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Abstract

A frustrated system is one whose symmetry precludes the possibility that ev-
ery pairwise interaction in the system can be satisfied at the same time. Such
systems can have a disordered ground state with ”macroscopic” degeneracy;
that is, one that comprises a huge number of equivalent states of the same
energy. Such a degeneracy prevents the system from settling into a single
ground state as temperature is lowered. In real materials the ground state is
selected by perturbations to the Hamiltonian whose ground state is degener-
ate. In this work we investigate the possibility of removing the frustration of
the Heisenberg AF Hamiltonian on the pyrochlore lattice, a lattice of corner
sharing tetrahedra, via a magnetoelastic coupling of the spins to the lattice,
which enables the lattice to distort, thus relieving the degeneracy. We chose
Y2Mo2O7 as a candidate to look for frustration-driven distortion, since the
spin-glass transition this compound undergoes hints at some kind of disorder
in the exchange integral, whose origin is unknown. This disorder might be
caused by a lattice distortion, for which there exist previous experimental
evidence. We studied the compound using µSR and DC magnetization, and
since we obtained inconclusive magnetic evidence for a lattice distortion, we
were motivated to further investigate the nature of a magnetoelastic distor-
tion in the pyrochlore lattice using computer simulations. We modelled the
pyrochlore lattice in the presence of a distortion inducing term in the Hamil-
tonian, and sought its minimum energy state at T=0. Then we looked into
the transformation this state undergoes as temperature is increased, in order
to find the similarities between the idealized computer simulation and our
real-life compound. We discovered that the magnetic characteristics of the
ground state persist above the temperature at which the spatial signature of
the distortion disappears, and this might explain why we see only magnetic
evidence for a lattice distortion.
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Chapter 1

Introduction

The concept of geometric frustration dates back to 1950, when the special
properties of spins with antiferromagnetic exchange interaction on a triangu-
lar lattice were first discovered. Magnetic geometric frustration arises when
the arrangement of spins on a lattice does not enable satisfying all near-
neighbor spin-spin interactions at the same time. The simplest case is pro-
vided by three antiferromagnetically coupled spins in the corners of an equi-
lateral triangle; if two spins are antiparallel to each other, the third spin can
not be antiparallel to both of them. In order to satisfy two of the spin-spin
interactions, the third one has to be frustrated (see Fig. (1.1)); this stems
from the symmetrical geometric arrangement, hence the term ”geometric
frustration”.

?

Figure 1.1: Three antiferromagnetically interacting spins in a triangular ar-
rangement; one of the spins cannot be antiparallel to both its neighbours

Things get even more complicated for antiferromagnetic interactions be-
tween spins in the corners of a tetrahedron. In this case, two of the bonds
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are frustrated, as shown in Fig. (1.2).

??

Figure 1.2: Four antiferromagnetically interacting spins in the corners of a
tetrahedron; two of the interactions are frustrated.

Why is there interest in geometrically frustrated magnetic materials? It
is precisely because the presence of frustration prevents the easy formation
of spin-ordered states, and instead, exotic ground states are found such as
spin glasses (where the spins freeze in a random pattern), spin liquids (where
the spins interact strongly but remain fluctuating down to temperatures near
absolute zero) and the spin ice (a special case of the spin liquid) which is
related to the problem of proton disorder in water ice. Little is known or
understood about these unusual states of matter, to which much attention
has been paid over the past ten years or so. The rich behaviour of frustrated
materials at low temperatures is demonstrated in table (1).

Most classical frustrated models have in common that, once the leading
energy term of exchange interaction has been minimized, a large ground
state degeneracy remains. The Heisenberg Hamiltonian with near neighbour
interactions is:

H =
∑
i>j

JijSi · Sj (1.1)

where Jij = J is know as the exchange integral or coupling. In our example
of a triangle of spins, this Hamiltonian can be written as:

H = J(S3S2 + S2S1 + S3S1) =
J

2
(S1 + S2 + S3)

2 − 3J

2
S2 (1.2)
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Material spin type spin value θCW TC Low T phase
MgV2O4 isotrop. 1 -750 45 long range order
ZnV2O4 isotrop. 1 -600 40 long range order
CdCr2O4 isotrop. 3/2 -83 9 long range order
MgCr2O4 isotrop. 3/2 -350 15 long range order
ZnCr2O4 isotrop. 3/2 -392 12.5 long range order

FeF3 isotrop. 5/2 -230 20 long range order
Y2Mo2O7 isotrop. 1 -200 22.5 spin glass
Y2Mn2O7 isotrop. 3/2 17 spin glass
Tb2Mo2O7 anisotr. 6 and 1 25 spin glass
Gd2Ti2O7 isotrop. 7/2 -10 1 long range order
Er2Ti2O7 anisotr. -25 1.25 long range order
Tb2Ti2O7 anisotr. -19 spin liquid?
Y b2Ti2O7 anisotr. 0 0.21 long range order
Dy2Ti2O7 Ising 7.5→ 1/2 0.5 1.2 spin ice
Ho2Ti2O7 Ising 8→ 1/2 1.9 spin ice

Table 1.1: A table of materials with spins on corner sharing tetrahedra. We
show for each material the spin type, the spin value, θCW which indicates the
strength of the magnetic interaction, the critical temperature at which the
compound undergoes a phase transition, and the nature of the low temper-
ature phase.

and the minimum energy is obtained when S1 +S2 +S3 = 0. The meaning of
this constraint is that the frustration is shared among the bonds in the unit.

On a cubic lattice, in the presence on antiferromagnetic near neigbour
interactions, as the temperature is lowered, the spin-spin interactions would
eventually dominate the thermal energy, and the spins would align so as to be
antiparallel to all their near neighbours, what is known as a Neél state. The
ground state of such a system is unique, up to global rotations. However, on a
lattice of corner sharing units- the kagomé lattice (see Fig. (1.3)), made up of
corner sharing triangles in two dimensions, or the pyrochlore lattice (see Fig.
(1.4)), consisting of corner sharing tetrahedrons in three dimensions, there
are many ways to fit the units together, while maintaining the constraint for
each individual unit.

The minimum energy state for a single tetrahedron in the presence of
near-neighbour antiferromagnetic interactions (Heisenberg Hamiltonian),is
given, similarly to (1.2), by the requirement

S1 + S2 + S3 + S4 = 0 (1.3)

After satisfying this constraint,we are left with two independent degrees of
freedom, which can be parameterized, for example, as in Fig. (1.5), by two

7



Figure 1.3: The kagomé lattice- a lattice of corner sharing triangles

Figure 1.4: The pyrochlore lattice- a lattice of corner sharing tetrahedra

angles: α between the two planes defined by two pairs of spins, and β between
two spins.

When arranging the tetrahedrons on a lattice, we impose further con-
straints on the spins; however,we are still left with one degree of freedom per
tetrahedron. This means that each different ground state can be described
by a number of continuous degrees of freedom which is proportional to the
number of tetrahedral units on the lattice. This as opposed to a regular cubic
ferromagnet/ antiferromagnet, where the constraints imposed by arranging
cubic units on a lattice leave us with only two/four continuous degrees of
freedom. Moreover, it has been shown that there are no energy barriers
separating the various ground states [1].

The question that arises is, what state would such a frustrated system
select at low temperatures? Effectively, since the main interaction term in
the Hamiltonian does not restrict us to a single state, the ground state of the
frustrated system is selected by lower order terms in the hamiltonian, such as
next-near neighbor interactions, anisotropy, and entropic or quantum fluctua-
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Figure 1.5: Four spins that satisfy S1 + S2 + S3 + S4 = 0

tions, what is known as classical[2, 3] or quantum order by disorder. Another
possibility would be to add to the Hamiltonian a spin-lattice interaction that
allows the lattice to distort, and thus lower its symmetry and relieve the large
ground state degeneracy [4, 5, 6, 7].

Lifting of the ground state degeneracy by lattice distortion was first dis-
cussed by K. Terao [4], who examined the frustrated spin system in Y Mn2,
which exhibits a cubic to tetragonal phase transition. In this system the Mn
ions form a pyrochlore lattice. Terao treated the spin system clasically, and
examined how the lattice distortion affected the ordering of the frustrated
spin system, by means of a perturbational calculation in which the distance
dependence of J was taken into account within first order in the distortion.
He assumed a uniform distortion for all tetrahedrons in the lattice (either
elongation or shortening along the [001],[110] or [111] directions), and ob-
tained two possible ground states, depending on the sign of the derivative of
the exchange interaction J.

The quantum limit of the problem was tackled by Yamashita and Ueda
[5], who started from a spin 1 Heisenberg model on corner sharing tetrahe-
dra. They broke up each spin into a pair of 1/2-spins, and found that upon
assuming an interaction between the lattice and spin degrees of freedom, the
twofold degeneracy of the spin singlets on a tetrahedron was lifted by a Jahn-
Teller mechanism, which led to a cubic to tetragonal phase transition. The
authors proposed their model as an explanation for the cubic to tetragonal
phase transition observed in the spinels ZnV2O4 and MgV2O4 [8, 9].

Building on the work of Yamashita and Ueda [5], Tchernyshyov,Moessner
and Sondhi [6, 7] showed that a lattice distortion can also be obtained in the
classical limit of spins on a network of corner sharing tetrahedra. They added
an elastic coupling of the spins to the lattice- a magnetoelastic term -to the
Heisenberg Hamiltonian, balanced by an elastic energy term, and analyzed
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the new minimum energy state of a single tetrahedron. They demonstrated
that the tendency of individual tetrahedra to deform induced a coherent
distortion of the entire crystal.

1.1 The Theory of Magnetoelastic Distortion

In this section we will show how it is possible to lower the lattice energy
through a distortion which lowers its symmetry, following the idea developed
by Tchernyshyov,Moessner and Sondhi [6, 7]. The hamiltonian of four spins
on a tetrahedral ”molecule” is given by

H0 = J
∑
i>j

Si · Sj =
J

2
(S1 + S2 + S3 + S4)

2 − 2JS2 (1.4)

It can be easily seen that in the ground state, the total spin on such a
”molecule” is 0. We will consider classical spins (S → ∞), for which the
degeneracy of the ground state becomes infinite, and the ground states can
be parameterized by two continuous variables- the angle between two spins,
and the angle defined by the two planes containing each a pair of spins, as
shown in Fig. (1.5).

We model the crystal field which keeps the ions in place by a harmonic
term which depends on the distance between two ions, similar to springs
connecting the spins (see fig. (1.6).

Figure 1.6: A tetrahedron in which the atoms in the corners are connected
by springs.

The harmonic Hamiltonian of such a system would be:
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Hharmonic =
1

2
k

∑
(δrij)

2 =
1

2
k

∑
i>j

(|ri + δri − rj − δrj| − |ri − rj|)2 (1.5)

where i, j = 1..4, δrij is the change in the length of the bond between
atoms i and j, ri denotes the location of atom i and δri is the change in
the location of atom i. If we expand δrij to first order in all coordinates, we
obtain an expression of the form:

Hharmonic '
∑

a>b

kab

2
δraδrb (1.6)

Here δrb denotes the change in the cartesian coordinates (δxb,δyb,δzb) of
atom b, so that a, b = 1...12.

