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Abstract

The superconducting stiffness ρ̂srelates between a vector potential A and

the current density J s inside superconducting (SC) materials as described

by the London equation J s = −ρ̂sA. The coherence length ξ is a measure

of how large can J s be. A new way of measuring the superconducting stiff-

ness and coherence length using a Stiffnessometer was developed [1] in our

group. The measurement is done by applying current in a thin and long

excitation coil that pierces a SC ring-shaped sample and creates a rotor-free

vector potential A inside the sample. According to London’s equation, SC

currents emerge leading to a magnetic moment, which is measured using

a superconducting quantum interference device (SQUID). The new method

does not suffer from demagnetization factors complications or the presence

of vortices. The method was applied to La2−xSrxCuO4 (LSCO), a member

of the cuprates. The crystalline structure of LSCO is roughly tetragonal,

with two symmetric directions (a and b) parallel to the CuO2 planes and

the c direction perpendicular to the planes. Consequently, the stiffness is

anisotropic, and one might expect different response to a vector-potential A

parallel or perpendicular to the planes. Upon warming, the stiffness signal

diminishes and disappears at Tc. Stiffness measurements for two different

rings, one with the CuO2 planes parallel to the ring (c-ring) and another

with the planes perpendicular to the ring (a-ring) were done for doping of

x = 12.5 % [2]. It seems as if the phase transition of the c-ring is taking place
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at a temperature 0.7 K higher than the a-ring.

It is not clear if this result is unique to x = 12.5 % or a general property of

LSCO in all doping. If the transition temperature anisotropy is found only

in x = 12.5 % and its vicinity, it means that the phenomena is related to

charge ordering found in this doping. If the Tc anisotropy is found in other

doping, it must be a general property related to the two dimensional nature

of the CuO2 planes.

In this work I will present stiffness measurements of LSCO a-rings and

c-rings with different doping and determine the dependence of this strange

anisotropy in Tc on doping. Additionally, by driving the current in the coil

until the linearity between A and J s breaks, the critical-current of the SC

can be measured in the absence of vortices and with no leads or out-of-

equilibrium conditions. This critical-current places an upper limit on ξ. We

performed such a measurement using a NbTi SC coil and overdoped LSCO.

We found that ξ ≤ 4 nm. Future improvements in the experimental setup

will allow us to place a tighter bound on ξ.
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Symbols and Abbreviations

Abbreviations

AF Antiferromagnet

BC Boundary Conditions

CP Cupper-Pair

GFC Gauge Field Cooling

GL Ginsburg Landau

HTSC High Temperature Super Conductors

ID Inner Diameter

JJE Josephson Junction Effect

LSCO La2−xSrxCuO4

OD Outer Diameter

OPD Optimally Doped

OVD Over Doped

PDE Partial Differential Equation

QCP Quantum Critical Point

SC Superconductivity
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SC superconductor/superconducting

SQUID Superconducting Quantum Interference Device

TSFZ Traveling-Solvent-Floating-Zone

UND Under Doped

ZGFC Zero Gauge-Field Cooling

Symbols

A Vector Potential

Ac Critical Vector Potential

B Total Magnetic Field

x Strontium doping level of La2−xSrxCuO4

c Speed of Light

e Electron Charge

H External Magnetic Field

Hc1 First Superconducting Critical Field

Hc2 Second Superconducting Critical Field

I Current

J s Current Density
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Jc Critical current Density

m Magnetic Moment

me Electron Mass

n Windind Density of the Excitation Coil

ϕ̂ Azimuthal Direction

Φ Magnetic Flux

ϕ Phase of the Complex Order Parameter

Φ0 Flux Quanta

ψ Complex Order Parameter

ρ Resistivity

ρ̂s Superconducting Stiffness

T Temperature

Tc Critical Temperature

TN Néel Temperature

vc Critical Velocity

ξ Coherence Length
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1 Introduction

1.1 Motivation

The LSCO compound is one of the cuprates family and like all cuprates

is made up of copper oxide planes. Due to this layered structure, LSCO

is strongly an-isotropic. Different experiments were done and indeed found

strong an-isotropic behavior by measuring resistance with strong magnetic

fields perpendicular to the copper oxide planes [3], or measuring the Meissner

effect of thin single-crystal needles with the planes parallel to the needle’s

axis (a-needle) and needles with the planes perpendicular to the needle’s

axis (c-needle) [4]. But these results could be explained by a microscopic

phenomenon and not necessarily suggest a macroscopic phenomena of bulk

superconductivity. To verify this issue, another experiment was done using a

novel technique called Stiffnessometer, which can measure the superconduct-

ing stiffness of a bulk superconductor. The Stiffnessometer technique will

also be explained in this work in details. By measuring two samples of the

same single-crystal, but with different orientation of the copper oxide planes,

a different critical temperature (Tc) was observed. The most basic princi-

ple of this technique is using a long coil to create currents in a ring-shaped

sample and measuring the magnetic moment of the induced currents. The

results of this experiment are presented in Fig 1.1. The measured sample was

under doped LSCO x = 12.5 % and the Tc difference was 0.7 K. The main

purpose of the present work is to explore the hole-doping dependence of this

7



Figure 1.1: Stiffness measurements of LSCOx = 12.5 % a and c rings. Ex-
planation about the stiffnessometer can be found in Sec 2.

difference in Tc. Another goal of this work was to measure the coherence

length ξ of LSCO at low temperatures (T � Tc).

1.2 Superconductivity

Superconductivity (SC) is a special phase characterized by many unique phe-

nomena such as zero resistance and perfect diamagnetizem (Meissner Effect).

Classical SC can be explained by the BCS-Theory (named for John Bardeen,

Leon Cooper, and John Robert Schrieffer), which considers attractive inter-

action between electrons through electron-phonon coupling. It is common to

think of the charge carriers of a SC as pairs of electrons called Cupper-Pairs

(CP) rather than individual electrons. The critical temperature Tc refers to
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the temperature where the transition between the SC phase and the normal

phase happens.

The coherence length ξ is the shortest length scale of over which the phase

of the complex order parameter can vary. It is also common to think of ξ

as the size of the CP. When applying magnetic field to a SC, it will reject

it by creating super currents which screen the external magnetic field. If we

increase the external field, the super currents will also increase. Although the

field is expelled from the bulk, it penetrates along the edges with exponential

decay with some characteristic length known as the penetration depth λ.

The SC materials can be divided into two types depending on the ratio

of ξ and λ. Type-I SC have λ < ξ and type-II SC have λ > ξ . A type-I

SC will hold the magnetic field outside until we reach the critical field Hc.

