field change of 0-2T and 0-5T are 75 and 210 J/kg,
respectively and are in agreement with results obtained in the literature [6, 60].
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Figure 5.7: (a) Field dependent average magnetic moment of (Fe;_,Mn, ), AIB,
at 2 K as function of z. (b) Isothermal magnetic entropy change for a field change
of 0-20kOe as function of the relative temperature.
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Table 5.2: Transition temperatures (T¢ and Ty ), saturated average magnetic
moment at 2K, magnetic entropy change (AS,,), and relative cooling power
(RCP). Numbers in brackets indicate statistical 1o uncertainties, while uncer-
tainties denoted using + indicate upper and lower bounds. Dashes indicate
irrelevant data.

x To(K)*  IN(K)' M (us)  —AS, (J/kgK)  RCP (J/kg)
2T/5T 2T/5T
0° 292.4(2) — 1.19(6) 2.7/5.7 75/210
0.096(4)¢  264.6(3) — 1.18(6) 2.2/4.6 79/218
0.190(2)¢ 231.4(3)  80+20 1.12(6) 1.9/4.0 80/226
0.228(4)° 212.25(5) 150+100  0.9(1) 1.4/2.9 70/190
0.30(2)¢  183.16(6) — 0.70(4) 0.7/1.4 41/117
0.461(3)° 350 + 50
0.50(5)¢ 130(5) 0.454(3)
1¢ [14] — 313 [57]

@Critical temperature of the FM component as determined by Arrott plots.
bCritical temperature of the AFM component as estimated by NPD measure-
ments.

¢ 1B sample.

¢ Natural B sample.

5.3 Theoretical modelling based on mean field theory

The observed magnetic reflections in the NPD measurements (Figure 5.3) in-
dicate that the magnetic structure of (Fe;_,Mn;), AlBy is composed of two
parts. A FM moment, which points along the crystallographic a axis, and an
AFM moment, which points along the crystallographic b axis with a propa-
gation vector of k= (0,0,1/2). The temperature evolution of each magnetic
moment [Figure 5.8(a), symbols] shows a gradual decrease, typical of a second
order phase transition. The FM and AFM components, when present, have
different critical temperatures and ground state magnitudes, that vary with
x (Table 5.2). The phase diagram of (Fe;_,Mn,), AlB, |Figure 5.8(b), sym-
bols] thus consists of three different phases. For 2 < 0.23 only a FM phase is
present. For 0.23 < x < 0.46, both FM and AFM phases are present, while for
0.46 < x < 1 only an AFM phase is present. To investigate the magnetic mo-
ment as a function of  and T, we made use of the MFT results (3.22) adapted
for (Fe1_;Mn,), AlB (appendix C). The unknown parameters in the model are
the g-factors and spins of the Fe and Mn atoms, and the exchange constants.
Since the FM component is directed along the a axis, while the AFM component
is directed along the b axis, we only need to consider the exchange constants
along these directions.

This leaves us with 4 exchange constants, namely: J&Zp., JEZ 1, Jhe Mns
and JY[ yn,- We assume the g-factors of the two atoms to be isotropic, i.e

g;ﬁ = ¢%0%%, where X € {Fe,Mn} and the fitting procedure is obtained
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Figure 5.8: (a) Temperature evolution of observed ordered magnetic moment
(symbols) in (Fe;_;Mn,), AlB5. (b) Observed (symbols) and calculated (solid
lines) critical temperature of the FM (black) and AFM (red) components as
function of z. Different regions in the phase diagram are labeled by the magnetic
phases present in them.

as follows. The values of Spe and Sy, are scanned in the range 1/2 — 3 in
steps of 1/2. For each pair (Sge, Smn), gre and JE¥p, are obtained by fitting
M (T) [Eq. (3.22)] to the observed oredered moment of FepAlBy, while gun
and JYY ;. are obtained by fitting M (T) to the observed moment of Mn,AlB,
[Figure 5.8(a)|]. Next, JEZ\,, and JZZ . are fitted to best match M (T) for
xr = 0.1, 0.2, 0.25, and 0.5 |Figure 5.8(a), solid line]. The x? goodness of fit
parameter is used to identify the best matching fit, while also requiring that the
resulting values for the exchange parameters remain positive. The entire fitting
procedure was performed twice where JEZ,, ~and JEY ., were assumed to be
FM or AFM for nearest neighbors along the ¢ axis. Finally, the best matching
parameters were obtained by calculating M (z) at base temperature (BT, Fig-
ure 5.9). The only parameter set which predicted the existence of a non-zero
FM moment for z = 0.5 was chosen as the best fit and is given in Table C.1. The
sign of Jiop, and JETy, is positive for nearest neighbors along all directions,
while the sign of J¥¢ ;. and J{ . is negative for nearest neighbors along the
¢ axis.
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Figure 5.9: The observed ordered magnetic moment of (Fe;_;Mn,), AlBy at
BT as function of x. Solid lines are fits to the data.

5.4 Discussion

The calculated magnetic phase diagram of the solid solution (Fe;_;Mn,), AlB,
[Figure 5.8(b)] contains three types of ordered magnetic structures. A FM struc-
ture below a critical Mn concentration of 1 ~ 0.1, an AFM structure above
x9 =~ 0.5 and a combination of both in between. This intermediate region is
interpreted as a canted AFM. Because the LPs of Fes AIB> and Mn»AlB, differ
significantly (Figure 5.2), a separation of the sample into Fe-rich and Mn-rich
clusters would produce two distinctly visible diffraction patterns. Since only a
single diffraction pattern is observed, with no broadening of the crystallographic
or magnetic reflections relative to the instrumental resolution, we conclude that
the mixing of Mn in the sample is homogeneous and that the observed combi-
nation of a FM (along a) and AFM (along b) structures is to be interpreted as
a canting of the FM moments.

The canting angles, in the a-b plane relative to the b axis, at BT are estimated
to be 13(2) * and 29(2) * for = 0.19 and 0.23, respectively. The general features
of this phase diagram are qualitatively well described by MFT [Figure 5.8(b),
solid lines|, although quantitative agreement is far from perfect. Previous DFT
calculations have concluded that the AFM configuration becomes more stable
than the FM configurations for > 0.2 [12]. This result agrees with the observed
NPD results, but places a higher bound on the critical z than MFT. We note
that unlike previous reports [8, 13], no evidence for a disordered magnetic phase
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was found. The overestimation of T¢ and Ty in the calculated model, may
partly be a result of the mean field approximation, which is known for giving
overestimates for critical temperatures [33].

The Fe-Mn and Mn-Mn couplings are found to be negative for neighbors
along the c axis, which is also the shortest axis. This suggests that the mag-
netic interaction between the Fe and Mn atoms is a direct exchange interaction,
since this interaction is known to change sign from FM to AFM with decreasing
interatomic distance as described by the Bethe-Slater curve [61]. This sugges-
tion is corroborated by DFT calculations which have shown that the Mn-Mn
exchange coefficients are negative along the ¢ axis but are positive along the a
axis. Since the a axis is longer than the ¢ axis by only 0.02 A, we can obtain an
estimate on the critical Mn-Mn distance to be in the 2.89-2.92 A range.