Assuming that the exchange interaction depends on the distance between
two spins, we add to the Hamiltonian a magnetoelastic term which encour-
ages spins to grow closer/more distant depending on their relative orientation
and the sign of the derivative of the exchange, given by :

Hmagnetoelastic =
∑
i>j

J ′(Si · Sj)δrij (1.7)

where J ′ is the change in the exchange interaction that results from a change
in bond length. Again, expanding to first order in all coordinates:

Hmagnetoelastic =
∑

a>b,i>j

J ′ab(Si · Sj)δraδrb (1.8)

The total energy is then given by:

E = E0 +
∑

a>b,i>j

J ′ab(Si · Sj)δraδrb +
∑

a>b

kab

2
δraδrb (1.9)

where
E0 = J

∑
i>j

Si · Sj (1.10)

Since the potential energy matrix kab is, in general, non-diagonal, it is
convenient to diagonalize it and thus obtain the tetrahedron vibrational nor-
mal modes, and to express J ′ab in the same basis. In the new basis we no
longer have mixed expressions of the form δraδrb.

The normal modes are classified into the A1 (singlet), E (doublet) and
T2 (triplet) representations. The singlet mode uniformly rescales exchange
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interactions on all bonds, and causes the entire tetrahedron to inflate/deflate.
A component of the triplet T2 stretches and contracts by the same amount
two bonds opposite each other, and since two such bonds will be equally
frustrated or satisfied in the ground state (see Fig. (1.5) for clarity; the
ground state constraint forces two different pairs of spins to have the same
angle between them), the contribution of this vibrational mode to the relief
of the degeneracy cancels out, leaving us to deal with the singlet and doublet
vibrational modes only.

The normal coordinates of the singlet (A1) and doublet (E) representa-
tions are, respectively (see fig. (1.7) for clarity):

qA =
1√
12

(−∆x1+∆x2−∆x3+∆x4−∆y1+∆y2+∆y3−∆y4−∆z1−∆z2+∆z3+∆z4)

(1.11)

q1 =
1√
24

(−∆x1 + ∆x2 −∆x3 + ∆x4 −∆y1 + ∆y2 + ∆y3 −∆y4+

+2∆z1 + 2∆z2 − 2∆z3 − 2∆z4) (1.12)

q2 =
1√
8

(∆x1 −∆x2 + ∆x3 −∆x4 −∆y1 + ∆y2 + ∆y3 −∆y4) (1.13)

The bilinear combinations of the spin operators, in the same representa-
tion, are given by:

fA =
1√
6
(S1S2 + S1S3 + S1S4 + S2S3 + S2S4 + S3S4) (1.14)

f1 =
1√
12

(S1S3 + S2S3 + S2S4 + S1S4 − 2S1S2 − 2S3S4) (1.15)

f2 =
1

2
(S1S3 − S2S3 − S1S4 + S2S4) (1.16)

The expression (1.9) for the energy then becomes:

E = E0 + 2J ′fAqA + J ′f · q + 2kq2
A +

1

2
kq2 (1.17)

Where f = (f1, f2), q = (q1, q2). We use here the same J ′ and k for both
representations, the difference between the representations is included in the
factors of two multiplying the different terms.
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Simple minimization of the energy gives:

∂E

∂qa

= 2J ′fA + 4kqA = 0 ⇒ qA = −J ′fA/2k (1.18)

∂E

∂q
= J ′f + kq = 0 ⇒ q = −J ′f/k (1.19)

Substituting (1.19,1.18) into (1.17) gives:

Emin = E0 − J ′2(f 2
A + f 2)

2k
(1.20)

We therefore see that by enabling the tetrahedron to distort through the
addition of a magnetoelastic spin-lattice coupling, we obtain a lower energy
state than for the undistorted tetrahedron. The magnitude of the distortion
depends on the angles between spins (given by fA,f) and on the magnetic
and elastic constants J ′, k.

What would be the optimal value of f = |f |? From the expression for
the minimum energy it is obvious that f has to be maximal. Using (1.15)
and the constraint (1.3) it can be shown that the maximal value of f for
a tetrahedron is obtained when all the spins in the tetrahedron are aligned
along the same axis, with two pairs of spins parallel and four pairs of spins
antiparallel[7]. This also determines the value of fA. In this state,

f = (4/
√

3, 0)

and

fA = 2/
√

6

which give us an expected value of the minimal energy per tetrahedron:

Emin = −(J +
3J ′2

2k
) (1.21)

It is important to emphasize here the hidden assumptions of this model.
Firstly, it is assumed that the ground state in the presence of a magnetoelastic
distortion still has zero net spin on each tetrahedron. Secondly, it is assumed
that the distortion is very small, so that it can be described by the normal
vibrational coordinates of a tetrahedron, which are obtained from a first order
expansion in all coordinates.
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1.1.1 The q = 0 Distortion

How do we arrange these distorted tetrahedrons to form a lattice? O. Tch-
ernyshyov proposed [7] a ground state for the pyrochlore lattice, in which the
distortion is caused by a q = 0 phonon, meaning that all tetrahedra with
the same orientation distort in the same way. Since there are two possible
orientations for the tetrahedra on the pyrochlore lattice, there are two q = 0
possible distortions: one in which all the tetrahedra distort in the same way,
and one in which the distortion alternates between layers of tetrahedra.

We present here a distortion similar to the simple uniform distortion
presented by Tchernyshyov. However, Tchernyshyov chose to normalize the
component of the singlet normal mode within the exchange coupling J , and
to ignore the contribution of the triplet normal mode; we choose to take
into account the value of the singlet component, and to set to zero the triplet
component in order to obtain a symmetric distortion. What we call the q = 0
distortion of the lattice is obtained by distorting all tetrahedrons according
to:

qA = −J ′/
√

6k (1.22)

q = (− 4J ′√
3k

, 0) (1.23)

This means that, according to (1.11-1.13):

X + Y − 2Z√
6

= − 4J ′√
3k

(1.24)

X − Y√
2

= 0 (1.25)

X + Y + Z√
3

= −J ′/
√

6k (1.26)

where we adopted a visually simpler notation for the normal coordinates,
in which X = (−∆x1+∆x2−∆x3+∆x4)/2,Y = (−∆y1+∆y2+∆y3−∆y4)/2,
and Z = (−∆z1 −∆z2 + ∆z3 + ∆z4)/2.

From the three equations (1.24,1.25,1.26) we obtain:

X = Y =
−J ′√

2k

Z =
3J ′√
2k

(1.27)

14



Z 
A

xi
s

Y Axis

X Axis

1
2

4
3

Figure 1.7: The undistorted tetrahedron

This has to be translated into shifts in the locations of individual atoms.
Let’s look first at the tetrahedron located at the origin of coordinates:

The solutions (1.27) we obtained for X,Y ,Z give us the elongations of the
tetrahedron along the three axes; they depend on the sign of J ′. Assuming
a negative J ′, the tetrahedron stretches in the x,y directions and shrinks in
the z direction. This can be obtained without moving the atom at the origin.
The atom numbered (2) will move in the positive x and y directions; the
atom numbered (3) will move in the positive y and negative z directions; and
the atom numbered (4) will move in the positive x and negative z direction.
To sum it up:

∆x1 = 0 ∆y1 = 0 ∆z1 = 0 (1.28)

∆x3 = 0 ∆y4 = 0 ∆z2 = 0 (1.29)

Substituting (1.28) into the expressions for X,Y ,Z we obtain:

(∆x2 + ∆x4)/2 =
−J ′√

2k
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Figure 1.8: Distorted tetrahedrons. The lengthened bonds are represented
by a dotted line and the shortened bonds by a continuous line.

(∆y2 + ∆y3)/2 =
−J ′√

2k

(∆z3 + ∆z4)/2 =
3J ′√
2k

(1.30)

Since we want a symmetric distortion (this actually means that we set
the triplet vibrational mode equal to zero) :

∆x2 = ∆x4 =
−J ′√

2k

∆y2 = ∆y3 =
−J ′√

2k

∆z3 = ∆z4 =
3J ′√
2k

(1.31)

Eq. (1.31) gives us the shift from the initial location of the atoms in a
tetrahedron. When J ′/k → 0, we obtain the undistorted lattice again. In
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Fig. (1.8) we show two distorted tetrahedrons. One can verify that opposite
bonds, such as 1-2 and 1-5 ,have the same length, and that spins correspond-
ing to such bonds have the same relative orientation, such that the forces on
each atom balance to zero.

For clarity, we show in Fig. 1.9 the q = 0 distortion for several neigh-
bouring tetrahedrons on the pyrochlore lattice.The lengthened bonds are
represented by a dotted line and the shortened bonds by a continuous line.

Figure 1.9: The q=0 distortion we implemented on the pyrochlore lattice.
Tetrahedrons of both orientations distort in the same way.
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1.2 Experimental Review

1.2.1 Characteristics of Y2Mo2O7

Y2Mo2O7 belongs to the cubic pyrochlores A2B2O7, where both the A and B
sublattices reside on networks of corner sharing tetrahedra. Y2Mo2O7, with a
molar mass of 481.69 gr/mol, crystallizes in an fcc structure containing eight
formula units per conventional unit cell, with space group Fd3m. The ions
on the 16d site form a network of corner sharing tetrahedra; the 16c sites
constitute an identical sublattice, displaced by (1

2
, 1

2
, 1

2
). Mo4+ ions occupy

the 16c site, while Y 3+ ions occupy the 16d site. The spin 1 Mo4+, the source
of magnetism in Y2Mo2O7, has an effective magnetic moment of 2.55µB, close
to the value of g

√
S(S + 1)µB = 2.8µB expected for its value of spin [10].

The moments interact antiferromagnetically, via superexchange, giving rise
to θCW = −200K [11]. The compound is semiconducting, with a band gap
of 0.013eV [12], and exhibits a spin-glass (SG) magnetic transition at Tg =
22.5K, as seen from irreversible behavior in the bulk magnetic susceptibility
[13], and from a rapid slowing down and freezing of the magnetic moments
with no long range order down to ∼ 0.1Tg, as seen in neutron scattering and
µSR data [10, 14].

1.2.2 Frustration Driven Distortion in Y2Mo2O7

There are more than a few experiments supporting the concept of frustration
driven distortion in Y2Mo2O7. This compound exhibits a SG transition,
and theoretical calculations have long asserted that such a transition is only
possible when both frustration and disorder (in the form of a distribution of
exchange couplings) are present [15]. This motivated the search for lattice
disorder in Y2Mo2O7. Booth et al. [16] show, using the x-ray-absorption
fine-structure technique, that the Mo tetrahedra are in fact disordered from
their ideal structure, with a relatively large amount of pair distance disorder,
between 0.1 and 0.2A0, in the Mo − Mo pairs and perpendicular to the
Y −Mo pairs.