Above Hc the material gives-up and transforms back to the normal state,

letting all the magnetic flux go through it. Type-II SC will stay field free

up to some critical field Hc1, and above it is capable of letting some of the

magnetic flux get in as a vortex. The core of the vortex will be in the normal

state phase, but outside of the vortex the material will remain a SC. When

we increase the external field, more vortices will get inside until they cover

the entire material and all of it becomes normal at a second critical field Hc2.

In 1986 a new family of SC materials was discovered – the Cuprates. Those

materials are defined by having a nearly tetragonal unit cell which form layers

of copper-oxygen planes (CuO2). This SC group will be discussed more in

Sec 1.5.

9



1.3 The London Equation and the Meissner Effect

The superconducting Stiffness ρ̂s is defined by a local relation between the

superconducting current density J s to the vector potential A and the gradi-

ent of ϕ, the phase of the complex order parameter ψ = |ψ|eiϕ . This relation

is:

J s = ρ̂s(
~c
q

∇ϕ−A). (1.1)

where c is the speed of light and q is the charge of the charge carriers. ρ̂s

is a diagonal tensor or even scalar. This equation is gauge invariant. When

∇ϕ = 0 as in our case, we get:

J s = −ρ̂sA. (1.2)

If we use the rotor of Maxwell’s equation: ∇ × ∇ × B = 4π
c

∇ × J

(where J is the sum of normal and super currents) and the definition of A:

B = ∇×A we get a partial differential equation for the magnetic field B:

∇2B = 4π
c
ρ̂sB (1.3)

The solution (in one dimension) will be: B = B0e
− x
λ . This exponential decay

of the magnetic field inside the bulk of a SC is called The Meissner Effect and

it gives us the relation between the SC stiffness and the penetration depth

λ:

ρs = c

4π
1
λ2 . (1.4)
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1.4 The Ginsburg-Landau Approach

Another way to look at the superconducting phenomena is from the Ginsburg-

Landau (GL) point of view (following [5]), denoting the complex SC quantum

state as ψ = |ψ|eiϕ where |ψ|2 is the density and ϕ is the phase. The GL

functional of the free energy is:

f = fn0 + α|ψ|2 + β

2 |ψ|
4 + 1

2m∗ |(
~
i
∇− e∗

c
A)ψ|2 + (∇×A)2

8π . (1.5)

To minimizes the free energy, we differentiate by ψ∗ and it gives:

αψ + β|ψ|2ψ + 1
2m∗ (

~
i
∇− e∗

c
A)2ψ = 0 (1.6)

and minimizing with respect to A leads to:

J = c

4π∇×∇×A (1.7)

= e∗~
2m∗i(ψ

∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
ψ∗ψA

= e∗

m∗
|ψ|2(~∇ϕ− e∗

c
A) = e∗|ψ|2vs

where vs andm∗ are the charge carrier’s velocity, and mass, e∗ is their charge,

and |ψ∞|2 is their density deep inside the bulk of the SC. We define f = ψ/ψ∞

and ψ2
∞ = −α/β > 0 which minimize the free energy deep in the SC bulk

where A = 0 and ∇ϕ = 0. Then, if there are no magnetic fields and A = 0,
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Eq 1.6 becomes (in one dimension):

~2

2m∗|α|
d2f

dx2 + f − f 3 = 0 (1.8)

and we can define the GL coherence length:

ξ2
(GL) = ~2

2m∗|α| . (1.9)

When we use 1
2m∗ (~

i
∇− e∗

c
A)2ψ = m∗v2

s

2|α| ψ in Eq 1.6 we obtain:

|ψ|2 = ψ2
∞(1− m∗v2

s

2|α| ) = ψ2
∞[1− (ξm

∗vs
~

)2] (1.10)

Js = e∗ψ2
∞(1− m∗v2

s

2|α| )vs. (1.11)

One can see that Js as a function of vs has maximum for a specific velocity.

Those are the critical current and the critical velocity:

Jc = e∗ψ2
∞

2
3(2

3
|α|
m∗

)1/2, (1.12)

vc = (2
3
|α|
m∗

)1/2. (1.13)

Therefore, if we measure the critical velocity vc, we can also find ξ using the

relation:

ξ = ~√
3m∗vc

. (1.14)

If we assume that m∗ = 2me (me being the mass of a free electron) and
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e∗ = 2e (e being the charge of a free electron) we can find from Eq 1.5 that:,

β = |α| 8πe2

mec2λ
2, and so |ψ∞|2 = mec2

8πe2λ2 . Then using Eq 1.12 we find:

Jc = mec
2

6πeλ2vc (1.15)

In SI units we get:

JSI
c = 2me

3µ0eλ2vc (1.16)

1.5 The Cuprates Family

The cuprates are a family of High Temperature SC (HTSC) discovered in

1986. They are constructed from planes of copper oxide (CuO2) with rear-

earth metals and oxygen between them. Doping of holes or electrons can be

done by adding oxygen or by replacing some of the rear-earth atoms with

different atoms with less or more electrons in the valance shell. The LSCO

compound (La2−xSrxCuO4) is a simple member of this family. It can be hole-

doped by replacing some Lanthanum atoms with Strontium atoms (changing

x in the compound’s formula) and can be SC when x is roughly between

∼ 5 % and ∼ 27 %. Its highest Tc is about ∼ 38 K and can be achieved when

it is Optimally Doped (OPD) x h 15 %. LSCO with smaller/bigger x is

called Under/Over doped (UND/OVD). The unit-cell of LSCO is tetragonal

and demonstrated in Fig 1.2.

In general, the cuprates phase diagram is very rich, with many different

regimes such as: SC, Antiferromagnet (AF), Fermi Liquid, Strange Metal
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and the Pseudogap regime. This work will concentrate on the SC phase. In

Fig 1.3 one can see a typical phase diagram of cuprates as a function of doping

p. For LSCO p = x. When x = 0, the material is antiferromagnet with Néel

temperature TN of about ∼ 300 K and it drops down when increasing x and

vanish at x ≈ 2 %. Although the long range order of the AF disappears, short

range spin order remains up to x ≈ 12 % (inside the SC regime). Above Tc

in the OPD and UND regime, LSCO behaves as strange metal having linear

dependence of the resistivity with temperature (ρ ∝ T instead of ρ ∝ T 2 as

normal metal) and when x > 27 % LSCO behaves as Fermi liquid. x ≈ 19 %

is called the quantum critical point (QCP). At this point the pseudogap line

ends, and the border line between the strange metal phase and the Fermi

liquid phase begins [6]. As we shall see, the QCP will be significant in our

study.