The anomalous variation of the LPs with T' (Figure 5.4) and « (Figure 5.2)
indicates a strong magnetoelastic interaction. This variation in interatomic dis-
tances in turn influences the strength of the exchange interaction between the
magnetic M atoms, giving rise to a complicated dependence of the ordered mag-
netic moment on 7' and x (Figure 5.8). These subtleties were not considered
in our simplified model. In addition, the magnetoelastic interaction in these
compounds is highly anisotropic, as can be seen from the qualitatively differ-
ent temperature evolution of the LPs (Figure 5.4). For x < 0.5 the magnetic
moment is highly affected by the ¢ LP, causing an anomalous expansion upon
cooling. A similar dependence was observed in MnsAlBs for the b LP and
indicated a change in the anisotropy of the magnetoelastic interaction [14].

The addition of Mn into Fe;AlBo decreases the ordered FM moment, that
in turn decreases the overall magnetocaloric effect (Table 5.2). However, the
maximum in the magnetic entropy change occurs over a broader temperature
range [Figure 5.7(b)] resulting in a 6% increase in the estimated RCP (Ta-
ble 5.2). The addition of Mn does not seem to broaden magnetic transition, as
can be observed from the temperature evolution of the ordered magnetic mo-
ment [Fig 5.8(a)]. Additionally, since, as discussed above, the introduction of
Mn does not produce multiple phases in the sample but is admixed homoge-
neously, we can conclude that the broadening of the MCE curve is not caused
by chemical disorder but rather by the introduction of competing AFM inter-
actions, which are theoretically known to broaden the range of the MCE [62].
Addition of 10% Mn decreases Tc from ~ 290K to ~ 260 K while the effective
temperature range (FWHM) of the MCE stays at ~ 30 K. This enables control
over T¢ in the RT range without a substantial loss of cooling power. For exam-
ple, mixing multiple (Fe;_;Mn,), AlBy compounds with different « can form a
combined MCE curve with a desired shape, which is controlled by the ratio of
different compounds and their respective T ’s.
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6 Results and analysis of RE-:-MAX measure-
ments

6.1 Ground state neutron powder diffraction

NPD patterns of (Moy/3RE;/3), AIC with RE = Nd, Th, Ho, and Er are col-
lected at temperatures that range from the available BT up to the magnetic
transition temperature and into the PM phase. Upon cooling, additional reflec-
tions, originating from magnetic diffraction are observed for each compound.
To isolate the magnetic contribution from the crystallographic reflections, the
difference between BT and PM temperatures is calculated (Figures 6.1 and 6.2)
and analyzed first.
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Figure 6.1: Difference in the observed (symbols) neutron count of
(M02/3Er1/3)2 AlC between 1.6 K and 10 K and the Rietveld refined profile (solid
black line). Magnetic reflections are labeled by Miller indices, with their con-
tribution to the diffraction pattern shown as dashed lines and tick marks. Inset
shows the calculated profile without including Lorentzian broadening (see text).
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Figure 6.2: Neutron count difference (symbols) between (a) 1.5K and 10K for
RE = Nd and (b) 3.5K and 30K for RE = Th. (c¢) Observed neutron count
for RE = Ho at 4 K. The Rietveld refined profile is shown as a solid black line
and its difference from the observed data is given by a solid blue line. Magnetic
reflections are denoted by Miller indices and shown as tick marks. Inset in (a)
zooms in on the (—1 1 — k 4) reflection and shows a Gaussian fit used to obtain
integrated intensity. RE = Tb contains reflections from both El and Eg (denoted
using italics, and bottom tick marks). In (c) the crystallographic (002) reflection
is also visible.

First, a propagation vector search on the difference pattern is performed
using the SARAh package [63]. Due to the low symmetry and large unit cell
of (M02/3RE1/3)2 AlC, the magnetic reflections are strongly overlapping (Fig-
ure 6.1). This makes conventional indexing methods (such as the k-search
routine implemented in the FULLPROF suite [53]), which require knowledge on
the exact number of reflections and their position, unreliable. SARAh performs a
brute force test of high symmetry points and lines in the Brillouin zone, which
serve as likely candidates for the propagation vector. For each tested propaga-
tion vector, the magnetic structure is refined using a simulated annealing based
x? minimization instead of a gradient based method. Simulated annealing,
which is monte-carlo based is better suited for problems with a large number of
local minima, such as refinement of a magnetic structure with a large number
of magnetic atoms without any symmetry constraints.

In the first step, only high symmetry points in the Brillouin zone of the
i-MAX were tested and no matching results were found. In the next step, a
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search along high symmetry lines with parameterization (0, k,0) and (0, k, 0.5)
is performed. The most likely candidates for k are those for which the 2 of the
refinement is minimal. Possible magnetic structures for the k-vector candidates
are obtained from symmetry analysis wich is given in detail in appendix D. The
basis vector coefficients and k-vector are then refined to match the observed
magnetic diffraction pattern.

Refinement of the BT magnetic structures reveals that the magnetic ground
states of comp(lunds with RE = Nd, Tb, Ho, and Er are SDWs with propa-
gation vectors krp parallel to the crystallographic b axis [Figure 6.3(a)]. The
magnetic moments of the RE atoms are aligned perpendicular to ERE with
magnetic directions varying with RE [Figure 6.3(b)]. Three different magnetic
configurations in the unit cell are identified and labeled using Bertaut notation
[64] as FxF, [Figure 6.3(b), RE = Nd], C«C, [Figure 6.3(b), RE = Tb, Er|, and
C«F, [Figure 6.3(b), RE = Ho]. All three configurations are obtained from the
I's representation (appendix D), where the magnetic moments on RE atoms 1
and 2 [Figure 6.3(b)] are parallel and are oriented in the a-c plane.

Figure 6.3: (a) Depiction of the SDW structure for (M02/3Nd1/3)2 AlC in the b-c
plane. (b) Unit cell spin configurations of (Moy/3RE;,3), AlC at base temper-
ature. The spin configuration for (Mog/3Tby/3), AIC shows the commensurate
k1 = (0,0.5,0) structure. The modulation in the magnetic moment magnitude
acquired from the propagation vector (see text) is removed in this figure and

all magnetic moments are rescaled for clarity. Numbers in (b) indicate order of
magnetic atoms according to the international tables for crystallography.
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Attempting to refine the BT profile of RE = Er and Ho using the instru-
mental resolution, resulted in calculated reflections which are narrower than
the observed reflections (Figure 6.1, inset). To obtain a better fitting peak
shape, an additional Lorentzian contribution is added to the magnetic reflec-
tions (FULLPROF Y parameter [54]). The magnetic correlation length ¢ is then
estimated using the Scherrer formula £ = 0.8\/Y [65]. For RE = Nd and
Th, no additional broadening is observed within the limits of the instrumental
resolution, and thus cannot be determined, and assumed to match the crystallo-
graphic correlation length. RE = Nd shows the weakest reflections and has the
worst agreement factor (Table 6.1). To limit the number of refined parameters,
the magnetic moments in RE = Nd are constrained to lie in the a-c plane in
accordance with the other (Moy/3sRE;/3), AIC phases.