Keren and Gardner’s[17] 89Y NMR investigation of Y2Mo2O7, also showed
a broadening and shifting of the NMR spectrum upon cooling, starting at
temperatures as high as 200K. The NMR data shows well separated, reg-
ularly spaced 89Y NMR peaks, which means there are many nonequivalent
89Y sites, possibly stemming from a lattice distortion. In Fig. (1.10) one
can see that the magnetic environment of the Y ion, which is located in the
center of a Mo hexagon, would change as a result of a change in Mo −Mo
bond lengths.
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Figure 1.10: The 89Y ion in the center of a Mo hexagon

Among other materials in which a lattice distortion possibly caused by
frustration was observed are the spin-1 spinels ZnV2O4[8], MgV2O4[9], and
the spin 3

2
ZnCr2O4. In ZnCr2O4, in which the Cr3+ ion is ordered on a

lattice of corner sharing tetrahedra, with antiferromagnetic near neighbor
interactions, inelastic magnetic neutron scattering shows a first order phase
transition at T = 12.5K, from a cubic paramagnetic material to a tetragonal
lattice with Neel order [18].

1.3 Thesis Plan

We see, that experimental evidence points to both the possibilities of or-
dered and disordered frustration-driven distortions; it is not unreasonable to
expect, in the light of the SG transition in Y2Mo2O7, that this compound
undergoes some kind of distortion that causes a distribution of exchange cou-
plings between the magnetic ions. Since a clear cut link between experiment
and theory could not be established, we took it upon ourselves to investigate,
by both experimental and numerical methods, the possibility of frustration
driven lattice distortion in Y2Mo2O. In Chapter 2 we show susceptibility and
µSR experimental data which support a lattice distortion,and in Chapter 3
we further look into the theory that proposes an ordered distorted ground
state for the pyrochlore lattice at T = 0, and in section 3.7 enquire how
such a state would change at T > 0. Finally, in Chapter 4 we present our
experimental and numerical conclusions.
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Chapter 2

The Experimental Methods

2.1 Susceptibility measurements

2.1.1 Moving sample magnetometer

Let us consider a cylindrical sample of radius r and length L which moves
through a coil from its upper part to its lower part and back. The dimensions
of the coil are the same as the ones of the sample, and it has n turns per unit
length. As the sample moves a distance dx in the coil, the field in a volume
πr2dx changes from H, the external field, to B = H + 4πM , where M is
the sample magnetization. The change in the flux is dφ = n(πr2)4πMdx,
therefore the voltage that develops in the coil is:

ε(t) = −1

c

dφ

dt
=

1

c
n(πr2)4πM

dx

dt
(2.1)

where c is the speed of light. The output voltage will be proportional to the
sample velocity and to its magnetization.

Now lets define S =
∫ T

0
|ε(t)|dt so that

S = [

∫ T/4

0

ε(t)dt−
∫ T/2

T/4

ε(t)dt +

∫ 3T/4

T/2

ε(t)dt−
∫ T

3T/4

ε(t)dt] (2.2)

where T is the period of the motion. Using the definition of ε, S is also
given by

S =
1

c
(φ(T/4)−φ(0)−φ(T/2)+φ(T/4)+φ(3T/4)−φ(T/2)−φ(T )+φ(3T/4))

(2.3)
At times T/4 and 3T/4, when the sample is in the center of the coil:

φ = nBVsample + nH(Vcoil − Vsample) (2.4)
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Figure 2.1: The magnetic susceptibility of Y2Mo2O7 versus temperature in a
field of 6000G, same as the field in which the µSR experiment was performed.

At times 0, T/2 and T , when the sample is out of the coil, we get:

φ = nHvcoil (2.5)

So we get

S =
16π

c
nMVsample (2.6)

In this case the signal depends on the product of the magnetization and
volume of the sample. The magnetometer is calibrated so that in the end we
obtain

S = MVsample (2.7)

.
In order to obtain the molar susceptibility, we use

χ/mol =
Smmolar

Hmsample

(2.8)

We performed DC magnetization measurements on a powder sample of
Y2Mo2O7, in fields of 6000, 4000 and 2000G. In Fig. (2.1) we can see
the magnetic susceptibility of Y2Mo2O7 versus temperature measured upon
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cooling in a field of 6000G. The freezing of spins that accompanies the SG
transition can be clearly seen from the remanent component of magnetization
below the transition temperature.

As temperature decreases, an increasing number of spins becomes aligned
in the direction of the applied magnetic field, as can be seen from the increas-
ing magnetization. As we shall see, at the SG transition, the spins freeze in
a random configuration and the magnetization remains constant.

2.2 The µSR Experiment

µSR, which stands for muon spin relaxation, resonance, rotation or whatever,
is an experimental technique that uses the spin 1

2
of the muon in order to

probe magnetic fields in matter. The muon is a lepton, similar to the electron,
but with a mass 250 times larger and with a gyromagnetic ratio γµ = ge

2mµ
=

2π × 135.5MHzT
−1. Two features of the muon make it an ideal internal

magnetic probe: muons can be produced almost 100% spin polarized, and
they have a lifetime of about 2.2 µsec, after which the positive (negative)
muon disintegrates into a positron (electron) and two neutrino. The positron
(electron) is emitted preferentially in the direction of the muon spin at the
moment of disintegration. By detecting the positron (electron) emitted, it is
possible to deduce the evolution of the muon spin.

Muons are produced from the decay of pions, which have a lifetime of
about 26nsec, in the following reaction:

π+ → µ+ + νµ

Pions are spin zero particles, whereas neutrinos and muons both have spin
half. Therefore momentum and angular momentum conservation in the rest
frame of the pion require that the muon and neutrino be emitted with op-
posite momenta and spins. Since neutrinos are left handed particles, having
momentum always opposite to spin direction, the muons must be produced
with spin antiparallel to their momentum. By selecting muons from pions
that decay at rest it is possible to produce a muon beam 100% polarized.

In order to probe magnetic fields in matter, energetic positive muons are
implanted into a sample, where they lose kinetic energy through Coloumbic
interactions, thus preserving their initial spin direction. Negative muons are
not suitable for this purpose, since they would behave as heavy electrons and
be trapped in low atomic orbits, interacting mainly with the nuclear spins.
On the other hand, positive muons are attracted by areas of large electronic
density, and stop in interstitial sites in crystals, where their polarization
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Figure 2.2: A plot of the angular distribution of emitted positrons

evolves under the effect of the magnetic fields. The slowing down of the
muons occurs quickly enough to enable them to spend most of their lifetime
at a single site. Moreover, only the initial part of the muon path suffers much
radiation damage from the incoming muon, and the muon usually stops well
away to sample a unharmed environment.

The muon decays into two neutrino and a positron:

µ+ → e+ + νe + ν̄µ

Again, this decay involves two left handed particles, the neutrino, whose
momentum must be antiparallel to their spin. Momentum and angular mo-
mentum conservation considerations (the decay occurs with the muon at rest,
therefore it is enough to consider the problem in the rest frame of the muon),
lead to a propensity for the emitted positron to be emitted preferentially
along the direction of the muon spin. The angular distribution of emitted
positrons depends on their energy, and is given by (see Fig. (2.2)):

W (θ, ε) = 1 + a(ε)cosθ

where ε is the positron energy and θ the angle between the direction of the
muon spin and the positron momentum. a is the asymmetry parameter,
which depends on the energy of the detected positron , and ranges between
−1

3
for ε = 0 and 1 for ε = εmax (which is achieved when both neutrino are

emitted in the same direction). When all positron energies are sampled with
equal probability, the value of the asymmetry parameter a is 1

3
.

By detecting positrons emitted from a large number of muons implanted
in the sample to be studied, one can determine the statistical average direc-
tion of the spin polarization of the muon ensemble. The time evolution of
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Figure 2.3: Longitudinal field experimental setup

the muon polarization depends sensitively on the dynamic fluctuations and
spatial distribution of the magnetic fields in the sample.

2.3 The Experimental Setting

µSR experiments are usually performed in a magnetic field, in one of two
conventional configurations:

• LF (Longitudinal Field) configuration, in which the external magnetic
field is parallel to the muon beam and to the initial muon spin direc-
tion. In this configuration we detect positrons emitted in the forward
and backward direction relative to the initial muon spin direction, and
measure the rate at which the muon loses its initial polarization in the
longitudinal direction. This measurement can also be performed with
zero applied field, thanks to the initial polarization of the muon beam.

• TF (Transverse Field) configuration, in which the external magnetic
field is applied perpendicular to the muon beam and the positrons
are collected by counters above, below and to the sides of the initial
muon beam direction. This configuration serves to measure both the
frequency of muon precession and the rate at which the muons dephase
due to static and dynamic field inhomogeneity.

With the aid of an electronic system, each positron detector supplies a
histogram of detected positrons as a function of the time difference between a
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Figure 2.4: Transverse field experimental setup

muon’s arrival in the sample and its decay. The number of detected positrons
in a histogram corresponding to the ith counter is given by:

Ni(t) = N0
i e−t/τµ [(1 + A0

i Pi(t))] + Bgi (2.9)

Where Bgi is a time independent background (coming, from example, from
a fraction of muons that decay outside of the sample),N0

i is a normalization
constant which restricts Ni(t) ∈ [0, 1], Pi(t) is the muon polarization function
as seen by the counter and A0

i is the asymmetry.
Our experiment was performed at the GPS (General Purpose Surface

Muons) instrument at PSI. The muon beam there consists of positive muons
originating from the decay of positive pions at rest, and thus the spin of the
muons points in the direction of their momentum. The PSI muon source
is a CW (continuous wave) source, and it produces muons that arrive at
the instrument without any distinct time structure. Therefore, consecutive
muon decay events must be rejected over periods of time long compared to
the muon lifetime, in order to avoid ambiguity in relating a decay positron to
its parent muon. In CW µSR each individual muon and its decay positron
are individually counted.

The beamline is equipped with a spin rotator which allows us to rotate
the muon-spin direction with respect to the muon momentum. The detector
arrangement consists of a muon detector M, five positron detectors (with
respect to the beam direction): Forward, Backward, Up, Down, and Right
(denoted FBUDR respectively), and a backward veto detector, which colli-
mates the muon beam and rejects muons and decay positrons which miss the
aperture. The muons are implanted into the sample one by one, and a logical
circuit records the time at which a positron is detected, and ensures that it
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corresponds to a muon that entered the sample at t = 0. The magnetic field
at the sample location is generated along the muon beam direction, and TF
measurements are performed with the muon spin rotated by the spin rota-
tor. In this geometry, the spin rotator rotates the spin upward by about
500. When a transverse field is applied, the detectors U,D,R have a reduced
asymmetry corresponding to the projection of the polarization vector along
the direction perpendicular to the muon beam direction.