1.6 Crystal Making

All the samples we used were single crystals of LSCO, which were grown in

our lab using the traveling solvent floating zone furnace (TSFZ) technique.

At first, all compounds are dehydrated, weighted and mixed together in a

process that includes four cycles of mixing and baking. After the four cycles,

the powder’s homogeneity is checked by x-ray powder diffraction. Then, the

powder is inserted into a rubber tube and pressed at 55000 PSI. Out of

the rubber tube come rods of condensed powder. The rods are sintered at

1050 c° for 24 hours to form a feed and seed for the TSFZ. The feed rod is

14



Figure 1.2: LSCO Unit Cell [7].

about 100− 150 mm long and is hanged inside a quartz tube. The seed rod

is set below the hanged rod. The TSFZ is based on four 300 w lamps and

ellipsoid mirrors, which focus the light to the same spot in the gap between

the feed and the seed. The power of the lamps is increased until the bottom

of the feed and top of the seep are melted to a liquid solvent. The feed and

seed are then connected. During this process the feed and seed are rotated

in different direction so that the solvent will be homogenize in terms of heat

and mixture. The lamps and mirrors are set on a stage that can move up

melting more of the feed while the solvent solidify on top of the seed. The

feed is also connected to a moving shaft. The quartz tube is sealed and filled

with gas with a certain pressure that can be adjust . The operator controls

many parameters: the power of the lamps, the moving speed of the mirror

15



Figure 1.3: Cuprates Phase Diagram of hole doping p and temperature [8].

shaft as well as the feed shaft, rotation speed, the type of gas in the tube

and its pressure. The lamp’s power is usually high in the beginning of the

crystal growth for the first melting of the feed and is slowly reduced until

small crystals start to form. This process is done in stages and the end result

will depend on the whole process and not only on the end parameters. When

the growth program and all the parameters are right, the solvent will solidify

as a single crystal. More information on crystal growing can be found in an

article by S.M. Koohpayeh et al [9]. A photo of the feed and seed rods, the

lamps and mirrors, and the quartz tube is presented in Fig 1.4b. Schematic

of the feed and seed rods, the lamps and mirrors, and the quartz tube is

presented in Fig 1.4a.
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(a) (b)

Figure 1.4: Traveling solvent floating zone furnace. (a) Schematic of the feed
and seed rods, the lamps and mirrors, and the quartz tube. (b) Photo of the
feed and seed rods, the lamps and mirrors, and the quartz tube.
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2 Stiffnessometer Principle of Operation

In this section, we explain the principle of operation of the new device, which

we name Stiffnessometer, aimed at measuring stiffness. The ideal Stiffnes-

someter is made of an infinitely long excitation-coil piercing a ring-shaped

sample. When we apply current I through the infinitely long excitation-coil,

we can generate a magnetic field inside this coil without a field outside. Nev-

ertheless, there is vector potential A = µ0nI
r
ϕ̂ where n is the winding density

and r is the distance from the coil’s symmetry axis. If we cool the sample

below Tc without any magnetic field or current in the excitation coil, there

will be no vector potential A = 0. We call this cooling process Zero-Gauge-

Field-Cooling (ZGFC). When we cool the sample and it becomes a SC, it

will choose the phase ϕ to be such that minimize the free energy. Therefore,

when we follow the ZGFC protocol, the vector potential is zero A = 0 and

∇ϕ = 0 then we get London’s equation- Eq 1.2, changing ϕ is energetically

costly for the SC, so when we turn on the current in the coil and A 6= 0,

we get J s = −ρ̂sA, meaning that the vector potential A generates super

currents J s inside the ring. Those super currents going around in a loop

create a magnetic moment m which can be measured using a pickup-loop

connected to a SQUID. The London equation shows linear relation between

J s and A. Since A is proportional to the current in the excitation coil I,

and J s is proportional to the sample’s magnetic moment m, we get a linear

relation between the applied current and the measured signal. When this

19



linearity breaks, we know that something had changed in the system and we

are out of the linear regime.

There are two types of measurements we can do: we can stay at a constant

temperature and increase the current I; this type of measurement determines

the critical vector potential Ac, hence Jc and ξ. Alternatively, we can change

the temperature while the current is in the linear regime and constant; this

type of measurement provides the stiffness. We will explain both options

in sections 2.6 and 2.5. Section 2.1 will present the experimental setup and

section 2.3 will deal with the fact that our coil is finite.

This new novel technique is used to determine ρs and Jc or ξ without

any leads or magnetic field. Another advantage of this technique is that it

demands a global phase coherence. Therefore, phase transitions are much

sharper compared to other techniques such as transport measurement or

magnetization measurement of the Meissner Effect.

2.1 Experimental Setup

The coil we used for stiffness measurements near Tc is 60 mm long and its

external diameter is 0.8 mm. It is made of copper wire and has two layers

and 1214 winding in total. For the critical current measurements in low

temperatures, we used a different coil. The coil was also 60 mm long, but

its external diameter was 0.98 mm and had four layers and 2400 winding in

total. It was made of NbTi SC wire, allowing us to reach a current of more

than 10 Amp. The coil goes through the hole of the ring-shaped sample and

20



(a) (b)

Figure 2.1: (a) Ring-shaped sample and a 60 mm long copper coil. (b)
Illustration of the long coil with the ring on it, the Gradiometer and the
External Coil.

the ring is in its center. The pickup loop is actually a Gradiometer combined

of 8 loops and it is static, while the coil and the rings are going up and

down through it. A seconds external coil, is used to cancel external magnetic

fields stronger than 0.001 Oe. The gradiometer is connected to a SQUID

that measures the magnetic flux of both the ring and the coil and because

of the gradiometer’s geometry the output signal of the SQUID has a unique

shape. Explanation on the gradiometer’s signal will be given in App A.1

and explanation on the gradiometer’s signal will be given in Sec 2.2. In

Fig 2.1a, one can see the ring-shaped sample and the 60 mm long copper

coil. Figure 2.1b shows the long excitation coil with the ring on it, the

gradiometer and the external coil.
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During the measurements, the ring is fixed at the center of the coil and

together they move along the z direction (the x-axis in the graph), in and out

of the gradiometer which is fixed at z = 0. When they move, the magnetic

flux through the gradiometer is changing, the SQUID measures the change

and we see it as output voltage. Figure 2.2 presents such measurements of a

LSCO ring above and below Tc. By measuring the coil without the ring or

by measuring above Tc, we are able to get the coil’s signal. By subtracting

the coil’s signal from the combined signal, we get the ring’s signal. The

difference between the maximum and the minimum of the ring’s signal is

called ∆Vring and the difference between the maximum and the minimum

of the coil’s signal is called ∆Vcoil. The measurable parameters ∆Vring and

∆Vcoil are proportional to the magnetic flux generated by the ring and coil

respectively.