Table 6.1: Refined magnetic structure parameters for measured
(Moy/3RE;/3), AIC phases. Ty is the Néel temperature, BT is the base
temperature at which the measurement is performed, m is the ordered mag-
netic moment per atom, € is the orientation of the magnetic moment relative
the z axis [see Figure 3(c)], k is the propagation vector component along the b
axis, £ is the magnetic correlation length and R, is the magnetic agreement
factor given in (5.3). Numbers in parenthesis indicate statistical 1o uncertainty,
while + indicates systematic uncertainty. Dash indicates that the data falls
below the detection limit.

RE TN (K)[QQ] BT (K) MRE (NB/RE) GRE (deg) kRE §RE (HIII) Rmag
Nd 7.6 1.5 1.76(2) 115(2)  0.730(2) — 40
Gd 26 6.6 0.3 120 £ 7 0.5 — —
T 20.1 35 5.63(3) 132(2) 0.5 — 14.7
28 ' 3.1(1) 126(2)  0.636(1) — 29.2
Ho 7.8 4 8.7(2) 67(1)  0.6717(7)  16(1)  16.3
Er 3.6 1.6 6.54(6) 36.6(9) 0.6787(3)  20.8(9)  5.57

6.2 Ground state muon spin rotation

The asymmetry in the decay positrons (4.39) at BT and zero applied field of
different (Mo2/3RE1/3)2AlC samples is plotted in Figures 6.4(a) and 6.4(b).
Three distinct behaviors are observed: a) RE = Nd shows oscillations which
closely resemble a Bessel function. b) Similarly, RE = Gd shows oscillations
which are well described by a cosine function. c) In contrast, other REs show
exponential decay which is characterized by a fast component (¢t < 0.1s) and a
slow component. For all compounds, the asymmetry signal decays to zero at long
times (= 3s, not shown) and does not show the characteristic 1/3 component
of powders, had there been a static magnetic field parallel to the muon spin
[Eq. (4.40)]. Fourier transforms of the observed asymmetry in RE = Nd and Gd
[Figure 6.4(c) and 6.4(d)] show one dominant field in each sample, namely 0.35 T
and 1.4T for RE = Nd and Gd, respectively. The broadened field spectrum of

o1



RE = Nd is characteristic of an incommensurate magnetic structure [Eq. (4.45)],
while a single well-defined peak in the RE = Gd field spectrum corresponds to
a simple commensurate structure (FM or AFM) [(Eq. (4.41)]. The data is
therefore fitted to (4.47) with F(x) = Jy (z) for RE = Nd, F (z) = cos (z) for
RE = Gd and F (x) =1 for the rest.

Time (us)
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08

Asymmetry

0.1 0.2 0.3 0.4 1.0 1.5 20
Magnetic field (T)

Figure 6.4: Observed BT asymmetry (symbols) of (a) RE = Nd and RE = Gd,
(b) RE = Tb, Dy, Ho, and Er powder samples. Data in (a) and (b) is shifted
for clarity (for RE = Gd by 0.3 and for RE = Dy, Ho and Er by 0.1, 0.2, and
0.3, respectively). Dashed lines in (a) indicate zero asymmetry for each data
set. Magnetic field distribution for (c) RE = Nd and (d) RE = Gd obtained by
Fourier transforming the data in (a). Solid lines show fits to the data.

Time dependence of the muon asymmetry of a single crystal sample of RE =
Gd is recorded using two perpendicular pairs of detectors (Figure 4.3). The
first, forward - backward (FB) detectors measure the muon polarization along
the muon momentum direction (z axis). The second, up - down (UD) detec-
tors measure the muon asymmetry perpendicular to the muon momentum (x
axis). BT asymmetry of the RE = Gd single crystal sample is recorded for
different initial muon spin angles ¢ and is shown, after background subtraction,
in Figure 6.5. Analysis of the single crystal data is described in Sec. 6.4 and
6.5.
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Figure 6.5: Time dependence of the BT asymmetry (after background subtrac-
tion) for different initial muon spin angles . Left column shows the up-down
detectors and right column — the forward-backward detectors. Solid lines are
fits to equations (4.54) and (4.55).
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6.3 Muon site determination

In order to convert the magnetic field distribution experienced by the muon
into the magnetic moment distribution, the muon site has to be determined
[66]. This is done in three steps. First, the stable muon site in RE = Nd is
determined using an adaptation of DFT which allows relaxation of the lattice in
the presence of the muon. Second, the expected magnetic moment is calculated
using pSR results and compared to the NPD results to verify the validity of the
DFT approach. Finally, the same procedure is applied to RE = Gd where the
magnetic structure is not determined by NPD. The search for a candidate site
is obtained by treating the (positive) muon as a hydrogen impurity. It is then
implanted in 27 different positions in the asymmetric unit of the i-MAX unit
cell and the atomic positions are relaxed by minimizing the forces (3.42) acting
on them.

In RE = Nd, two candidate muon sites are obtained. They are labeled
as A [Figure 6.6(a)] with fractional coordinates (0.438, 0.111, 0.250) and B
[Figure 6.6(b)] with fractional coordinates (0.343, 0.114, 0.362). The two sites
have nearly degenerate energy (=~ 20meV). In contrast, for RE = Gd site A
with coordinates (0.448, 0.087, 0.250) has the lowest energy by a margin of
more than 100meV. DFT calculations for other REs yield site A as the lowest
energy site as well.
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Figure 6.6: Lowest energy muon site A (a) and muon site B (b) shown as dark
cyan spheres. (c) The magnetic FxF, configuration for RE = Gd in the a-c
plane and the geometric definition of the magnetic angle 6. (d) The magnetic
C<C, configuration.

After the determination of candidate muon sites in RE = Nd, the magnetic
moment is calculated by assuming a given magnetic structure. The magnetic
field at the muon site is calculated by summing dipolar contributions

B.=%" W 6.1)

K3

from neighboring atoms positioned around the muon site. In (6.1), 7 is a unit
vector pointing from the muon site to the i’th atom and m; is the magnetic
moment of the i’th atom. Following the refinement strategy of the NPD data,
four magnetic configurations, based on the basis vectors, namely F.F, [Fig-
ure 6.6(c)], GxG,, C<C, [Figure 6.6(d)], and AxA,, are considered. For each
configuration, the moments are constrained to lie in the a-c plane. A magnetic
moment at site ¢ is then given by

m; = MSPDW (sin OrEZ + cos HREi:’) coS (ZWERE ST+ wRE) R (62)

where mgpw is the SDW amplitude, fry is the magnetic moment angle relative
to the Cartesian z axis [Figure 6.6(c)], krg is the propagation vector, 7; is the
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position of the i’th ion and ¥gg is a global magnetic phase. Since the magnetic
structure of RE = Nd is incommensurate, ¥gg is arbitrary and can be set to
zero. A scan over Oxq is performed and mgpw corresponding to each Oynq is then
calculated by matching the calculated magnetic field at the muon site to the
observed field [Figure 6.4(c)]. Among the resulting mgpw-6xqg curves for muon
site A [Figure 6.7(a)], only the F4F, configuration contains a (mspw, Onxa) pair
which matches the results obtained from NPD [Figure 6.7(a), pink rectangle].
For muon site B, all calculated curves [Figure 6.7(b)] require mgpw > 2 up/Nd
and thus do not intersect the NPD result. This indicates that even in the RE =
Nd compound, site A seems to be the stable muon site and, it is concluded that
site A is the most likely muon site candidate in all (M02/3RE1/3)2 AlC.