The instrument’s geometry enabled us to perform simultaneous LF and
TF measurements. With the muon spin tilted by 500 relative to the direction
of magnetic field applied, the initial beam polarization has components both
perpendicular and parallel to the magnetic field applied. We collected data
simultaneously at the five positron detectors; the UDR positron counters
collected TF data, whereas the FB counters collected longitudinal depolar-
ization data. We measured a powder sample of Y2Mo2O7 at temperatures
ranging between 200K and 2400K, in a magnetic field of 6000G.

In the TF geometry, we record positron data with three counters, thus
measuring both x and y components of the muon polarization. Ignoring
geometric misalignments and differences in counter geometry, Py(t) differs
from Px(t) only by a phase of π/2. Thus the muon spin polarization trans-
verse to the magnetic field may be described by the complex quantity P (t) =
Px(t) + iPy(t), and the complex asymmetry for this counter setup is:

A(t) = A0P (t) = A0[Px(t) + iPy(t)] = Ax(t) + iAy(t) (2.10)

using (2.9) we get for the corrected TF asymmetry:

Ai(t) = et/τµ [
Ni(t)−Bgi

N0
i

]− 1 (2.11)

In terms of the individual counters, the real asymmetry Ax(t) and the
imaginary asymmetry Ay(t) can be written:

Ax(t) =
1

2
[AU(t)− AD(t)] (2.12)

Ay(t) = AR(t) (2.13)

It is convenient to fit the measured asymmetry in a rotating reference
frame (RRF):

Rel(t) = Ax(t)cos(ωRRF t) + Ay(t)sin(ωRRF t) (2.14)

Img(t) = −Ax(t)sin(ωRRF t) + Ay(t)cos(ωRRF t) (2.15)
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The Rel and Img components represent our signal in the rotating refer-
ence frame, at instances of rotation with a phase difference of π/2 between
them. If we take the RRF frequency to be slightly lower than the average
Larmor-precession ωµ = γµHTF of the muon, the precession signal viewed
in this rotating reference frame has only low frequency components of or-
der ωµ − ωRRF . This has two advantages- it enables us to visually inspect
the quality of the fit, and it allows the data to be packed into fewer bins,
enhancing the speed of fitting.

In the LF geometry, the data is recorded with the F and B counters. The
raw experimental asymmetry for this counter setup is defined as:

Ar(t) =
[NB(t)−BgB]− [NF (t)−BgF ]

[NB(t)−BgB] + [NF (t)−BgF ]
(2.16)

therefore

Ar(t) =
N0

B[1 + A0
BPB(t)]−N0

F [1 + A0
F PF (t)]

N0
B[1 + A0

BPB(t)] + N0
F [1 + A0

F PF (t)]
(2.17)

The phase difference between the B and F counters is of 1800 so that

PB(t) = −PF (t) = P (t) (2.18)

and assuming A0
B = A0

F = A0 (2.17) becomes:

Ar(t) =
(N0

B −N0
F ) + (N0

B −N0
F )A0P (t)

(N0
B + N0

F ) + (N0
B −N0

F )A0P (t)
(2.19)

It is customary to define a parameter α to be the ratio of raw count rates:

α =
NF

0

NB
0

(2.20)

Then the corrected asymmetry for a two detector setup is given by:

A(t) = A0P (t) =
(α− 1) + (α + 1)Ar(t)

(α + 1) + (α− 1)Ar(t)
(2.21)

and in terms of the number of counts at each detector:

A(t) =
α[NB(t)−BgB]− [NF (t)−BgF ]

α[NB(t)−BgB] + [NF (t)−BgF ]
(2.22)

For the purpose of data analysis we plotted both corrected LF asymmetry
and TF asymmetry. The TF asymmetry in a field of 6000G was plotted in a
rotating reference frame that corresponds to a field of 5600G. The counters
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at the GPS instrument have an asymmetry A0 of about 0.25. Since we
performed the LF experiment with the muon beam rotated by 500, in order
to collect TF data at the same time, we expect the effective asymmetry to
be the projection of the muon asymmetry upon the LF direction

A0
e = A0cos(500) = 0.16 (2.23)

We used this assumption in order to find the α parameter for the LF data
fits.

2.4 Experimental Results

We observed temperature-dependent relaxation in both the TF and LF runs.
The relaxation, which is almost nonexistent above 600K, increases towards
low temperatures, and peaks below the phase transition temperature. There-
fore we present only data below 550K . In Fig. (2.5) we see the LF experi-
ment at various temperatures, and we can see the increase in relaxation with
decreasing temperature. We fit all the LF data to a root exponential:

A(t) = A0 exp(−(RLF t)
1
2 ) + Bg (2.24)

Where the parameters A0 and Bg were shared by all data sets, and the
relaxation rate RLF was free for different data sets. Similarly, we found that
the best fit for the TF data sets was an oscillating root exponential of the
form:

A(t) = A0 exp(−(RTF t)
1
2 )cos(ωt + φ) + Bg (2.25)

Here also we shared the initial asymmetry A0, the rotation frequency ω, and
the background Bg. The relaxation rate RTF and the phase φ were free to
change between data sets. The fact that a single frequency could fit all data
sets with no shift is surprising and will be discusses later. The fits were done
with the advanced fitting tool available in Origin. The LF fits were performed
simultaneously to ensure parameter matching, whereas the TF parameters
were set using the highest temperature (550K) data set. In Figs. (2.5,2.6)
we present the fits for LF and TF data at 23.20K, 30.20K and 45.20K.

In a µSR experiment there are two mechanisms for relaxation:

1. Relaxation caused by dynamical field fluctuations, which exist even if
the static field distribution has zero width, and which consists of both
longitudinal relaxation caused by fluctuations in the xy plane, and dy-
namical transverse relaxation caused by fluctuations in the z direction.
This is irreversible relaxation, which involves an energy transfer be-
tween the spin system and a heat bath (the lattice).
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Figure 2.5: Longitudinal field asymmetries for 23.20K, 30.20K and 45.20K.
The solid line is the fit to root exponential.

2. Static relaxation, which is reversible. It is caused by field inhomo-
geneities in the sample ∆B which are responsible for dephasing in the
xy plane.

The relaxation in the TF experiment consists of dynamic relaxation as
well as dephasing caused by a random static field distribution. Our aim
is to isolate the static component of the relaxation, in order to deduce the
distribution of magnetic fields in the sample, and see whether a lattice dis-
tortion occurs under the influence of the large geometric frustration present
in Y2Mo2O7. This could be done using the LF measurements to find the dy-
namic relaxation rate, and subtract it from the TF relaxation rate. However,
this should be done carefully. The LF relaxation is caused by dynamical fluc-
tuations in the xy directions. The dynamic contribution to the relaxation in
the TF experiment (from a RRF point of view) is from fluctuations in the
two directions perpendicular to the spins (out of which one is the original z
direction). Assuming fluctuations in all directions are the same, and based
on the fit results, we expect the following relation

P0 exp(−(RTF t)1/2)cos(ωt) = exp(−(RLF t)1/2)Pstatic(t)

since when the relaxation is a result of two different mechanisms, the relax-
ation function is a product of the individual polarization functions. There-

30



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

 

 

T=23.2 

Time ( sec)

(c) 

 

 

T=30.2KA
sy

m
m

et
ry

(b)

H=6kG

 

 

 

T=45.9K 

(a)

Figure 2.6: Transverse field asymmetries for 23.20K, 30.20K and 45.20K.
The solid line is the fit to root exponential.
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Figure 2.7: A plot of ∆ and both longitudinal and transverse relaxation rates
versus susceptibility and temperature.

fore, the muon polarization under the influence of static internal fields only
is given by:

Pstatic(t) = P0 exp(−(∆t)1/2)cos(ωt) (2.26)

Where

∆ = [R
1/2
TF −R

1/2
LF ]2 (2.27)

and

ω = γµHTF (2.28)

In a µSR experiment, we expect an increase in the relaxation that origi-
nates from static fields as temperature is lowered, simply because in a mag-
netic field, the static component of magnetization increases as the energy
required to flip a spin exceeds the thermal energy. This increase in the aver-
age magnetic moment of the compound is seen in the susceptibility measure-
ments. The relation between the static µSR relaxation rate and susceptibility
will show us if there are additional sources for static relaxation; if the rate
of increase in µSR relaxation exceeds the rate of increase of susceptibility, it
means that as temperature is lowered, additional relaxation sources appear.

In Fig. (2.7) we plotted RTF , RLF , ∆ on a log scale vs. T and χ (with
T as implicit parameter) on the upper and lower abscissa respectively. From
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this figure we see that the dynamical correction to the relaxation is insignif-
icant at low temperatures. It is also clear that ∆ is not a linear function of
the susceptibility χ. In fact, ∆ grows exponentially fast with increasing χ,
with the change in the growth rate taking place well before the SG phase
transition.

2.5 Discussion of Experimental Results

Next, we would like to connect this static relaxation rate ∆ to the coupling
of the muon to its electronic neighbors, as well as to the sample’s magnetic
susceptibility. The muon Hamiltonian is:

H = γµI · (HTF + Hint) (2.29)

where I is the spin of the muon, and Hint is the magnetic field from the
neighboring electrons, given by:

Hint =
∑

j

AjSj (2.30)

Aj = Aj(r) is the coupling between the muon and electron spins, Sj is the
electrons’ spin and j is an index that runs over the muon’s neighboring elec-
trons. Applying a mean field approximation, we replace S by its expectation
value: < S >= M = χH. Therefore, the muon experiences a magnetic field:

B = (1 +
∑

j

Ajχ)HTF (2.31)

Assuming that the susceptibility and the couplings Aj are isotropic, then the
time evolution of a single muon is given by:

P (t) = P0 cos[γµ(1 +
∑

j

Ajχ)HTF t] (2.32)

This expression has to be averaged over the distribution of the couplings, in
order to give us the relaxation function measured by µSR:

Pxy(t) =

∫
P0 cos[γµ(1 +

∑
j

Ajχ)HTF t]ρ(Ai)...ρ(An)dA1...dAn (2.33)

Since the integrals over Aj distributions are independent, we can begin by
assuming that the muon interacts with a single electron:

Pxy(t) =

∫
P0 cos[γµ(1 + Aχ)HTF t]ρ(A)dA (2.34)
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Using (2.26) we obtain:

exp(−(∆t)1/2) cos(ωt) =

∫ ∞

−∞
cos[γµ(1 + Aχ)HTF t]ρ(A)dA = (2.35)

=

∫ ∞

−∞
(cos(ωt) cos (γµAχHTF t) + sin(ωt) sin (γµAχHTF t)) ρ(A)dA =

= cos(ωt)

∫ ∞

−∞
cos (AχγµHTF t) ρ(A)dA + sin(ωt)

∫ ∞

−∞
sin (AχγµHTF t) ρ(A)dA

If ρ(A) is symmetric around zero, then the sine integral vanishes and the
coupling distribution is given by:

exp(−(∆t)1/2) =

∫ ∞

0

cos (AχγµHTF t) ρ(A)dA (2.36)