2.2 SQUID Magnetometer

Based on the Josephson junction effect (JJE), the superconducting quantum

interference device (SQUID) is commonly used to detect magnetic moment.

We used a S600 SQUID SUSCEPTOMETER of CRYOGENIC LTD. The

SQUID’s output is in voltage and proportional to the magnetic flux through

the gradiometer. The output voltage of our device can be translated to units

of magnetic moment with resolution of 1 · 10−9 Am2.
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Figure 2.2: Stiffness measurements of OPD LSCO ring with current of
1.0 (mAmp). During the measurements, the ring and coil are moving along
the z direction (the x-axis in the graph), in and out of the gradiometer which
is fixed at z = 0. When they move, the magnetic flux through the gradiome-
ter is changing, the SQUID measures the change and we get the output
voltage (y-axis in the graph). The measurements below Tc are in purple and
show the combined signal of the ring (the sample) and the coil. The measure-
ments above Tc are in red and show only the coil’s signal because the ring is
no longer superconducting. By subtracting the coil signal from the combined
signal we get the ring’s signal, shown in green. The difference between the
maximum and the minimum of the ring’s signal is called ∆Vring and the dif-
ference between the maximum and the minimum of the coil’s signal is called
∆Vcoil.
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2.3 Verification

To check this new technique, instead of following the regular ZGFC protocol,

we tried a different protocol. We started by turning on the current in the

coil when the sample was above Tc and only then cooling the sample below

Tc (unlike the usual processes of cooling before turning on the current in the

coil). We call this process Gauge-Field-Cooling (GFC). Below Tc the sample

is superconducting and should react to any magnetic field, but the only signal

we measured after GFC was the coil’s signal. When we turned off the current

in the coil and measured again, the coil signal vanished, but we got the ring’s

signal which was identical to to ring’s signal we got after subtracting the coil’s

signal from the combined signal in the regular ZGFC process. Those results

strongly support our assumption that the difference between our long coil

and an infinite-coil is minor and legitimize our technique.

To explain those results, we need to look back at Eq 1.1. When we follow

the GFC protocol, A 6= 0 when cooling, and the SC will choose ∇ϕ 6= 0

so that J s will be as small as possible (∇ϕ is constrained because for any

closed loop of radios r, ∇ϕ must be equal to: l
r
ϕ̂ where l is an integer) to

minimize the free energy. And when the current is turned off, A = 0 but ϕ

again doesn’t change, and we get J s = ρ̂s
~c
q

∇ϕ 6= 0.

Figure 2.3 shows the results of the GFC experiment. We also checked

whether the GFC protocol will give different results when we change the

temperature, but no difference was found in comparison with the ZGFC

protocol, as can be seen in the inset of Fig 2.3. The GFC protocol was used
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Figure 2.3: Raw signal of Gauge-Field-Cooling (GFC), and Zero-Gauge-
Field-Cooling (ZGFC) measurements after subtracting the coil’s signal. The
inset shows stiffness measurements of the two protocols. Both in the raw
signal and the stiffness measurements, the two different protocols give the
same results.

only for this verification, and ZGFC was used for all the measurements in

this work.

2.4 Stiffnessometer Theory

Before we find the stiffness or the critical current, we need to deal with the

fact that J s is not equally distributed inside the ring and it might reach its

critical value in one place before another. Also, the relevant vector potential

in Eq 1.2 A is the total vector potential with contribution from the vector
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potential produced by the coil Acoil and the vector potential generated by

the ring Aring. Now equation 1.2 looks different:

J s = −ρ̂sAtot = − 1
µ0λ2 (Acoil +Aring). (2.1)

By using Maxwell’s equation: J = 1
µ0

∇ ×∇ × A = − 1
µ0

∇2A (using the

coulomb gauge), we get a partial differential equation (PDE for Aring:

∇2Aring = 1
λ2 (Acoil +Aring). (2.2)

The magnetic flux of the coil through a single pickup loop is: Φcoil =
�
B ·

d a =
u
A · dl = 2πµ0nI and we can write 2.2 as: ∇2Aring = 1

λ2 (Φcoil
2πr ϕ̂ +

Aring) where ϕ̂ is the azimuthal direction. We switch to unit-less parameters

by defining:

r/RPL→r, Aring/Acoil(RPL)→A, λ/rPL→λ, z/RPL→z (2.3)

Using cylindrical coordinates and the symmetry of the system (A = A(r, z)ϕ̂)

we get a unit-less PDE:

∂2A

∂z2 + ∂2A

∂r2 + 1
r

∂A

∂r
− A

r2 = 1
λ2 (A+ 1

r
) (2.4)

where A is a unit-less vector potential in the azimuthal direction (ϕ̂). r

and λ in this equation are also unit-less. We solved this PDE numerically
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with the following boundary conditions (BC): A(r = 0, z) = A(r →∞, z) =

A(r, z → ±∞) = 0, and taking λ to infinity outside of the ring. We used

FreeFem+ + and also confirmed the solution with Comsol 5.3a (calculated

by Nir Gavish).

2.5 Stiffness Measurements

To measure the stiffness, we look at the ratio between the ring’s vector poten-

tial and the coil’s vector potential at the pickup-loop. Those vector potentials

are proportional to the magnetic flux through the pickup-loop created by the

ring or coil and so we can find a relation between the SQUID’s signal and

the vector potential. The ring’s signal will be ∆Vring and the coil signal will

be ∆Vcoil. Both are explained in section 2.1 and presented in Fig 2.2. Since

we use a ring-shaped sample and a gradiometer, there is a geometrical fac-

tor we call “G” that defines the relation between the calculation done for a

single pickup loop and the results of measuring with the gradiometer. G can

be found experimentally (calibration) by comparing between the saturation

value of the numerical calculation for λ → 0 (presented in Fig 2.4) and the

measured saturation at low temperatures, where λ is very small. The rela-

tion is: ∆Vring
∆Vcoil

= G
Aring(rpl)
Acoil(rpl)

. Another way to determine G is by a calculation

shown in App A.1. The proportionality constant between the output voltage

and the vector potential is irrelevant, because we look at the ratios.