0 20 40 60 80 100 120 140 160 180

33Ff -
30F -
27 F -
2.4 -\—/\—
21 F -
1.8 -fb) , , , , — , , -

SDW amplitude, mgpyy (145 / Nd)

0 20 40 60 80 100 120 140 160 180
Magnetic angle, 64 (deg)

Figure 6.7: Calculated SDW amplitude for RE = Nd as function of moments’
direction Ong for different spin configurations assuming (a) muon site A and (b)
muon site B. The NPD result (Table 6.1) is given as a pink rectangle indicating
uncertainties on the refined value.

6.4 The magnetic structure of (MOg/ng1/3)2 AlIC

To determine the most likely magnetic structure for RE = Gd, a similar pro-
cess to the one described for RE = Nd is performed. To limit the number of
candidate magnetic structures, several constraints are placed on the magnetic
moments in the RE = Gd unit cell. First, since there is only a single domi-
nant frequency in the RE = Gd field spectrum [Figure 6.4(d)], it can be safely
assumed that the periodicity of its magnetic structure is commensurate with
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the crystal lattice. Because all (M02/3RE1/3)2AIC phases in this study are
isostructural, it is reasonable to assume that the propagation vector for RE =
Gd has the same form as for the other compounds, i.e (0, kgq, 0). Moreover, a
single magnetic field requires kgq to be either 0 or 1/2 as the magnetic moment
magnitude must stay constant between adjacent unit cells.

Second, the possible spin configurations in the unit cell are limited to the
four configurations tested for RE = Nd. These configurations ensure that atoms
14 in the unit cell [Figure 6.3(b)] have the same magnetic moment, as required
to produce a single magnetic field in all muon sites and are compatible with both
kga = 0 and kgg = 1/2 periodicities. Third, since the magnetic moments in
compounds with RE = Nd, Tb, Ho and Er are oriented within the a-c plane, the
same constraint is imposed on RE = Gd. The magnetic structure of RE = Gd
is therefore described by three parameters: mspw, 0qq, and ¥gq together with
the magnetic configuration which describes the relative signs of the magnetic
moments between different Gd atoms in the unit cell.

An attempt to directly fit mgpw, fga and Ygq to the powder data yields un-
stable results, since powder samples lose all information regarding the direction
of the magnetic field, and therefore the fit is overparametrized. Instead, a brute
force scan of Ogq and 1gq in the ranges 0° < fgq < 180° and —90° < ¥gq < 90°
is performed. Results consistent with the asymmetry of the powder sample [Fig-
ures 6.4(a) and (d)] are selected based on two conditions, which are labeled as
(i) and (ii). The physical magnetic moments on the Gd atoms mgaq are given by
mspw sin Yaq or mspw cos Ygq depending on the atomic position. Condition
(i) is therefore mgq < 7 up, which ensures physical magnetic moments on the
Gd atoms. The second condition is obtained from the field distribution in the
powder sample [Figure 6.4(d)]. The FWHM of the field distribution is obtained
by fitting it to a Lorentzian and is approximately 0.05 T. Since muons positioned
at different muon sites j can experience different magnetic fields B;, condition
(i) is AB = max; B; — min; B; < 0.05T. Magnetic structures, which give
magnetic field distributions consistent with conditions (i) and (ii), are found
only for the F\F, and C,C, configurations (Figure 6.8). For each configura-
tion, conditions (i) and (ii) are obeyed in four branches in the 6gq—tqq plane.
In general, the magnetic moment is found to vary between 5 up and 7 ug, 0gq
varies between 0°—60° or 110°-180°, while 1 qq is centered around 45° and 50°
for FF,, and around 40° or 45° for C,C,.
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Figure 6.8: Calculated maximal magnetic moment for (M02/3Gd1/3)2 AlC as
function of 6gq and ©¥gq. The calculations are performed assuming magnetic
configuration (a) FxF, and (b) C;C,. Colored areas show regions consistent with
conditions (i) and (ii) that are required to reproduce the observed magnetic field
distribution (see text). Green ellipses show 95% confidence regions for magnetic
structure parameters obtained by fitting the uSR data measured from RE = Gd
single crystal sample (see text).

To fit the single crystal data (Figure 6.5), initial magnetic structure param-
eters are selected from one of the four branches in Figure 6.8 as a strating guess
for the fit. Equations (4.54) and (4.55) are fitted to the data sets of both detec-
tor pairs and all measured muon spin angles simultaneously. The fit parameters
are constrained with conditions (i) and (ii) to stay consistent with the powder
results. Different initial magnetic configurations from each branch are tested to
check the stability of the fit. The final fit results are shown as 95% confidence
ellipses in Figure 6.8 and solid lines in Figure 6.5. Stable results are found in
three out of the four branches for each magnetic configuration. The resulting
magnetic moment for each fit result lies in the range 6.94-7 yp which matches
the free ion moment of Gd®>T. The fitted values of 1aq in the branches that
include ¢¥gg = +45° are found in the range |[t)gq| = 45°+1° for both magnetic
configurations. This result suggests that the magnetic moments in the RE =
Gd unit cell have equal magnitudes.
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6.5 Temperature dependence

Temperature dependence of the RE magnetic moment is shown in Figure 6.9.
Due to the weakness of the RE = Nd magnetic reflections, which results in a
low fit quality, a more accurate temperature evolution of its magnetic moment
is obtained by taking the integrated intensity of the (—1 1 — k 4) reflection [Fig-
ure 6.2(a), inset]. This reflection is chosen as it is strong and does not overlap
with any nearby reflections. The magnetic moment is obtained by normalizing
the integrated intensity at 7' = 1.5K to the magnetic moment obtained from
Rietveld refinement of the full difference pattern.

Bounds on the magnetic moment of RE = Nd, which is obtained from uSR
measurements, are calculated as the maximum and minimum values of the mag-
netic moment obtained in the fxg scan assuming the FF, magnetic configura-
tion [Figure 6.7(a)]. Magnetic moments corresponding to Oxg = 115°, as found
from NPD (Table 6.1), are shown as symbols in Figure 6.9(a) and closely follow
the values obtained from NPD. The agreement between the two methods vali-
dates the muon site and dipole field assumptions when calculating the magnetic
moment from pSR.