To invert the relation we define:

T = χγµHTF t (2.37)

and obtain:

exp(−(
∆

χγµHTF

T )1/2) =

∫ ∞

0

cos (AT ) ρ(A)dA (2.38)

This is an easily inverted cosine fourier transform:

ρ(A) =
2

π

∫ ∞

0

exp(−(
∆

χγµHTF

T )1/2) cos (AT ) dT (2.39)

Defining an effective width for the distribution:

δA =

∣∣∣∣
∆

χγµHTF

∣∣∣∣ (2.40)

We have

ρ(A) =
2

π

∫ ∞

0

exp(−(δAT )1/2) cos (AT ) dT =

= − 1

2|A|

√
2δA

π|A|{sin
(

δA

4 |A|
) (

2 FresnelS

(√
δA

2π |A|

)
− 1

)
+

+ cos

(
δA

4 |A|
) (

2FresnelC

(√
δA

2π |A|

)
− 1

)
} (2.41)
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where FresnelS and FresnelC are, respectively, the Fresnel sine and cosine
integrals: ∫ x

0

sin
(π

2
t2

)
dt;

∫ x

0

cos
(π

2
t2

)
dt (2.42)

Hence we see that

ρ(A) =
1

|A|f(
δA

|A|) (2.43)

ρ(A) has some interesting mathematical properties. It is integrable, and

∫ ∞

0

ρ (A) dA =
1

δA
(2.44)

and therefore could represent a distribution. On the other hand its asymp-
totic expansion is given by

lim
A→∞

ρ(A) =

√
π

2

δA

A3
−O(A−2) (2.45)

and this is a distribution without a second moment. Therefore, the dis-
tribution cannot be characterized by a line width. In Fig. (2.8) we show
the shape of ρ(A). The function given in eq. (2.41) diverges at zero, and
oscillates around zero.

0.5

0

2

1

1.5

A

1050-5-10

Figure 2.8: A qualitative plot of ρ
(

1
|A|f( δA

|A|)
)

as given in eq. (2.41), plotted

using δA = 1.
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2.6 Experimental Conclusions

The most important experimental finding is that ∆ is not proportional to or
even a linear function of χ. Therefore,δA given by eq. (2.40) has a tempera-
ture dependence which cannot be eliminated by subtracting a constant from
∆, χ or both. As the temperature is lowered, the ratio ∆

χ
, and therefore δA,

grows, and the distribution widens. This can only take place if atoms shift
as the temperature is lowered. The fact that no change in the muon rotation
frequency is detected at all temperatures means that the average coupling
constant < A > is always zero. However, we find no evidence for a periodic
rearrangement of the atoms. We therefore move to the second part of this
thesis: a numerical re-examination of the theory.
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Chapter 3

Simulations

3.1 Motivation-Can We Find A Better Ground

State?

In section (1.1) we surveyed theoretical work supporting a frustration-driven
lattice distortion, and in section (2.4) we showed experimental evidence sup-
porting such a distortion in Y2Mo2O7. However, we were left with some open
questions:

• How would nonharmonic terms in the Hamiltonian affect the distor-
tion? The theory assumes that only first order terms in the distortion
are kept.

• How much do we need to increase the energy of the system from the
ordered distorted ground state, in order to witness disordered states? It
seems that in our experiment, the distortion is of a disordered nature.

• Theoretically, the sum of spins on each tetrahedron would have to re-
main zero in the ground state that includes a magnetoelastic distortion,
since the Heisenberg term is the leading term of the Hamiltonian. We
would like to test this theoretical assumption.

In order to answer these questions,we decided to look for the ground state
of the Heisenberg Hamiltonian in the presence of a magnetoelastic coupling,
with the aid of a computer simulation which modelled the pyrochlore lattice
with magnetic and elastic interactions.
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3.2 Description of the Simulation

The coordinates of atoms in a pyrochlore lattice were stored in a three-
dimensional array. For programming reasons, the axes chosen were not the
conventional axes, in which the coordinates of the atoms in the first tetrahe-
dron would be :

1. (0, 0, 0)

2. (
√

2/2,
√

2/2, 0)

3. (0,
√

2/2,
√

2/2)

4. (
√

2/2, 0,
√

2/2)

assuming interatomic distance of unity, but a rotated system of axes, with
the rotation matrix given by:

R =



√

2/2 −√6/6
√

3/3√
2/2

√
6/6 −√3/3

0
√

2/3
√

3/3


 (3.1)

and the coordinates of the atoms in the first tetrahedron given by:

1. (0, 0, 0)

2. (1, 0, 0)

3. (1/2,
√

3/2, 0)

4. (1/2,
√

3/6,
√

2/3)

We denote the vectors pointing to atoms 2, 3, 4 by V1,V2,V3 respectively.
The coordinates of an atom in the lattice where given by:

X = BM (3.2)

where

B =




1 1/2 1/2

0
√

3/2 1/
√

12

0 0 2/
√

6


 (3.3)

and M = (m,n, l) is a vector of integers.
The choice of boundary conditions is very important. Computer simu-

lations are usually performed on a small number of atoms, of the order of
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N = 10000, since the size of the system is limited by the available storage on
the computer and, more crucially, by the speed of execution of the program.
To simulate a bulk material, which has about 1023 atoms, and in which most
of the atoms do not experience any surface effects, it is customary to use pe-
riodic boundary conditions, in which the system under study is surrounded
by mirror images of itself in each dimension, thus mimicking an infinite sys-
tem [[19]]. This would be suitable for a system of spins only; for example,
when looking for the minimum energy state of the Heisenberg Hamiltonian.
However, periodic boundary conditions do not allow for a distortion of the
crystal, since an expansion on one side would necessarily be accompanied
by a shrinking of the opposite side. Therefore we chose to use open bound-
ary conditions for the coordinates, and periodic boundary conditions for the
spins, in order to minimize boundary effects on one hand, and enable a lat-
tice distortion on the other hand. The periodic boundary conditions for the
spins also ensure that we maintain spin frustration in all tetrahedra of the
virtual lattice. This frustration is the most important property of the physics
question under investigation. That this choice induces an acceptable error
will be shown in (3.3).

The energy of the entire lattice is a function of the relative orientations
and distances of near-neighboring spins. The energy minimization algorithm
is based on trying a change of location and orientation for each of the spins
in the lattice, and checking whether it induces a decrease or an increase
on the value of the energy function for the entire lattice. To this end it is
enough to check the energy change δE in the interaction of a spin with its
near neighbours. Both spin and position are minimized simultaneously. The
basic simulation cell contains between 8788 and 13500 atoms.

We started by minimizing the Heisenberg Hamiltonian with near-neighbor
interactions:

H = J
∑
i>j

Si · Sj (3.4)

The spins were taken to be classical spins,namely they can have any orien-
tation, with |S| = 1.

The energy can then be written as:

E0 = J
∑
i>j

Si · Sj =
J

2

∑
(S1 + S2 + S3 + S4)

2 −NJ. (3.5)

where N is the number of spins in the lattice, and the sum is taken over all
tetrahedron units in the lattice. The energy is minimized when constraint
(1.3) is fulfilled for all tetrahedrons. Thus the minimum value of the energy
in the absence of the magnetoelastic coupling was expected to be E0 = −NJ .

39



The second step was to add an energy term of the form

EJ ′ =
∑
i>j

(
dJ

drij

)(Si · Sj)δrij = J ′
∑
i>j

(Si · Sj)δrij (3.6)

where δrij denotes the change in the distance between two spins (it is im-
portant to mention that in our simulation, δrij is the actual change in the
distance between spins, and not only the linearized change), and can be
positive or negative, and J ′ was the magnetoelastic constant which deter-
mined the magnitude of the spin-lattice coupling. In fact, F = J ′Si · Sj

is a repelling/attractive force which acts between two neighboring spins,
and causes the distance between them to grow/decrease. The force depends
on the sign of J ′- a positive(negative) J ′ means that the AF exchange in-
teraction increases(decreases) with distance between spins, but it also de-
pends on the angle between spins- antiparallel(parallel) spins would favor
a larger(smaller) AF exchange interaction. Since the effective exchange in-
teraction is Jeff = J + J ′δrij, the range of values for J ′ has to be chosen
carefully, in order to remain in the AF regime.

To model the crystal field which determines the crystal structure, we
added an elastic term

Ek =
k

2

∑
i>j

(δrij)
2 (3.7)

J ′ and k had the same value for all the bonds in the simulated lattice.
Thus the function to be minimized by the simulation is:

H = J
∑
i>j

Si · Sj + J ′
∑
i>j

(Si · Sj)δrij +
k

2

∑
i>j

(δrij)
2 (3.8)

In order to be able to compare the simulation results to theoretical values,
we calculated the expected value of the minimal energy of the entire lattice
using the value of the minimal energy for a single tetrahedron (1.20):

Emin = −NJ − N

2

J ′2(f 2
A + f 2)

2k
= −N(J +

J ′2(f 2
A + f 2)

4k
) (3.9)

where N is the number of atoms in the lattice. The number of tetrahedra in
the lattice, in the limit of N →∞, is given by N

2
, since every atom belongs

to two tetrahedra (the tetrahedra are corner-sharing), and every tetrahedron
consists of four atoms.

Substituting for the minimum value of fA and f = |f | we obtain

Emin = −N(J +
3J ′2

2k
) (3.10)
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The input to the simulation consisted of the initial ordering of the spins
(namely the lattice structure and spin configuration), and of the values of J ,J ′

and k, which were constant during single runs but varied between different
runs of the simulation.

The final output of the computer simulation included the minimum-
energy atomic locations and the orientations of the spins, as well as the
changes in bond lengths, the near-neighbor spin-spin correlation Si · Sj, the
sum of spins on a tetrahedron, and lattice statistics such as the value of
the minimum energy, the average change in bond length, the average square
change in bond length, and the number of bonds that become ferromagnetic
as a result of the change in bond length (this to insure that we remain in the
AF regime). In order to analyze the simulation results, we used a Matlab
script that performed magnetic and nonmagnetic neutron scattering on the
virtual lattice (see Appendices A, B), using the Laue method (fixed single
crystal and various incident wavelengths).

After constructing the simulation lattice, we performed on it nonmagnetic
neutron scattering, in order to ensure that it was constructed correctly. In
Fig. (3.1) we show the scattering intensity vs. magnitude of the scattering
vector in the [111] direction- which means that the scattering vector q points
in the direction of the sum of the three generating vectors of the lattice:
q = (V1 + V2 + V3)/|V1 + V2 + V3|.

We see peaks at |q| ∼ 7.7 and |q| ∼ 3.85. Since we know that peaks
should be obtained at |q| = 2π/d, where d is the spacing between lat-
tice planes, we easily recognize the peaks to correspond respectively to the
distances between neighboring kagomé planes and triangular planes (d =
0.816497), and to the distances between planes of the same kind (kagomé or
triangular, d = 1.632993).