Solving the PDE 2.4 for many different λ’s, we can plot the ratio be-

tween the vector potentials of the coil and the ring at r = rpl as func-
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tion of λ as shown in Fig 2.4. We convert the measured ∆Vring/∆Vcoil to

Aring(rpl)/Acoil(rpl) using G, and obtain λ or the stiffness ρs from the graph.

But since for very small λ, or very large λ, the numerical solution saturates,

small changes in ∆Vring/∆Vcoil leads to big changes in λ. So our method is

good only for 0.1 ≤ λ ≤ 3 mm. At low temperatures, λ is too small for our

technique, but close to Tc, λ gets bigger and we can measure it where no

other technique can.

Figure 2.4: Numerical solution of the PDE Eq 2.4 for different λ’s. rpl =
13 mm is the radius of the pickup loop. This numerical solution depends on
the ring’s measures (ID = 1.0 mm,OD = 3.0 mm,H = 1.0 mm).
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(a) (b)

Figure 2.5: (a) The total vector potential as function of r at z = 0 presented
in green. the ring’s and the coil’s vector potential are presented as well
in red and blue. The inset shows a closer look at the inner edge of the
ring. (b) The numerical solution of the unite less PDE Eq 2.4 with BC
A(r = 0, z) = A(r → ∞, z) = A(r, z → ±∞) = 0, in the r − z plan.
The ring’s dimensions are: ID− 1.0 mm, OD− 3.0 mm and height− 1.0 mm.
λ = 300 nm. The colors represent the intensity of the unite less ring’s vector
potential.

2.6 Critical Vector-Potential Measurements

Staying stable at the same temperature, we can increase the current through

the coil until the linear behavior between the current and the signal breaks.

When this happens, the linearity between A and J s breaks and we know

we have reached the critical vector potential Ac which can be interpreted as

critical velocity vc, critical current Jc or coherence length ξ, of the sample.

Figure 2.5b shows the numerical solution of Eq 2.4 in the r − z plan.

In reality, the ring’s dimensions are: Inner Diameter (ID) 1.0 mm, Outer

Diameter (OD) 3.0 mm, and height 1.0 mm. The penetration depth was

taken to be λ = 300 nm (λ is chosen from low energy µsr measurements of
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LSCO at low temperatures [2]). When measuring the critical current at low

temperatures, we must take λ from outer source because at low temperatures

our stiffnessometer is not accurate enough. The colors represent the intensity

of the unit-less ring’s vector potential. In Figure 2.5a we see the total vector

potential inside the ring where Acoil = µ0
In
r
ϕ̂ and Aring = A · Acoil(Rpl)ϕ̂

where A comes from the numerical solution and Acoil(Rpl) is the coil’s vector

potential at the radios of the pickup-loop. The inset of Fig 2.5a shows Atot

near the inner radius of the ring where it is the most intense. It should be

pointed out, that the coil we actually use is finite and the relation Acoil =
µ0In
r
ϕ̂ is an approximation. We will deal with this finite-coil-issue in section

2.3.

To calculate the critical velocity, we can look at the right part of Eq 1.7

and get:

vc = e∗Actot(Rin)
m∗c

. (2.5)

where Actot(Rin) is the critical Atot in the inner radius of the ring. This is

called the PDE solution method. From Eq 1.14 ξ = ~√
3m∗vc

we find ξ and

also from Eq 1.15 Jc = mec2

6πeλ2vc we find Jc. But, there is a problem with this

technique. Due to the exponential behavior of the total vector potential at

inner radius of the ring (as can be seen in the inset of Fig 2.5a), small errors

in Rin leads to big errors in ξ. So we must think of something else.

The approximated method is based on the fact that when looking at the

inset of Fig 2.5a it is clear that the vector potential and so the currents,
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exist only on the inner radius of the ring. We can think of another much

simpler way to calculate Jc. It is done by thinking about the super currents

density of the ring as if they run inside a cylinder surrounding the inner

coil and canceling its magnetic field. Imagine Ampere’s loop as a square

with one limp of length l along the z-axis in the center of the ring and the

coil where the ring’s field and the coil’s field cancels each other and another

limp of length l inside the ring (and out side of the coil) were the magnetic

field is also zero. The two other limps will be perpendicular to the z-axis.

Now, we can use Ampere’s law:
�
B · dl = µ0Ienclosed. The left side will be

�
B = l · (Bcoil−Bring) = 0 and the right side µ0Ienclosed = µ0l(nIcoil− Iring).

We will take the current density to be Js(r) = Jce
−(r−rin)/λ and then Iring =

� rout
rin

Js(r) · dr = Jcλ(1− e−(rout−rin)/λ) ≈ Jcλ. Thus

Jc = nIc/λ.

31



32



3 Results

3.1 Stiffness Measurements Results

Figure 2.5a presents stiffness measurements of a and c rings of LSCO x =

17 % as function of the temperature for different currents. All other data

sets are given in appendix A.2. As can be seen, the a-ring transition start

at different temperature, but ends at the same temperature for all currents.

The c-ring start and finish the transition at the same temperatures for all

currents. It is clear that the two rings have two different critical temper-

atures although they are made from the same single crystal. This critical

temperature difference is what we call ∆Tc, and Tc is define as the temper-

ature where the stiffness is zero (this point is the same for all currents of

both rings). We repeat these measurements for different crystals of different

doping to examine the variations of ∆Tc with doping. We also did critical

current measurements for each ring as close as we could to Tc, which can be

seen in the inset of Fig 2.5a. Those measurements were done at fixed tem-

peratures, marked with black arrows pointing on the transition at the main

graph. The critical current from those measurements is about 1.0 mAmp.

It was a difficult measurement to preform, because close to Tc, any small

instability of the temperature could have influenced the measurements.

In Fig 2.5b one can see magnetization measurements of the two rings.

Each ring was measured in two different orientations, one time “standing”

with the symmetry axis of the ring perpendicular to the magnetic field (the
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magnetic field is parallel with the rings plane) and one time “laying”, with

the symmetry axis of the ring parallel to the magnetic field (the magnetic

field is perpendicular with the rings plane).