Temperature dependece of the RE = Gd magnetic moment, as obtained from
1SR, shows a non-zero slope as T' — 0, suggesting a 2D behavior. It is analyzed
using a Schwinger boson mean field theory calculation (Sec. 3.7) based on the
Hamiltonian of a layered AFM [44, 67, 68] (Appendix E)

H=J Z S; : §i+6” +« Z S; . §i+6L . (63)

i,(SH 7;;5L

The magnetic moment is calculated by simultaneously solving equations (E.7)
and (E.11) for h and A. The fit parameters and their best values are: o =
1078707 'my = 6.9 + 0.3 ug/Gd and Tx = 29K. The exchange interaction
strength is J = 2.38 £ 0.03meV. The best fit is presented in Figure 6.9(a)
by the dark yellow solid line. The fit function is weakly sensitive to « and
only its order of magnitude can be determined. Two additional calculations
for o = 1072 and 10~° are added to demonstrate that as anisotropy decreases,
m (T) becomes T independent at low temperature, in contrast to the data. The
smallness of a supports the 2D nature of the RE = Gd magnet.

The instantaneous magnetic moments as determined by NPD for compounds
with RE = Tb, Ho, and Er are shown in Figure 6.9(b). In RE = Tb, two prop-
agation vectors are required to fit the data well. The magnetic moment associ-
ated with each component is stable against increasing temperature suggesting
a 3D behavior. Close to the first Ty, the strength of these different compo-
nent switches accompanied with a rotation of the magnetic moments of the ks
structure from the F,C, configuration to the C,C, configuration (Figure 6.10).
RE = Er resembles anisotropic behavior as in Figure 6.9(a), while the relatively
high BT for RE = Ho does not allow clear determination of the 7' — 0 behavior.
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Figure 6.9: Temperature evolution of the magnetic moment for

(MOQ/SREl/g)QAIC with (a) RE = Nd and RE = Gd and (b) RE =
Tb, Ho and Er. Pink squares in (a) are obtained from pSR by taking
Ong = 115° from the NPD measurements. Circles in (a) are calculated for
Ogq = 120°, while full circles are obtained from single crystal measurements.
The data for RE = Nd in (a) is multiplied by 3 for clarity. Solid lines show the
calculated magnetic moment for RE = Gd for a = 1072 (black line), o = 107
(dark red) and o = 10787 (dark yellow, see text). Systematic uncertainties in
the magnetic moments obtained from p©SR measurements are shown as shaded
areas.

Figure 6.10: Depiction of the transition of the (M02/3Tb1/3)2 AlC kg structure
from the C F, structure at 3.5 K to the C,C, structure at 22 K. The color of
the arrows represents different temperatures.
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Temperature dependence of the relaxation rate of the pSR asymmetry is
obtained by fitting the temperature dependent data to Equations (4.47) and
(4.56) for powder and single crystal data, repsectively and shown in Figure 6.11.
The muon relaxation rates in RE = Nd and Gd in Figure 6.11(a) show classical
spin lattice relaxation peak at, or close to, T where the spin fluctuations are
slow enough and their amplitude is large enough to effectively relax the muon
polarization. For heavier REs, however, the situation is drastically different
[Figure 6.11(b)]. The relaxation rate in RE = Tb is nearly 5 times larger than
in RE = Gd and shows a monotonic increase with decreasing temperature.
Similar trends can be observed in the remaining compounds as well.
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Figure 6.11: Temperature evolution of the muon relaxation rate for (a) RE =
Nd and RE = Gd and (b) RE = Tb, Dy, Ho and Er. Dashed vertical lines show
Tx for each compound. (c) Temperature evolution of the magnetic correlation
length of RE = Ho and Er as determined by NPD measurements.

6.6 Discussion

The possible magnetic structures of RE = Gd [Figure 6.6(c), (d)] are found
by combining the NPD and uSR techniques. This is made possible due to the
availability of isostructural compounds with different RE atoms, as well as the
similarity in magnetic structures for different RE’s and the relatively simple
magnetic structure found for RE = Gd. While uSR can be used to refine subtle
details in magnetic structures [69, 70|, which cannot be easily determined from
neutron measurements alone, the technique requires at least a rough magnetic
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structure to be known a priori. In this work, we have demonstrated an appli-
cation of uSR which can predict a magnetic structure of a compound without
any preliminary knowledge on the same compound.

Temperature evolution of the RE = Gd magnetic moment [Figure 6.9(a)] is
well described by an SBMFT calculation up to and including 7n. This agree-
ment indicates that critical fluctuations are either weak or occur in a very small
temperature range around Tx as SBMFT does not hold for strong fluctuations
[67]. The obtained value for « is smaller than values found for some layered
CuO3 based materials [67] and is close to a calculated value of 2 x 10~% which
was calculated for SroCuQO5Cly assuming magnetic dipole interaction between
nearest neighbor layers [67]. This can indicate that interactions between planes
in RE = Gd are also of dipole origin.

When some magnetic properties are plotted against the RE atom size (Fig-
ure 6.12), and show similar trends can be observed. Tx/ (In), Ar/ (Ar) and
m/Mion, measured at 1.5 K, where () indicates average over RE and mj,,, stands
for the free ion moment, show a maximum for RE = Tb and follow an arc. The
similarity in the RE dependence of m/mj,, and T/ (Ix) suggests that the re-
duction in the observed magnetic moment is due to temperature and that 1.5 K
is not low enough to obtain the free ion moment for RE with Ty < 10K.
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Figure 6.12: Dependence of uSR relaxation rate Ap, Néel temperature Ty, and
magnetic moment m measured at BT, on the RE element in (M02/3RE1/3)2 AlC.
For comparison, Ar, and Ty are normalized relative to their average over RE,
while m is normalized relative the free ion moment m;qy,.

While the muon relaxation observed for RE = Tb, Ho and Er may seem
contradictory with NPD results at first, the observation of short-range order-
ing in RE = Ho and Er via broadening of the magnetic reflections [Figure 6.1,
inset] is evidence for a different nature in the magnetic ordering of the heavier
lanthanides. The temperature dependence of the magnetic correlation length
[Figure 6.11(c)] is similar to Ap and shows that the slowing down of the mag-
netic fluctuations is accompanied with a gradual increase in the size of ordered
magnetic domains.