It is also worthwhile to take a look at the magnetic scattering from a
pyrochlore lattice with collinear spins that satisfy (1.3) for all tetrahedrons,
as shown in Fig. (3.2). In this lattice, neighboring planes are antiferromag-
netically correlated, and next-near neighbouring planes are ferromagnetically
correlated; the magnetic periodicity is different from the structural periodic-
ity of the lattice. Thus the peak corresponding to d = 0.816497 disappears;
there is a ferromagnetic correlation between triangular planes and between
kagomé planes, which we see in the d = 1.632993 peak.

It is important to bear in mind that, while here the magnetic and spatial
parts of the scattering are separate, since they are generated by computer,
in an actual experiment we would observe the two scatterings superimposed.
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Figure 3.1: Scattering intensity vs. magnitude of the scattering vector in the
[111] direction, for a pyrochlore lattice of 13500 spins.
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Figure 3.2: Magnetic scattering intensity vs. magnitude of the scattering
vector in the [111] direction, for an AF ordered pyrochlore lattice of 13500
spins.
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Figure 3.3: A plot of the energy per spin, in percents, for a q=0 distorted
lattice, as calculated by the simulation, versus lattice size. The asymptotic
value for an infinite lattice is of course 100%.

3.3 Finite Size Effects

In order to estimate the simulation error we needed to see how the finite size
of the simulation lattice affected the final output of the simulation; in other
words, we had to determine how characteristic output values of the simu-
lation, such as total lattice energy, depend on the lattice size, and whether
these values converge to an asymptotical value that corresponds to an infi-
nite lattice. To this end, we plotted the calculated energy per spin of the
simulation lattice versus lattice size, for a lattice structure whose energy can
be calculated analytically: the q = 0 distorted lattice which will be discussed
in section (3.5.1). This plot is shown in fig.(3.3). The energy is given in
percents of the expected energy of an infinite lattice.

From the plot it can be verified that the energy per spin converges to the
analytical value for an infinite lattice. The difference between the asymptotic
value of the energy per spin and the actual value obtained from the simulation
served as a measure of the simulation error, and guided us in the choice of the
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lattice size. Ideally, we would like to use a lattice as big as possible; however,
lattice size is limited by the time it takes the computer to finish a simulation
run. By repeating each simulation run several times, we eliminated other
computer-precision errors and determined finite size effects to be the main
cause for error in our simulation.

3.4 Simulation Validation-Cubic Lattice

Before using the simulation program to obtain data as the basis of new re-
search it is necessary to ensure that the program works correctly. This is done
by reproducing some known results. The classical antiferromagnetic ground
state on a simple cubic lattice is well known; it consists of two sublattices
of equal and opposite magnetizations. A simple cubic lattice is comparable
to the pyrochlore lattice in the coordination number; each spin has 6 near-
neighbours. The distance between near neigbours in the cubic lattice is unity,
same as will be used for the pyrochlore lattice.

We therefore run the simulation on a cubic lattice of 1000 and 8000 spins,
with and without the magnetoelastic term. Since in a cubic lattice there is
no geometrical frustration, we do not expect to obtain any distortion in a
cubic lattice with the Hamiltonian (3.8).

We show in fig. (3.4) the neutron scattering and magnetic neutron scat-
tering from a cubic lattice with 8000 antiferromagnetic spins, superimposed.
On the left hand side of the figure we present the final state obtained by
the simulation when minimizing the AF Heisenberg Hamiltonian, whereas
on the right hand side we show the final state obtained by the simulation
when minimizing the Hamiltonian (3.8) on a simple cubic lattice.

The scattering vector is in the [111] direction. The distance between
planes in this direction is d = 0.5774, which results in scattering peaks at
|q| ∼ 10.9. The AF correlation between spins creates two magnetic sublat-
tices with twice the unit cell, thus resulting in magnetic scattering peaks at
|q| ∼ 5.4, corresponding to twice the interplanar distance d = 1.55.

The neutron scattering shows no significant difference in the lattice struc-
ture and spin orientation between the minimization of the Heisenberg Hamil-
tonian and the minimization of the Hamiltonian (3.8), as expected. More-
over, we obtain the AF spin arrangement we anticipated.
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Figure 3.4: Neutron scattering from a cubic lattice of 8000 spins, obtained
from minimizing (a) the AF Heisenberg Hamiltonian and (b) the magnetoe-
lastic Hamiltonian.

3.5 The Initial Simulation State

It is natural to expect that the final state reached by the simulation will de-
pend on the state it begins from. We know that the Heisenberg Hamiltonian
with antiferromagnetic exchange couplings on the pyrochlore lattice gives us
a ground state manifold which is completely ergodic; Moessner and Chalker
[1] show, that it is possible to deform any ground state into any other ground
state without any cost in energy. However, we do not know how the magne-
toelastic terms change the ground state manifold, and whether it maintains
its ergodicity. Therefore, trying different initial states in the simulation can
give us some feeling as to the energy landscape in the presence of the mag-
netoelastic terms in the Hamiltonian. We ran the simulation while starting
from several different initial states; we will present here the results obtained
when starting from an initial state with random spin orientations, and from
the q = 0 initial state.

3.5.1 The q = 0 Initial State

We chose a the q = 0 distortion presented in (1.1.1) as one of the initial
states for the simulation. Eq. (1.31) gives us the shift from the initial
location of the atoms in a tetrahedron. This has to be implemented on
our simulation lattice. However, we need to remember that the axes used
by the simulation are rotated relative to the axes in which it was natural
to calculate the distortion; therefore, we rotate the new coordinates (after
applying the distortion) using the matrix RT (the matrix R given in (3.1)
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describes the rotation of the axes and not of the coordinates).
The new distorted coordinates:

1. (0, 0, 0)

2. (
√

2/2 + −J ′√
2k

,
√

2/2 + −J ′√
2k

, 0)

3. (0,
√

2/2 + −J ′√
2k

,
√

2/2 + 3J ′√
2k

)

4. (
√

2/2 + −J ′√
2k

, 0,
√

2/2 + 3J ′√
2k

)

After rotating we obtain:

1. (0, 0, 0)

2. (1− J ′
k
, 0, 0)

3. (1/2− J ′
2k

,
√

3/2 + 5
√

3J ′
6k

, 2
√

2J ′√
3k

)

4. (1/2− J ′
2k

,
√

3/6 + 7
√

3J ′
6k

,
√

2/3 +

√
2/3J ′

k
)

This is the basis we used to build the simulation lattice, instead of the
undistorted basis:

1. (0, 0, 0)

2. (1, 0, 0)

3. (1/2,
√

3/2, 0)

4. (1/2,
√

3/6,
√

2/3)

so that the new matrix Bd that replaces (3.3) is given by:

Bd =




1− J ′
k

1/2− J ′
2k

1/2− J ′
2k

0
√

3/2 + 5
√

3J ′
6k

√
3/6 + 7

√
3J ′

6k

0 2
√

2J ′√
3k

√
2/3 +

√
2/3J ′

k


 (3.11)

When J ′/k → 0, it is easy to see that we obtain the undistorted lattice
again.

Again, in order to verify the structure of the new lattice, and compare it
to the undistorted structure, we performed neutron scattering, adjusting the
scattering vector to the new [111] direction (this is tantamount to making
sure our crystal is glued to the sampleholder in a real experiment) . This is
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Figure 3.5: Neutron scattering from a pyrochlore lattice of 8788 spins, with
the q=0 distortion. In (a) we see the spatial part and in (b) the magnetic
part.

shown in fig. (3.5). Indeed, we see splittings in the scattering intensity peaks,
which are caused by atoms moving to below and above the lattice planes,
accompanied by a shift in the location of the peaks, which stems from a
shortening of the distance between lattice planes, namely a shrinking of the
entire lattice. When looking at the magnetic scattering, we see again that
we obtain the peak that corresponds to only half of the structural planes
(kagomé-kagomé and triangular-triangular), due to the different magnetic
periodicity.

It is also useful to look at the spin orientations and the near-neighbour
spin-spin correlation distribution, for comparison to the final states obtained
by the simulation (fig. 3.6). In this state all spins are oriented either parallel
or antiparallel to the z-axis, such that 2/3 of the bonds are antiferromagneti-
cally correlated and thus satisfied, and 1/3 of the bonds are ferromagnetically
correlated and frustrated.

3.5.2 Random initial state

This is a state in which the directions of the spins were chosen at random
using a randomization algorithm, while the spin locations remain unchanged
from the initial ordered pyrochlore lattice locations.
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Figure 3.6: (a) Distribution of spin orientations in the q=0 state. θ and φ
are, respectively, the azimuthal and polar angles. (b) Distribution of near-
neighbour spin-spin correlations in the q=0 initial state. 2/3 of the bonds
are completely satisfied with SiSj = −1, and 1/3 of the bonds are completely
frustrated with SiSj = 1.

3.6 Simulation Results

We plotted the total energy of the lattice, calculated after the simulation run,
as a function of the parameter J ′2, with k kept fixed. We expect the relation
(3.9) to hold in the linear distortion limit, where J ′/k → 0. The error in the
final energy value obtained was determined as described in section (3.3).

From fig. (3.7) we see that the minimal energy obtained depends on the
initial state chosen; however, for small J ′2 the differences are not significant.
For J ′2 < 1 when starting from the q = 0 state, the energy calculated at the
end of the simulation matches the theoretical value, whereas the random spin-
arrangement initial state results in a final state which is higher in energy. The
energies of the final states exhibit a divergence from linearity with increasing
J ′2 (which actually means increasing J ′2/k, since k is kept fixed).

The difference between the theoretical energy value, calculated from the
expression (1.9), and the final energy value obtained by the simulation, stems
almost entirely from the fact that the simulation calculates the actual δr
for each bond and not only the first-order change. This can be seen by
calculating numerically the energy of the q = 0 state after it is input to the
simulation (the green line in fig. (3.7)), and comparing it to its theoretical
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Figure 3.7: The minimum energy per spin obtained from the simulation, for
the q=0 and random spins initial states, versus J ′2. We also show here the
energy of the initial q=0 state and the theoretical value of the energy (3.10).

value for different J ′’s. The ratio Eq=0/Etheory (fig. 3.8) goes to 1 in the limit
J ′2/k → 0, and decreases with increasing J ′2/k.

The final lattice structures obtained from the simulation are also differ-
ent from theoretical ground state q = 0. Whereas the final state obtained
from the q = 0 state retained the initial spin ordering, the structure of the
distortion changed.

When starting from a nondistorted initial state with random spin ori-
entations, we obtained a distorted final state, with short-range spin order.
This can be seen in the spin-spin correlations as extracted from the post
simulation data (Fig. (3.9 (b)). Moreover, from the distribution of the spins
orientations in the final state obtained from the simulation (Fig. (3.9 (a)), we
can see that the spins are arranged in the x− y plane, but with orientations
uniformly distributed within that plane.