When a ring is standing, the field doesn’t go through the hole, and both

rings have similar phase transition in this position. But, the standing a-ring

mid-transition is at a slightly higher temperature. This happens because

when the a-ring is standing the copper-oxide planes are perpendicular to

the magnetic field and for the standing c-ring the copper-oxide planes are

now parallel with the magnetic field. When a ring is laying, the magnetic

field goes through the hole and the measured moment corresponds to both

the change of flux through the hole and the expulsion of the field from the

SC bulk (due to the Meissner effect). The expulsion from the bulk can be

microscopic or macroscopic phenomena, but the reaction to the change of flux

through the hole must be macroscopic. We suspect that this is the reason

why the laying a-ring transition has two parts. But, we don’t see any sign of

such behavior with the laying c-ring. This two-parts transition was observed

in the magnetization measurements of all laying a-rings, but in none of the

c-rings. It is possible that vertices can move easily between the CuO2 planes

and because the laying a-ring have weak parts where vortices can move in or

out from the hole of the ring without crossing the planes, we see the two-part

transition.

The mid-transition of the laying c-ring is closer in temperature to the

standing a-ring’s mid-transition because, in both of those cases the copper-
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Figure 3.1: Stiffness measurements of a and c rings of LSCO x = 17 % as
function of the temperature for different currents. The full marks belong
to the c-ring and the hollow marks belong to the a-ring. The x-axis is the
temperature in K, and the y-axis is the normalized ∆Vring which equals to
∆Vring/∆Vcoil. The inset shows critical-current measurements at the tran-
sition temperature for both rings with the c-ring’s measurements in purple
and the a-ring’s in blue. The critical measurements were done at fixed tem-
peratures close to Tc, and marked with black arrows on the main graph.

oxide planes are perpendicular with the magnetic field. In the stiffnessometer,

we only see the macroscopic phenomena and the difference in Tc are much

more clear. This magnetization measurement also assures us that the Tc

difference we see in the stiffness measurements are not the artifact of some

en-homogeneous doping of the single crystal we used to cut our rings from.
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Figure 3.2: Normalized magnetic moment measurements of a and c rings of
LSCO x = 17 % for different temperature with field of H ≈ 2.0 Oe. There
are two measurements for each ring: one with the magnetic field parallel to
the ring and the other with perpendicular field. The inset is a zoom-in on
the transition.
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3.2 Critical Current Measurements Results

In Fig 3.3 one can see two sets of measurements of two different rings made

from the same crystal of LSCO with doping of 22 % which is in the OVD

regime. Both measurements were done with the same SC excitation coil with

4 winding layers (2400 windings in total) at 1.7 K well below the Tc of the

samples. The rings parameters were: ID-1.0 mm, OD-3.0 mm and height-

1.0 mm. One sample is a c-ring (current flow in the CuO2 planes) and the

other sample is an a-ring (current flow in and between the CuO2 planes).

The a-ring breaks from linearity at about 6 Amp while the c-ring’s signal

stays linear all the way up to 10 Amp.
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Figure 3.3: Critical-Current measurements of a and c rings from the same
OVD LSCO single crystal x = 22 %. The temperature during the measure-
ment was 1.7 K and the coil was a superconducting coil with four layers of
winding (2400 windings in total). The y-axis is ∆Vringand the x-axis is the
current in the coil.
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4 Data Analysis and Discussion

The two main results of this thesis are: I) ξ measurements of LSCO SC at

T → 0. II) The construction of a phase diagram of the critical temperature

difference between in-plane and out-of plane stiffness as function of hole

doping x.

4.1 Penetration Depth λ

When stiffness measurements are done for c-ring we can translate them to

the out-of-plane penetration depth λab following the steps explained in 2.5.

From measurements of the a-ring, we can only extract an effective penetration

depth λeff because the PDE is for azimuthal-symmetric system unlike the

a-ring. Figure 4.1 show λab and λeff for x = 17 % LSCO. The red arrows

mark the temperature where critical current measurements were done.

4.2 Stiffness Behavior near Tc

Figure 4.2 presents λ−2 (proportional to ρ̂s) as function of temperature for

four different doping. The red lines are guide-to-the-eye, marking the trend

of the stiffness. At x = 12.5 %, the lines diverge when the temperature is

increased, at x = 15 % they look like they are perpendicular and for x =

17 % the lines converge. At 20 % the lines also converge with increasing

temperature but not as fast as the 17 %. This dome like behavior of the

stiffness trend with doping is noticeable also with Tc and ∆Tc (but the Tc
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Figure 4.1: Penetration depth λab (full marks) and effective penetration
depth λeffective (hollow marks) for LSCO x = 17 % as function of temperature
calculated from stiffness measurements with different currents in the coil
(different colors), and a numerical solution of the PDE. The red arrows mark
the temperature at which the critical current measurements where done.

maximum is at 15 % and not 17 %). If we extrapolate the red lines (linearly)

to see at what temperature they meet for each doping, we see that at 15 %,

the lines meet only above 45 K (above the highest possible Tc for LSCO), at

17 % they meet at v 38 K and at 20 % at v 33 K, and the x = 12.5 % aren’t

going to meet at all.
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Figure 4.2: Logarithmic plot of λ−2 as function of temperature for a and
c rings of LSCO 17 % calculated from stiffness measurements with different
currents in the coil (different colors), and a numerical solution of the PDE.
Full marks are used for the c-ring and hollow marks for the a-ring. The red
lines are guide-to-the-eye marking the trend of the stiffness.

4.3 LSCO Phase Diagram of ∆Tc and Doping

Figure 4.3 shows the critical temperature of both a and c-rings and ∆Tc for

LSCO of different doping. As can be seen, ∆Tc is always positive except for

the 11 %. In the far OVD and far UND regimes ∆Tc goes up, but between

11 % and 20 % a dome-like structure is formed.

Our findings from stiffness measurements of a-type and c-type LSCO rings

shows a clear an-isotropic behavior. The fact that the c-ring have higher

Tc than the a-ring of the same doping for all doping except for the x =

11 %, matches our assumption that SC is stronger within the copper-oxide
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Figure 4.3: LSCO phase diagram. Red spheres mark ∆Tc (the left y-axis)
as function of Sr doping (the x-axis). Blue and purple marks belong to Tc
(the right y-axis) of a and c rings respectively also as function of Sr doping
(the x-axis).

planes. The magnetic moment measurements denies doping in-homogeneity

as the cause for ∆Tc. The critical current measurements near the transition

indicate how far our stiffness analysis is valid with certainty. The the fact that

when we increase the current, the transition ends at the same temperature

indicates a lack of current dependence of the critical temperature. The dome

like behavior of ∆Tc was an interesting discovery and the sharp decrease

around the critical doping x = 19 % rise questions about the relation between

anisotropy and the quantum critical point.