The nearly one to one correspondence between Ap and Ty for REs heavier
than Gd also indicates that the relaxation of the pSR signal in these com-
pounds occurs due to a gradual freezing of the dynamic magnetic structure. As
T is lowered with increasing RE mass beyond Gd, the magnetic structure slows
down less at 1.5 K resulting in shorter relaxation rates. The RE dependence of
TN, however, does not follow the well-known [71] de Gennes factor given by
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(g — 1)2 J (J 4+ 1), where g is the Landé g-factor and J is the total angular mo-
mentum of the RE ion, which has its maximum for RE = Gd. This suggests that
the magnetic interactions in the (Mo, /3sRE; /3),, AIC phases are not described by
RKKY interactions alone, but contain additional contributions, such as dipolar
interactions between neighboring planes as mentioned for RE = Gd, which are
also responsible for the emergence of spin fluctuations and short-range order in
the heavy REs.
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7 Conclusions

7.1 (Fe;_,Mn,), AlB, phases

The magnetic phase diagram of the quaternary boride, (Fe;_,Mn,), AlB,, was
studied using X-ray and neutron powder diffraction, and magnetization mea-
surements. In agreement with mean field theory predictions, this system offers
three magnetic ground states at different Mn concentrations: ferromagnetic
(FM), anti-ferromagnetic (AFM), and a canted AFM [Figure 5.8(b)]. This
comes about from the competing FM interactions between Fe atoms along the
a axis and AFM interactions between Mn atoms along the b axis.

While the addition of Mn decreases the critical temperature [Figure 5.8(b)],
FM moment (Figure 5.9), and magnetic entropy change [Figure 5.7(b)], it does
increase the relative cooling power for Mn additions up to x =~ 0.2 (Table 5.2).
This comes about due to the broadening of the temperature range, over which
the magnetocaloric effect is significant. It is therefore possible to fine tune the
transition temperature of FeoAlBs in the 274-294 K (0-20°C) range without a
considerable loss of cooling power.

7.2 (MoysREy3), AIC phases

A series of (M02/3RE1/3)2 AlC powders were studied using pSR and NPD, with
complementary ;SR measurements on single crystals of (Moy/3Gdy/3), AIC per-
formed as well. From NPD, the magnetic ground states for RE = Nd, Tb, Ho
and Er (Figure 6.3) are identified to be transverse SDWs with a number of
similar properties. The propagation vectors of the magnetic structure of each
compound point along the crystal b axis, and the magnetic moments are aligned
in the a-c plane. The magnetic moment size and critical temperature show a
peak-like behavior when plotted agains the RE ion (Figure 6.12) with the highest
values obtained for RE = Th.

When the same compounds (including RE = Gd and Dy) are studied with
1SR, a striking difference between the behavior of RE = Nd and Gd and RE =
Tb, Dy, Ho and Er is observed (Figure 6.4). The muon asymmetry in RE = Nd
and Gd shows oscillations, which indicate static magnetic moments on a scale of
afew ps. For the heavier REs, however, only a relaxation of the uSR asymmetry
is observed which hints at a dynamic behavior of the magnetic structures in these
compounds.

The RE = Gd compound is identified as the most promising parent material
for 2D MXenes as it has a static magnetic structure, a high magnetic moment
of ~ 7 ug and the highest Tx among the RE-i-MAX phases. Temperature evo-
lution of the Gd magnetic moments is consistent with a nearly 2D AFM, having
an anisotropy ratio of 10787 between out-of-plane and in-plane interactions.
This suggests that the magnetic structure can remain stable when exfoliated to
a single MXene layer.

However, since Gd is a strong neutron absorber, performing neutron diffrac-
tion on this compound is not straightforward. Using the common properties of
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the magnetic structures of other (M02/3RE1/3)2 AlC phases, as well as muon
site calculations, significant constraints on the possible magnetic structures of
RE = Gd can be placed [Figure 6.6(c), (d)]. Additional measurements on sin-
gle crystals of RE = Gd are consistent with results obtained on powders, and
put even further constraints on the direction and magnitude of the magnetic
moments, condirming the validity of our approach.
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A Thermodynamic identities

The adiabatic entropy change AS,, under an application of a field & is directly
given by

h
88, (1) = S (1) = Sn (T0) = [ (§2) awe a)
0 T

To express the integrand in terms of the magnetization we examine the Gibbs
free energy

G=FE—-TS — Mh. (A.2)
Taking the energy differential gives
dG =dE —TdS — §dT — hdM — Mdh. (A.3)

The change in energy dF is given by the heat flowing into the system d@Q = T'dS
and the work done by the external field w = hdM. Inserting these terms into
(A.3) gives

dG = —8dT — Mdh. (A4)
From (A.4), we can express the entropy and magnetization as
oG 0G
S=—-(=—= M=—|— . A5
(57), (), )

Finally, using the symmetry of second derivatives together with (A.5), we can
express the integrand in (A.1) as

(), (8), (9, (.3, -3,

Thus we have obtained (3.26). To obtain AT,4q we express the entropy S (T, h)
and take its differential

oS oS
== T — . A
ds <8T>hd +<8h>Tdh (A7)
For an adiabatic field change, we have dS = 0 and therefore
S\ ' [0S
dT = — | — — ) dh. A8
(or), (50), )
Using the definition of specific heat
oS
C(T,h)=T|— A9
an=1(5) (A9
and inserting (A.9) and (A.6) into (A.8) we find
T oM
T=——+—|— . Al
=~ (o7 ), & (10

Integrating (A.10) gives (3.27).
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B Representational analysis of the magnetic struc-
tures of M>A1B; compounds
The M5AlBs compounds crystallize in the Cmmm space group, which has an

orthorhombic base centered unit cell. The basis vectors of the primitive and
reciprocal unit cells [Figure B.1(a), (b)] are given by

a=(a 0 0) a@=27(L -1 0)"
B=(4% 5 0) ag=4ar(0 ¢ 0)" . (B.1)
is=(0 0 ¢) a=2r(0 0 )"

The magnetic structures observed in Feo AlB; and MnyAlB, have propagation
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Figure B.1: (a) The conventional direct Cmmm unit cell and the primitive
lattice vectors. (b) The reciprocal unit cell of Cmmm with the reciprocal lattice
vectors. (c¢) The Brillouin zone of Cmmm with its high symmetry points.

vectors Epe = ( 0 0 0 )T and EMH = ( 0 0 % )T, respectively. These
vectors correspond to the I" and Z points in the Brillouin zone of Cmmm [Fig-
ure B.1(c)], respectively. By inspection, the propagation vector group (3.11) of
both the I and Z points is mmm (D2h). This group has 8 symmetry elements,
namely: The identity 1, three two-fold rotations 2, 2,, 2., inversion 1 and three
mirror planes mgy, Mg, My,. The magnetic atoms in MyAlBs occupy the 4j
site (Figure B.2), which has four inequivalent atoms. From Bloch’s theorem
(3.3), the ground state magnetic configurations have the following form:

1

U (F)= | B2 | e, (B.2)
M3
Ha

where /i; is the magnetic moment on atom ¢ in the 4; site. Performing a symme-
try operation on W exchanges the position of the atoms, as well as rotates the
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magnetic moment of each atom. The representation I'yae of these symmetry
operations is therefore given by

Fmag = Fperm ® Faxial; (B3)

where I'perm is the permutation representation and I'yya is the axial vector
representation. We note however, that atoms 3 and 4 are related to atoms 1

. . T
and 2 by the base centering translation tc = ( 5 % 0 ) . Therefore, we
obtain the symmetry constraint

fis.a = fi1 e, (B.4)
From this constraint, we only need to look at the permutations of atoms 1 and
2, and thus the permutation representation is a two-dimensional representation.