Looking back at (3.6), we note that the new state obtained from a nondis-
torted initial state is similar locally to the q = 0 state; 2/3 of the bonds are
antiferromagnetically correlated and thus satisfied, and 1/3 of the bonds are
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Figure 3.8: The ratio Eq=0/Etheory vs. J ′/k for a lattice size of 8788 spins.
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Figure 3.9: (a)The spin orientation distribution for the final simulation state
obtained from a random spin arrangement initial state. (b)Distribution of
near-neighbour spin-spin correlations in the final simulation state obtained
from a random spin arrangement initial state.

50



ferromagnetically correlated and frustrated.
In Fig.(3.10) we show the neutron scatterings from all the final structures

obtained with the simulation. These scatterings have several signatures- first
of all, we see a shrinking of the lattice in the shift of the scattering peaks to
the right, for instance from |q| ∼ 3.85 to |q| ∼ 4.4 for the q = 0 final state
and |q| ∼ 4 for the final state obtained from a random spins initial state.
Secondly, we see splittings in the scattering peaks, which mean that atoms
have moved in and out of the kagomé and triangular planes.

Whereas in the final state obtained from a random initial state we see
no long range magnetic correlations, in the initial and final q=0 states we
see long range magnetic order. On the right side of the figure we see the
magnetic scatterings, and on the left side we see the nonmagnetic scatterings.
Whereas the q=0 initial state maintains the initial magnetic arrangement,the
final state obtained from an undistorted random-spins initial state shows no
correlation between the magnetic and spacial arrangement, and hence no
signal in the magnetic neutron scattering. In order to ensure that this lack
of signal is not due to the specific choice of the scattering vector, we tried
scattering vectors with several different orientations and still, obtained no
signal.

We see here that the final state obtained from the simulation is strongly
dependent upon the initial conditions. Whereas locally, the final states are
similar, one state (the one obtained from the q=0 state) exhibits long range
magnetic order, whereas the other does not. The difference in energy between
the ordered and disordered final states is approximately linear in J ′2, starting
from less than 1% of the final energy value for small J ′2, and increasing to
several percents.

To conclude this section, our main discovery was that the q = 0 state is
the lowest energy state for the Hamiltonian, yet when the simulation starts
from a random initial spin arrangement, it reaches a final state which is very
different from the q = 0 state.
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Figure 3.10: Virtual neutron scattering from the lattice structures obtained
from the simulation, for J=1, J’=1, K=10. (a)-(b) show the scattering from
the initial q=0 state, (c)-(d) show the scattering from the final state obtained
by the simulation when starting from the initial q=0 state, and (e)-(f) show
the scattering from the state obtained from an initial random-spins arrange-
ment.
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3.7 Increasing the Temperature

The findings of the previous section led us to enquire as to the nature of low
excited states of the pyrochlore system; namely, what happens to the q = 0
state when we raise the temperature from T = 0? We implemented such a
temperature increase in the simulation through a reverse simulated-annealing
algorithm. We included a Boltzmann factor FB = exp ∆E/T , that enables
the system to ’jump’ into states which are not energetically favourable, with
probability p < exp ∆E/T , and slowly increased the temperature from T = 0
to various final values. The parameter δE is the energy difference (for one
spin) between two different location and orientation values. To validate this
part of the simulation, we verified that for FB = 0 the system goes to the
final state obtained from the initial q = 0 state, without temperature.

As the temperature per spin is increased, the crystal slowly melts and
loses its structure and spin ordering. This is because of the open boundary
conditions, which were required to enable a non volume preserving distortion
of the crystal (such as the q = 0 state). However, there is information to be
gained from this melting process. We performed virtual neutron scattering
on the states obtained, at temperatures of T = 0.1J − T = 0.000001J per
spin. We show three temperatures -0.0001J − 0.000001J in fig. (3.11). We
notice that the splittings in the second peak (the kagomé-kagomé triangular-
triangular peak), which are evidence of the lattice distortion, disperse and
are no longer evident at a temperature of only 0.0001J per spin. In contrast,
the magnetic scattering peak at |q| ∼ 4.4, which manifests the magnetic
ordering in the lattice, persists at this temperature.

In fig. (3.12 (e)-(f)) we show the scattering at T = 0.001J with two
reference scatterings- from the initial q = 0 state (3.12 (c)-(d)) and from a
pyrochlore lattice with spins that satisfy the requirement that the sum of
spins on each tetrahedron be zero (3.12 (a)-(b)). We see here clearly that
the splittings which characterize the q = 0 state are no longer visible at this
temperature, whereas the magnetic scattering peak can still be discerned.
As T increases, lattice distortions are not observable, but spin correlations
still are.
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Figure 3.11: Neutron scattering and magnetic neutron scattering from the
final states obtained from the initial q=0 state for J=1, J’=1, K=10, upon
increasing the temperature. Three temperatures are shown.
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Figure 3.12: (a)-(b) show neutron and magnetic neutron scattering from
an ordered pyrochlore lattice in one of the degenerate ground states of the
Heisenberg Hamiltonian. (c)-(d)show neutron and magnetic neutron scatter-
ing from the q = 0 initial state. (e)-(f) show neutron and magnetic neutron
scattering from the state obtained from the q = 0 initial state when temper-
ature is increased to 0.001J . All data are for J=1, J’=1, K=10.
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Chapter 4

Conclusions

In this work we investigated the ground state of the pyrochlore lattice with
AF Heisenberg Hamiltonian, in the presence of a magnetoelastic term which
enables the lattice to distort and decrease the magnetic energy. We performed
µSR and magnetization measurements on the pyrochlore Y2Mo2O7, for which
there was previous evidence of lattice distortion [17], and complemented the
experiments with computer simulations that modelled an ideal pyrochlore
lattice.The simulation data was analyzed by means of a Matlab script that
performed both magnetic and non-magnetic neutron scattering.

The µSR and magnetization data pointed at a change in the local mag-
netic environment within the compound, as the temperature is lowered. How-
ever, we were unable to characterize the exact nature of this change; it is likely
that it stems from a disordered lattice distortion which causes a distribution
of different fields at the muon site, in contrast to the theoretical prediction.
To address this discrepancy we performed numerical simulations.

Our simulations looked for the minimum energy state at T=0 of a py-
rochlore lattice, using the Heisenberg Hamiltonian with a magnetoelastic
term (3.8), and explored the nature of excited states when starting from a
particular theoretical ground state. The non-temperature dependent part of
the simulation was set to run from two different initial states:

1. Lattice structure is distorted to a state obtained from minimizing a
linearized Hamiltonian (1.9), and spins arranged in a corresponding
antiferromagnetic orientation. We termed this state the q = 0 state.

2. Pyrochlore lattice structure, with random spin orientation.

We discovered that initial states 1 and 2 resulted in essentially dissimilar
final states, with different energy values and spin ordering. The value of the
total lattice energy attained was higher when starting from state (2), and
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both values of the total lattice energy were higher than the theoretical value
given by (3.10). However, the simulation and the theoretical energies agree
in the J ′/k ⇒ 0 limit. Whereas the final state obtained from state (1) was
characterized by long-range spin order, in the final simulation state obtained
from state (2) we witnessed no spin correlations and a randomly distributed
distortion accompanied by a shrinking of the entire lattice.

When temperature was increased from the q = 0 initial state, the charac-
teristic signatures of the q = 0 state that were visible in the virtual neutron
scattering, namely a multiply split scattering peak and a magnetic scattering
peak, started to disperse. However, the splitting in the neutron scattering
disappeared at a temperature lower than that at which the magnetic scat-
tering peak was no longer evident.

The combined experimental and simulation data led us to conclude:

• The structure of the minimum energy state obtained from the sim-
ulation is different from the structure of the minimum energy state
predicted by theory, due to nonlinear distortion terms which the simu-
lation takes into account but the theory doesn’t. It turns out, that the
nonlinear distortion terms result in an increase of the lattice energy.

• The spin-ordered lattice-distorted minimum energy configuration we
discovered is very close in energy to other distorted states with no
apparent magnetic order, as can be seen both from the simulation runs
which start from undistorted initial states, and from the temperature
increases performed on the q=0 state.

• The fact that the final state attained by the simulation depended so
strongly on the initial state, hints at a non-ergodic ground state mani-
fold for the Hamiltonian (3.8). It could well be that a magnetoelastic
term in the Hamiltonian would lead to both a disordered and ordered
distortion, depending on other parameters which were not tested in this
work.

• As temperature is increased, the spatial characteristics of the ordered
q = 0 ground state disperse, whereas the magnetic correlations persist
at a temperature of T = 0.001J . This means that if some magnetically
ordered distorted state sets in at low temperatures in our compound,
it is more likely to be discovered by magnetic probes such as µSR and
NMR than by probes that look for the spatial features of the distortion.
As a result of the non-zero temperature which leads to non-long range
magnetic order, the magnetic probes will experience a random field
distribution. Thus our simulation provides an insight has to why we
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detect only broadening of the µSR line rather than a set of distinct
frequencies.

4.1 Future Plans

The work presented in this thesis can be continued along two parallel com-
plementary lines- the computational and the experimental.

From the computational point of view, the fact that the final energy
obtained by the simulation when starting from a random initial state, was
higher than the theoretical predicted value, indicates the need for a different
strategy in seeking the minimum energy state of the Heisenberg and magne-
toelastic Hamiltonian on the pyrochlore lattice. In this work we implemented
a Monte Carlo algorithm at T = 0, hoping that it would suffice to find the
sought-after ground state, since it succeeded in finding the ground states for
the Heisenberg Hamiltonian on the pyrochlore lattice. However, the strong
dependence of the final state obtained by the simulation on the initial state
suggests, that the Monte Carlo algorithm is not enough and that a simulated
annealing approach is required. The concept of simulated annealing is based
on the manner in which liquids freeze or metals recrystalize in the process of
annealing. In an annealing process a melt, initially at high temperature and
disordered, is slowly cooled so that the system at any time is approximately in
thermodynamic equilibrium. As cooling proceeds, the system becomes more
ordered and approaches a ”frozen” ground state at T=0. Hence the process
can be thought of as an adiabatic approach to the lowest energy state. If the
initial temperature of the system is too low or cooling is done insufficiently
slowly the system may become quenched forming defects or freezing out in
metastable states (ie. trapped in a local minimum energy state). However, if
the process is carried out correctly, the system avoids being trapped in local
minima and attains the global minimum.

However, implementation of a simulated annealing algorithm holds in
store several substantial difficulties. The algorithm employs a random search
which not only accepts changes that decrease the function to be minimized,E,
but also some changes that increase it. The latter are accepted with a prob-
ability p = exp ∆E/T , where ∆E is the increase in E and T is the system
temperature. Thus there are several user-defined parameters which have to
be determined correctly:

• The initial temperature of the system T0.

• The final temperature of the system Tf .
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• The cooling rate - the rule according to which the temperature is decre-
mented.