42



4.4 Coherence Length

The different behavior in Fig 3.3 between the two samples imply that super-

conductivity is much “stronger” in-plane than out-of-plane. The a-ring is not

rotationaly symmetric, so our assumptions and the solution of the PDE 2.4 is

not valid in this case and we cannot extract vc or the between-plane coherence

length ξc from this measurement (yet). The c-ring is rotationaly symmetric

and although we did not reach the break point, we now know it must be

above 10 Amp. So, the critical velocity must be bigger than the velocity at

10 Amp and the in-plane coherence length ξab must be smaller than we would

calculate for this velocity. We can set a lower limit on the critical velocity

and an upper limit on the coherence length. For OVD LSCO x = 22 % at

1.7 K and taking λ to be 300 nm (λ is chosen based on low energy µsr mea-

surements of LSCO at low temperatures [2]) and using the PDE solution

method, we see that vc is bigger than 8.35 · 103 m/s and ξab is smaller than

4 nm. Jc will be bigger than 2.8 · 107 Amp/cm2.

Using the approximated method for Icoil = 10 Amp, n = 400 cm−1 and

λ = 3 · 10−5 cm, we get: Jc > 1.3 · 108 Amp/cm2. Then, by using Eq 1.16 and

Eq 1.14 we see that vc > 3.88 · 104 m/s and ξ < 0.86 nm. This ξ is on the

order of one unit cell (∼ 3.78Å). The results of the approximated method

are different by factor of 5 from the PDE solution method.

We can compere our results with Fermi velocity calculated from the dis-

persion relation of the nodal-direction: vf ≈ 2 eVÅ
~ ≈ 3 · 105 m/s (taken

from [10]). Our lower limits on the critical velocity are much smaller than
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Fermi velocity.

Let’s compere our results to the BCS prediction for the depairing-velocity

and SC gap energy of ∆ ∼ 10 meV (from measurements of OVD LSCO

x = 21 % by [11] using STM). vBCSd = ∆
~kf
≈ 1.8 · 103 m/s where kf is the

Fermi wave vector and in our case, kf = π
a
≈ 8.3 · 109m−1. This vBCSd is

smaller than our lower limit of both methods.

Although the technique is not (yet) perfect, we get good results of the

same order of magnitude from both options and the main principle of the

Stiffnessometer works. The early break from linearity of the a-ring compared

with the c-ring is exactly what we expected and shows the potential of this

method. A more conventional way of measuring ξ is by measuring the second

critical field Hc2 and use the relation ξ =
√

Φ0/2πHc2. For ξ = 2 nm, one

needs to reach fields of about 100 T. We intend to reach the same results at

equilibrium and with less effort.
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5 Concluding Remarks

In this work we presented the Stiffnessometer and the way it can be used

to measure the stiffness near Tc and extract λ, or measuring the critical

vector potential and extract the critical velocity and ξ. The critical current

measurements of the OVD LSCO x = 22 % showed an-isotropic behavior

when the a-ring broke from the linear dependence at 6 Amp, while the c-ring

stayed linear up to 10 Amp. We proposed two ways to extract the critical

velocity and ξ. Both gave results of the same order of magnitude and by

comparing to Fermi velocity our critical velocity limits were more than order

of magnitude smaller. The BCS depairing velocity calculated for ∆ ∼ 10 meV

was smaller than the lower limit of both methods. In the future we intend to

increase the total vector potential and improve our data analyses to manage

precise ξ measurements at low temperatures for all doping.

The stiffness measurements near Tc revealed a dome-like behavior of ∆Tc,

starting at x = 11 % near the 1/8 doping and ended at x = 20 % close to the

quantum critical point. The maximum ∆Tc is 2.9 K at x = 17 % near the

OPD. Those findings rises questions abut possible relations between this an-

isotropic dependence of ∆Tc to other phenomena such as the opening of the

pseudogap or the phase transition between strange metal and Fermi liquid.
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A Appendix

A.1 Gradiometer

The SQUID signal is proportional to the total magnetic flux that goes through

the gradiometer which is the sum of the flux through each one of the eight

pickup loops of the gradiometer. Those loops are arranged so that four loops

are in the center of the gradiometer with the same orientation, and the other

four loops are split into two pairs. One pair is set 7 mm above the center of

the gradiometer and the other pair is 7 mm below. The four external loops

(the two pairs) have different orientation then the four loops in the center.

The total flux will be: Φtot = −2Φ(z − 7) + 4Φ(z) − 2Φ(z + 7), where z

is the location of the sample relative to the center of the gradiometer (the

flux Φ depends on the distance between the sample and the loop). In some

way Φtot reminds a second derivative of the total magnetic flux in the center

of the gradiometer. When measuring the ring, the magnetic flux depends

on the vector potential of the ring which depends on its distance from the

loop’s center (z) as: Aring(z) = 2πmr2
pl/(r2

pl + z2) 3
2 , where m is the ring’s

magnetic moment. The ratio between vector potential on a gradiometer

and vector potential on a single pickup loop at z = 0 is: Agradiometerring (z)
Apickup−loop
ring (z=0)

=
−2r3

pl

(r2
pl

+(z+7)2)
3
2

+ +4r3
pl

(r2
pl

+z2)
3
2

+ −2r3
pl

(r2
pl

+(z−7)2)
3
2
. The difference between the maximum

and minimum of this function is: ∆Agradiometerring

Apickup−loop
ring (z=0)

= 1.7. Doing the same pro-

cess for our finite 60 mm long coil we get ∆Agradiometer
coil

Apickup−loop
coil

(z=0)
= 0.47. The Voltage

output is proportional to the sum of the flux through all eight pickup loops:

47



Voutput(z) = K · Σall−pl
�
B(z − zpl) · da = K · Σall−pl

�
A(z − zpl) · dl = K ·

2πrplAgradiometer(rpl, z) where K is some constant (Voutput = K ·Φpickup−loop).

We expect that: ∆Vring
∆Vcoil

= 3.62A
pickup−loop
ring (z=0)

Apickup−loop
coil

(z=0)
. We can compere this result to

the experimental way of getting G explained in Sec 2.5. The saturation value

of ∆Vring
∆Vcoil

for low temperatures in Fig. 3.1 for the c-ring of LSCO 17 % is about

0.37 and for big λ we get Apickup−loop
ring

Apickup−loop
coil

= −0.105 from the numerical solution

of the PDE for the ring we measured (ID = 1.0 mm,OD = 2.48 mm,hight =

1.0 mm) . The experimental G we get is: 0.37/0.105 h 3.52 not so far from

our calculation of G. For the calculation of λ we used the experimental G

which is different for each ring depending on its geometry.