The explicit matrices of symmetry elements from mmm in the permutation and
axial representations are given in Table B.1.  To decompose I'ya, into the

DR

(3]

(4]
N

—

\:—»x

Figure B.2: The positions of magnetic atoms in the 4j site of Cmmm.

irreducible representations of mmm and obtain the possible magnetic configu-
rations, we need to calculate the character (3.13) of I'yae. From Table B.1 the
characters of I'perm and I'axial are

XTperm = 12,0,2,0,0,2,0,2}
XTaxial — {3’_17_]-’_1737_]-7_]-7_1}- (B5)
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Table B.1: The representations of symmetry elements of mmm in the permuta-
tion (I'perm) and axial vector (I'axial) representation.

Element Tperm Taxial Element I'perm Iaxial
1 00 1 00
1 ( (1) (1) > 010 1 < (1) (1) ) 010
0 0 1 0 0 1
1 0 0 -1 0 0
24 ( (1) (1) ) 0 -1 0 My ( (1) (1) ) 0 -1 0
0 0 -1 0 0 1
-1 0 0 -1 0 O
2y ( é ? ) 0 1 0 My ( (1) (1) ) 0 1 0
0 0 -1 0 0 -1
01 -1 0 0 10 1 0 O
2, 10 0 -1 0 My 01 -1 0
0 0 1 0 0 -1
The character of I'yag is then given by multiplying the terms of xr_.,.and xr,,..,
and therefore
XTmmag = 16,0,—2,0,0,-2,0, -2} . (B.6)

To decompose this character into representations of mmm we examine the char-
acter table of mmm (Table B.2). Using the direct product of characters (3.14)

Table B.2: The character table of mmm point group.

-1 1 -1 -1 1 -1 1
1 -1 -1 -1 1 1 -1

1 2, 2y 2, 1 Myy Mgz  Myz
A, 1 1 1 1 1 1 1 1
By 1 -1 -1 1 1 1 -1 -1
ng 1 -1 1 -1 1 -1 1 -1
B3g 1 1 -1 -1 1 -1 -1 1
A, 101 1 1 -1 -1 -1 -1
By, 1 -1 -1 1 -1 -1 1 1

1

1

we find the following decomposition:
Fmag :Blg@BZg@BSg@Au @Blu @Bgu. (B7)

The possible magnetic ground states are then obtained using projection oper-
ators (3.16) onto each irreducible representation and are given in Table B.3.
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Table B.3: Projected basis vectors for each irreducible representation of the
magnetic representation for MsAlBs.

Representation Big By Bz, A, Biu Bsy
0 0 1 0 1 0
0 1 0 1 0 0
. 1 0 0 0 0 1
Basis vector 0 0 1 0 1 0
0 1 0 -1 0 0

1 0 0 0 0 -1

C Mean field calculation of (Fe; ,Mn,),AlB,

To build a MFT model of (Fe;_,Mn, )2 AlB, we first note that the four magnetic
atoms in the unit cell [Figure C.1(a)-(c)] are equal in magnitude by symmetry
restrictions (Table B.3). We thus average them into a single supermoment so
that we do not need to include multiple sites in the unit cell. Next, we note
that in case multiple coordination shells are included in the interaction term,
the MFT results will not depend individually on the exchange coefficient of each
coordination shell, but rather on the sum of all coordination shells [Eq. (3.21)].
We therefore take the magnitude of the exchange interactions in all directions
to be equal and focus only on the first coordination shell.

@ Sub-lattice A
@ Sub-lattice B

Figure C.1: (a) The chemical unit cell of M>AlBs, (b) FM structure of Fe; AlBo,
(c) AFM structure of MnyAlBs, and (d) sublattice structure of simplified mean-
field model of M;AlB,.

)

N

Since the ground state of MnoAlB, has a propagation vector ( 0 0
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it splits the magnetic moments into two sublattices along the c axis [Figure C.1(c)].
Our simplified lattice is then a simple cubic lattice, with atoms along the ¢ axis
split into two sublattices [Figure C.1(d)] labeled A and B. Next, we need to
take into account the fact that there are two possible types of atoms, Fe and
Mn. With these considerations in mind, our spin operators are labeled with
X = Fe,Mn and § = A,B. In the zeroth approximation of MFT [72], we
treat one central atom of each kind and on each sublattice exactly, while taking
the average spin on all other atoms. With these new considerations in mind,
equations (3.19)—(3.22) become

Mxs = —ppix <§x,5> ) (C.1)
HYE = i Sx s§3 B, (C.2)
— - <> ’ —
Bg(ﬂfé =B+ Z bx A ifX/MX’,(S’, (03)
X’ = Fe,Mn
0 =A,B
5.6 -1 ' ’ -1
N = ) (2T ) (uefR)
and .
Vi et &)ng(s
Mx s = pBjx SxBs (ﬂ#BSX ‘WBX,(sD Iparg— (C.4)
w54,

In equations (C.1)—(C.4) we have defined §¥ the g-factor of atom X, px the
concentration of atom X, Sx the spin of atom X, 299" the number of nearest
neighbors of an atom on sublattice ¢, which belong to sublattice ¢’ and ?i{?;(,
the exchange integral between atom X on sublattice 6 and atom X’ on sublattice

0’. The total on-site magnetization is calculated by

My = pxMx,s. (C.5)
X

The values for each parameter in our model were obtained by fitting (C.5) to
the ordered magnetic moment obtained by neutron diffraction and are given in
Table C.1.
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Table C.1: The value for the parameters required in the mean-field calculation of
(Fe;—Mn, )2AlBs. For matrix parameters g and J, only the non-zero elements

are given. Values in parentheses indicate the statistical 1o uncertainties of the
fit.

Parameter Value
9Fe = 9w 0.86 (2)
It = gl"{/[yn 1.38(1)
PFe 1—2
PMn €T
SFe 3/2
SMn 1/2
ZA’A _ ZB’B 4
ZA’B — ZB’A )

(heke) = (R)" 3.67(8) mev
(Fehn) = () 23(5) mev
(Fohn) == (75)" 107(4) mev

(Jl\j}[}an)yy =- (Jl\j}[f,Mnyy 18.9(2) meV

D Representation analysis of the magnetic struc-
tures of RE-i-MAX

(M02/3RE1/3)2AIC compounds crystallize in the C'2/c¢ space group with the
RE atoms occupying the 85 position. The direct and reciprocal cells and their
axes [Figure D.1(a) and (b)] are given by

A=(3 b 0)  mean(d 0 )
=05 0)f Gom( ot o). D)
i3 = ( ccosf 0 csinf )T as=2m(0 0 Csilnﬁ )T

All observed magnetic structures of (Mog/sRE;/3), AIC have propagation
vectors k = (O,k,O)T, which do not pass through any special points in the
Brillouine zone [Figure D.1(c)]. Since k is not equivalent to —k for k # 0, the
propagation vector group of k is 2 (C2) and contains two elements: The identity
1 and a two-fold rotation 2,. There are 8 magnetic atoms in the unit cells,
however atoms 5-8 are related to atoms 1-4 by the translation tc = (0.5,0.5,0)
and therefore have a relative phase of 2k - te = wk. The permutation and axial
vector representations of the propagation vector group are therefore considered
only for the first 4 atoms and are given in Table D.1.