The correct choice of these parameters is by no means trivial and requires a
large amount of calibration. We tried to implement a simulated annealing
algorithm on our system, however we failed to obtain meaningful results
in the time frame available. The natural and necessary continuation of our
work would be to successfully implement a simulated annealing algorithm for
the pyrochlore lattice, which would resolve the questions that remain open
regarding the nature of the minima obtained by the simulation.

From the experimental point of view, a more thorough investigation of
the structure of Y2Mo2O7 in various magnetic fields and temperatures would
be interesting. This could include measuring the µSR relaxation from static
fields only, what we termed ∆ in Chapter 2, versus the magnetic field applied,
at constant temperature. Another possible experimental avenue would be to
perform neutron scattering in an external magnetic field. Such an experiment
was not carried out yet, and it would serve to determine whether there is some
correlation between the lattice distortion observed by magnetic probes and
the magnetic fields applied to carry out those measurements.
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Appendix A

Neutron Scattering

Here we will show how we obtain the differential cross-section, and hence the
scattering amplitude, for elastic neutron scattering.

Suppose we have a neutron of wavevector k incident on a scattering sys-
tem characterized by an index λ. Let the neutron be in a state Ψk and the
scattering system in a state χλ.We assume an interaction potential V be-
tween the neutron and the system, which scatters the neutron into a state
with wavevector k′ , and leaves the system in a final state λ′. Denote the
number of nuclei in the scattering system by N , the position vectors of these
nuclei by Rj, and the position of the neutron by r.

The differential cross section is given by:
(

dσ

dΩ

)

λ→λ′
=

1

Φ

1

dΩ

∑

k′∈dΩ

Wk,λ→k′,λ′ (A.1)

where Wk,λ→k′,λ′ is the number of transitions per second between the states
k, λ and k′, λ′ and Φ is the flux of incident neutrons.

By Fermi’s Golden Rule:

∑

k′∈dΩ

Wk,λ→k′,λ′ =
V

(2π)2~3
mk′| < k, λ|V |k′, λ′ > |2 (A.2)

assuming box normalization.
The transition matrix element is given explicitly by:

< k, λ|V |k′, λ′ >=

∫

V
Ψ∗

k′χ
∗
λ′V ΨkχλdRdr (A.3)

Substitute for the neutron wavefunction:

Ψk =
1√V exp (ik · r) (A.4)
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< k, λ|V |k′, λ′ >=
1

V
∫

V
exp (−ik′ · r)χ∗λ′V exp (ik · r)χλdRdr (A.5)

We need to substitute a specific function for the interaction potential V .
Since we are only interested in the spatial structure of the lattice, we can
make V really short range, and put: V (R) = δ(R). Hence the potential for
the whole scattering system is:

V =
∑

j

δ(r−Rj) (A.6)

It is convenient to define a new variable in order to complete the integration
over r: xj = r−Rj. The transition matrix element becomes:

< k, λ|V |k′, λ′ >∝
∑

j

∫
exp (−ik′ · (xj + Rj))χ

∗
λ′δ(xj) exp (ik · (xj + Rj))χλdRdxj =

=
∑

j

∫
δ(xj) exp (i (k− k′) · xj)dxjχ

∗
λ′ exp (i (k− k′) ·Rj)χλdR (A.7)

Define the scattering vector κ:

q = k− k′ (A.8)

Since
∫

δ(xj) exp (iq · xj)dxj = 1, we are left with:

< k, λ|V |k′, λ′ >∝
∑

j

∫
χ∗λ′ exp (iκ ·Rj)χλdR =

=< λ|
∑

j

exp (iq ·Rj)|λ′ > (A.9)

Remember that the scattering amplitude is proportional to the squared
transition matrix element :

| < k, λ|V |k′, λ′ > |2 ∝ | < λ|
∑

j

exp (iq ·Rj)|λ′ > |2 (A.10)

To obtain the differential cross section we need to sum over final states
λ′ and average over initial states λ:

(
dσ

dΩ

)
=

∑

λ,λ′
pλ

(
dσ

dΩ

)

λ→λ′
(A.11)
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First we note that the states λ′ satisfy the closure relation:

∑

λ′
| < λ|

∑
j

exp (iq ·Rj)|λ′ > |2 =

=
∑

λ′
< λ|

∑

j′
exp (−iq ·Rj′)|λ′ >< λ′|

∑
j

exp (iq ·Rj)|λ >=

=< λ|
∣∣∣∣∣
∑

j

exp (iq ·Rj)

∣∣∣∣∣

2

|λ > (A.12)

Now,
∑

λ pλ < λ|
∣∣∣∑j exp (iq ·Rj)

∣∣∣
2

|λ > is actually the thermal average

of the lattice sum
∣∣∣∑j exp (iq ·Rj)

∣∣∣
2

.

Hence the neutron scattering amplitude off our virtual lattice will be
proportional to:

A ∝
∣∣∣∣∣
∑

j

exp (iq ·Rj)

∣∣∣∣∣

2

(A.13)
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Appendix B

Magnetic Neutron Scattering

The magnetic field at point R due to the electron spin:

B ∝ ∇× (
S ×R

R3
) (B.1)

where R is the distance from the spin. This can be written as:

∇× (
S ×R

R3
) =

1

2π2

∫
q̂ × (S × q̂) exp(iq ·R)dq (B.2)

since
R

R3
= −∇(

1

R
) (B.3)

and ∇ operates only on R:

∇× (
S ×R

R3
) = −∇× (S ×∇(

1

R
)) (B.4)

We also note that:
∫

1

R
exp(−iq·R)dr =

∫ 2π

0

dφ

∫ 1

−1

dcosθ

∫ ∞

0

R exp(−iqRcosθ)dR = 4π

∫ ∞

0

sinqR

q
dR =

2π

q2

(B.5)
Therefore:

∇×(S×∇(
1

R
)) =

∫
dq

q × (S × q)

q2
exp(−iq ·R) =

∫
q̂×(S× q̂) exp(iq ·R)dq

(B.6)
The interaction between the neutron and the magnetic field generated by

the electrons is proportional to I ·B where I is the spin of the neutron.
The spatial part of the transition matrix element:

< k′ | VSi
| k >∝

∫
exp(−ik′r)∇× (

Si ×R

R3
) exp(ikr)dr (B.7)
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Where r = ri + R. We switch to integration on R, since ri, the location of
the ion, is constant, and take κ = k − k′:
∫

exp(−ik′r)∇×(
Si ×R

R3
) exp(ikr)dr =

1

2π2

∫ ∫
exp(iκ(ri+R))q̂×(Si×q̂) exp(iq·R)dqdR

(B.8)
The dR integration yields a factor of δ(κ + q), enabling us to perform the dq
integration as well and write:

< k′ | VSi
| k >= 4π exp(iκri)(κ̂× (Si × κ̂)) (B.9)

We can now define operators:

Q⊥ =
∑

i

exp(iq · ri)(q̂ × Si × q̂) (B.10)

Q =
∑

i

exp(iq · ri)Si (B.11)

Such that:
Q⊥ = Q− (Q · q̂)q̂ (B.12)

Therefore, Q⊥ is the projection of Q in the direction perpendicular to q̂.
Since the spins density is given by

ρs(r) =
∑

i

δ(r − ri)Si (B.13)

then it is easy to see that Q is the fourier transform of the spins density.
Including the spin of the neutron we get the interaction between the

neutron and the scattering system:

I ·
∑

i

exp(iκri)(κ̂× (Si × κ̂)) (B.14)

We need to calculate the squared matrix element of this operator between
the initial and final spin states of the combined crystal and neutron system.
Since the electron spin and neutron spin operate in orthogonal spaces, we
can separate the matrix elements:

< i, s | I ·Q⊥ | i′s′ >=< i | I | i′ >< s | Q⊥ | s′ > (B.15)

squaring, we get:

| < i | I | i′ > |2| < s | Q⊥ | s′ > |2 (B.16)
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This needs to be averaged over initial states and summed over final states:

∑

i,i′,s,s′
pips| < i | I | i′ > |2| < s | Q⊥ | s′ > |2 =

∑
i,s

pips < i | II† | i >< s | Q⊥Q†
⊥ | s >

(B.17)
pi and ps are the probabilities for initial states i and s. It is useful to note
that:

Q⊥Q†
⊥ = (Q− (Q · q̂)q̂)(Q− (Q · q̂)q̂)† = QQ† − (Q · q̂)(Q† · q̂) =

=
∑

α

QαQα −
∑

α,β

(Qαqα)(Qβqβ) =
∑

α,β

(δαβ − qαqβ)QαQβ (B.18)

The average over neutron spin states gives a constant, and since we deal
with classical spins, the scattering cross section is proportional to:

∑

α,β

(δαβ − qαqβ)QαQβ =
∑

α,β

(δαβ − qαqβ)
∑
i,j

exp(iq(ri − rj))S
i
αSj

β =

=
∑

α,β

(δαβ − qαqβ)
∑
i,j

Si
αSj

β cos(q(ri − rj)) (B.19)

67



68



Bibliography

[1] R. Moessner and J. T. Chalker, Phys. Rev. B 58, 12049 (1998)

[2] J. N. Reimers and A. J. Berlinsky, Phys. Rev. B 48, 9539 (1993)

[3] J. Villain , R. Bidaux, J. P. Carton and R. J. Conte, J. Phys. (Paris)
41,1263 (1980)

[4] K. Terao, J. Phys. Soc. Jpn. 65,1413 (1996)

[5] Y. Yamashita and K. Ueda, Phys. Rev. Lett. 85,4960 (2000)

[6] O. Tchernyshyov, R. Moessner, S.L.Sondhi, Phys. Rev. Lett. 88, 067203
(2002)

[7] O. Tchernyshyov, R. Moessner, S.L.Sondhi, Phys. Rev. B 66 (2002)

[8] Y. Ueda, N. Fujiwara, H. Yasuoka, J. Phys. Soc. Jpn. 66,778 (1997)

[9] H. Mamyia el al., J. Appl. Phys. 81, 5289 (1997)

[10] J.S.Gardner et al., PRL 83, 211 (1999)

[11] Ph.-H. Hubert, Bull. Chem. Soc. France 2385 (1974).

[12] M. A. Subramanian et al., Mater. Res. Bull. 15, 1401 (1980)

[13] N. P. Raju, E. Gmelin and R.K. Kremer, Phys. Rev. B. 46, 5405 (1992)

[14] S.R. Dunsiger et al., Phys. Rev. B 54, 5405 (1992)

[15] K. H. Fishcer and J. Hertz, Spin Glasses (Cambridge University, Eng-
land, 1991)

[16] C.H Booth, J. S. Gardner, G. H Kwei, R. H. Heffner, F. Bridges and M.
A. Subramanian, Phys. Rev. B 6, R755 (2000)

[17] Amit Keren and Jason. S. Gardner, Phys. Rev. Lett. 87, 177201 (2001)

69



[18] S. H. Lee et al. Phys. Rev. Lett. 84, 3718 (2000)

[19] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
Science Publications, 1987)

70