A.2 Stiffness Measurements for Different Doping

We did several stiffness measurements of a and c rings of different doping from

9 % to 22 %. In all those measurements, we cooled the system to 5 K withA =

0 (ZGFC protocol), turned on the current in the excitation coil and measured

the magnetization at different temperatures. All those measurements are

presented in the following figures: (Fig A.1, and Fig A.2).
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(a) x=9.0% (b) x=11.0%

(c) x=12.0% (d) x=12.5%

Figure A.1: Stiffness Measurements for Different Doping (UND)
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(a) x=15.0% (b) x=17.0%

(c) x=20.0% (d) x=22.0%

Figure A.2: Stiffness Measurements for Different Doping (OVD)
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דיאגרמת ליצירת ביחד ריכזנו הקשיחות מדידות כל של התוצאות את

הקריטית הטמפרטורה בין ההפרש את המציגה LSCO עבור חדשה פאזות

עבור ,aטבעת־ עבור שנמדדה הקריטית לטמפרטורה cטבעת־ עבור שנמדדה

.∆Tc קוראים אני הקריטיות הטמפרטורות בין להפרש שונות. אילוח רמות

הינו ∆Tc (שבה אחת מלבת שמדדנו השונות האילוח רמות כל עבור כי מצאנו

בין .aטבעת־ של מזו גדולה תמיד cטבעת־ של הקריטית הטמפרטורות אפסי),

המזכירה התנהגות לזהות אפשר 20 % של אילוח לרמת 11 % של אילוח רמת

הטמפרטורות בין ביותר הגדול ההפרש האילוח. ברמת כתלות ∆Tc של כיפה

האילוח לרמת קרוב ,17 % של אילוח רמת עבור והתקבל K4.3 הינו הקריטיות

נקודה בקרבת לעלות מתחילה הכיפה .(x = 15 %) LSCO של האופטימלית

נקודה בקרבת ויורדת (1/8 (אילוח 12.5 % של אילוח ברמת קריטית קוונטית

כתלות ∆Tc של זו התנהגות .19 % של אילוח ברמת אחרת קריטית קוונטית

בין קשר על להצביע יכולה הקריטיות הקוונטיות הנקודות בסביבת באילוח

של פאזה בין המעבר כמו אחרות תופעות לבין המערכת של האנאיזוטרופיות

לפתיחה או (strange metal) מתכת־מוזרה של לפאזה (Fermi liquid) נוזל־פרמי

.(pseudogap) ה"פסודוגאפ" של

הפוטנציאל את לסחוף ניתן העירור בסליל שעובר הזרם הגברת על־ידי

למדוד ניתן כך נשבר. Jsו־ A בין הליניארי שהקשר עד המגנטי הוקטורי

שמחוץ תנאים ללא מגעים, בהכנת צורך ללא הקריטית הזרם צפיפות את

הקריטית הזרם צפיפות מדידת זרם. מערבולות ובהיעדר טרמי משקל לשיווי

עירור בסליל השתמשנו .ξ הקוהרנטיות אורך על עליון לחסם גם מיתרגמת

LSCO של cו־ a טבעת עבור אלו מדידות לבצע כדי NbTi עשוי על־מוליך

לספר יוכל הניסוי מערך של נוסף שיפור .ξ ≤ 4 nmש־ ומצאנו אילוח־יתר עם

.ξ על יותר הדוק חסם

ii



תקציר

המגנטי הוקטורי הפוטנציאל שבין היחס את מביעה ρ̂s העל־מוליכה הקשיחות

Js = לונדון משוואת לפי מוליך־על בתוך Js העל־מוליכה הזרם וצפיפות A

להתפתח. הזרם צפיפות יכולה עליו לגודל מדד הינו הקוהרנטיות אורך .ρ̂sA

הנקראת הקוהרנטיות ואורך העל־מוליכה הקשיחות למדידת חדשה טכניקה

מתבצעת המדידה שלנו. המחקר בקבוצת פותחה (Stiffnessometer) "קשיחומטר"

על־ דגם דרך העובר וארוך דק סליל־עירור דרך חשמלי זרם הזרמת על־ידי

.A רוטור חסר מגנטי וקטורי פוטנציאל בתוכו ומשרה טבעת בצורת מוליך

מומנט היוצרים על־מוליכים זרמים בטבעת מתעוררים לונדון משוואת לפי

התאבכות (מכשיר סקוויד מגנטומטר באמצעות למדוד ניתן אותו מגנטי

של מסיבוכים סובלת אינה החדשה השיטה .(SQUID מוליך־על, קוונטית

.(Vortices) זרם מערבולות של מקיומם או דימגנטיזציה גורם

ממשפחת (La2−xSrxCuO4) LSCO של דגמים נמדדו זו שיטה באמצעות

צירים שני ובעלת תיבתית הינה LSCO של הגבישית הצורה הקופרטים.

וציר CuO2 וחמצן נחושת של למישורים המקבילים ,(bוציר־ aציר־) סימטריים

העל־ הקשיחות זה, ממבנה כתוצאה אלו. למישורים הניצב (cציר־) נוסף

לפוטנציאל הדגם של שונה לתגובה לצפות וניתן אנאיזוטרופית הינה מוליכה

למישורים. הניצב מגנטי וקטורי פוטנציאל לעומת למישורים מקביל מגנטי וקטורי

לגמרי נעלמת ולבסוף נחלשת המגנטית הקריאה הדגם, את מחממים כאשר

שתי על נעשו קשיחות מדידות .Tc הקריטית לטמפרטורה מגיעים כאשר

CuO2ה־ משורי הטבעות באחת כאשר ,12.5 % של אילוח עם LSCO טבעות

מקבילים המישורים ובשנייה (cטבעת־) הטבעת של הסימטריה לציר ניצבים

מעבר כי נראה, אילו מדידות מתוך .(aטבעת־) הטבעת של הסימטריה לציר

של המעבר לעומת 0.7 Kב־ הגבוהה בטמפרטורה מתרחש cטבעת־ של הפאזה

LSCO עשויות cו־ a טבעות של קשיחות מדידות יוצגו זו בעבודה .aטבעת־

תלויה Tc של האניזוטרופיה איך להבין על־מנת שונים אילוח אחוזי עבור

באילוח.
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