We note that the I'perm representation is block diagonal and composed of
two 2 X 2 matrices. This means that atoms 1, 2 and atoms 3, 4 transform
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Figure D.1: (a) The primitive direct C2/c unit cell and the primitive lattice
vectors. (b) The reciprocal unit cell of C2/c with the reciprocal lattice vectors.
(c) Projection of the Brillouin zone of C2/c in the aj-a} plane.

Table D.1: The representations of symmetry elements of 2 in the permutation
(Tperm) and axial vector (axia1) representation.

Element Iperm Laxial

1 0 0 O 10 0
01 0 0

1 0 1 0
0 0 1 0 00 1
0 0 01
0100 Lo o
1 0 0 O

2, 0 1 0
000 1 0 0 1
0 0 1 0

independently under the symmetry operations of the propagation vector group
and therefore split into two orbits. We threfore have to obtain the magnetic
representation for a single orbit, as both orbits are identical. We denote the
permutation representation of a single orbit as Iy, which contains the matrices

1= < é (1) ) and 2, = ( (1) (1) ) The required characters are therefore
XTom = {Qa 0}

XTaxial — {Sv _1} (D'2)

and the character of the magnetic representation of a single orbit I'yag, orb =

Lorb @ axial 1S
XTmag, orb — {6’ O} - (D3)

To decompose xr,,,, into the irreducible representations we use the character
table of point group 2 (Table D.2). The resulting decomposition of the magnetic
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representation into the irreducible representations is

Timag, orb ~ 3A & 3B.

Table D.2: The character table of point group 2.

1 2,
A1 o1
B 1 -1

In the main text, we define I'y = A and I'y = B for convenience. Since each
representation appears 3 times in I'nag, orb, there are 3 basis vectors associated
with each representation and they are given in Table D.3. Finally, the full
magnetic representation is obtained by combining both orbits which gives

Fmag ~ Fmag, orb D Fmag, orb ™~ (3F1 o) 3F2) (o) (3F1 (o) 3F2) ~ 6I'y ® 6. (D4)

The basis vectors of I',ag are obtained by combining the basis vectors of a single
orbit for atoms 1,2 and 3,4. The final basis vector set is given in Table D.4 and
they are labeled using Bertaut notation [64].

Table D.3: Projected basis vectors for each irreducible representation of the
magnetic representation for (Mog/3RE;3), AIC.

Representation Iy Iy

Basis vector i Vs V3 1% Vs V3

1 0 0 1 0 0

0 1 0 0 1 0

. 0 1 0 0 1
Basis vector 1 0 0 1 0 0
0 1 0 0 -1 0

0 0 -1 0 0 1
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Table D.4: Basis vectors of the full magnetic representation for k = (0,%,0) in
(Moy/3RE; /3), AIC compounds. The basis vectors are labeled using Bertaut
notation.

(a) Basis vectors of I'mag which belong to irreducible representation I'y.

Representation Iy
Basis vector Gy F, Gy A, Cy A,
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
-1 0 0 -1 0 0
0 1 0 0 1 0
. 0 0 -1 0 0 -1
Basis vector 1 0 0 1 0 0
0 1 0 0 -1 0
0 0 1 0 0 -1
-1 0 0 1 0 0
0 1 0 0 -1 0
0 0 -1 0 0 1

(b) Basis vectors of I'mag which belong to irreducible representation I's.

Representation Iy
Basis vector Fy Gy F, Cy A, Cy
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 -1 0 0 -1 0
. 0 0 1 0 0 1
Basis vector 1 0 0 1 0 0
0 1 0 0 -1 0
0 0 1 0 0 -1
1 0 0 -1 0 0
0 -1 0 0 1 0
0 0 1 0 0 -1
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E Analysis of the layered antiferromagnet using
Schwinger boson mean field theory

We start from the Hamiltonian of a layered antiferromagnet (6.3)

H=J ZS’; '§i+6” +a2§i "S_:H-&L . (El)
l,(SH ia‘;J_

The first step is to treat the interlayer interaction using a mean field theory. To
make the notation clearer, we separate the general spin index ¢ into an intra-
layer position vector R and a layer index [. Then, the inter-layer interaction

—

term is given by > 5, S5, Sp 1+1- To obtain a mean field theory, we write
0= (Sa.) + 055, (E.2)

where <§Rl> is the expectation value of the spin and 5§§l is a fluctuation

around the mean. Plugging (E.2) into the inter-layer interaction, neglecting the
second order fluctuation term and restoring Sy, gives

Z gﬁ,.l . §§,l+1 ~ Z {<§ﬁ/‘,l>2 + (gﬁ,lJrl - gﬁ,l) ’ < _'Ifx’t,l>} ) (E.3)
R Rl

where we have used the fact that in the AFM ground state <§ﬁ l> = (—1) e2midR < _)ﬁ>
with ¢= (3, 3). The first term in (E.3) does not depend on the lattice site and

gives a constant energy term. The second term defines an effective mean field

via

R
== Shun <Sé,z+1> —2_Siui < é,l>
R Rl
=-2 R, < Fz,l> (E.4)
Rl
Plugging back (E.4) into (E.1) gives
H=J Z S};“- §+5||,l_2azsé,l'< fé,l> . (E5)
R1,3) R,

We next assume the magnetization is directed out of plane so that only the z
component of the effective field remains. The effective Hamiltonian can then be

7



written as

1 o l z
H = JZ: 52 R ORS, —ZOéhRSﬁ . (EG)

In (E.6), the layers are decoupled using an effective field

hﬁ::72a<5;>. (E.7)

In MFT, the average spin is proportional to the magnetization and is site in-
dependent. We denote — <S}z§> = M and obtain the mean field self-consistency

equation
h =2aM. (E.8)

We can now use the results from Sec. 3 to calculate M for the 2D antiferromag-
net. M is given by (3.59) which requires solving equations (3.55) and (3.56).
By treating the spin-wave velocity ¢ as fixed to its result from spin wave theory
2.32J [67], we remain with two equations which need to be solved. Those are
(E.8), where

M:S+%meAmﬂ (E.9)
and
"1+ A+h 1
= 2. _ t)+ = Ny E.1
Fang =2 [ LEIL o+ eene @)

The dispersion is given by w (A, h,v') = 2.32\/(1 +A+R)E =42t = T/J is
the reduced temperature and n and g are defined in equations (3.57) and (3.60),
respectively. Finally, we are left with the constraint equation (3.56) which takes
the form

1
INAﬁJ%HNAﬁJ):S+§. (E.11)
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