

The Stiffnessometer: a magnetic-field-free superconducting stiffness meter and the nature of the phase transition in LSCO

Itzik Kapon, Zaher Salman, Nir Gavish and Amit Keren

Technion, Haifa, Israel Paul Scherrer Institute, PSI, Villigen, Switzerland

Introduction

London's Eq. $\mathbf{J}_s = -\rho_s \mathbf{A}$

$$ho_s$$
 is the stiffness

 ∇ ×Ampere's Law

Solution

 $\nabla \times \nabla \times \mathbf{B} = \mu_o \nabla \times \mathbf{J} = -\mu_o \rho_s \nabla \times \mathbf{A} = -\mu_o \rho_s \mathbf{B}$ $\nabla^2 \mathbf{B} = \frac{1}{\lambda^2} \mathbf{B} \xrightarrow{1D} B(x) = B_0 e^{-\frac{x}{\lambda}}$

 λ is the **penetration depth**

One usually measures λ by applying a magnetic field. We want to measure ρ_s directly.

The Stiffnessometer

- Use infinitely long coil in the center of a superconducting ring to generate A with B=0.
- A creates J.
- J creates magnetic moment *m*.
- We measure *m* by moving the ring inside a pickup loop.

Experimental setup

60mm coil 2 layers, 9300 turns, 10μm wire, 0.25mm outer diameter.

LSCO Ring 2mm inner hole diameter 5mm outer diameter 1mm height.

Expected vs. measured Stiffnessometer signal

• ΔV_{coil} is the signal from the coil. ΔV_{ring} is the addition due to the ring.

Extracting the stiffness

The important quantity is:

$$\frac{\Delta V_{ring}}{\Delta V_{coil}} = G \frac{A_{ring}(R_{PL})}{A_{coil}(R_{PL})}$$

 R_{PL} is the radius of the pickup loop.

 $G \sim 1$ is the Gradiometer numerical constant.

So we need to calculate $A_{ring}(\lambda)$ and invert it.

Estimating the stiffness (λ^{-2}) near Tc

Close to T_c , when ρ_s is small, the A generated by the ring itself compared to A from the coil is negligible.

$$I_{Ring} = \rho_s A_{Coil} h \cdot \delta r$$
$$m = \pi r^2 I_{Ring}$$

$$A_{ring}(R_{PL}) = \frac{m}{R_{PL}^2}$$

$$\frac{\Delta V_{ring}}{\Delta V_{coil}} = G \frac{A_{ring}(R_{PL})}{A_{coil}(R_{PL})} = G \frac{r \cdot h \cdot \delta r}{4R} \frac{1}{\lambda^2}$$

r is the ring radius.

h = height and $\delta r =$ width

m = magnetic moment of the ring.

 R_{PL} is the pickup coil radius.

 $\Delta V_{\text{ring}} / \Delta V_{\text{coil}} \sim 0.01$, r, h, δr , $R_{PL} \sim 1$ mm.

<u>λ ~ 1mm</u>

La_{2-x}Sr_xCuO₄ (LSCO) Compound

- Cuprates family
- Max Tc ~ 38 K
- One CuO₂ plane/unit cell
- Layered structure with "spacer layers" which control the carrier concentration

LSCO Compound

La₂CuO₄ has 1 electron per unit cell
 → spin ¹/₂.

O atom

Cu atom

hole

- Antiferromagnet Mott insulator
- $La^{3+} \rightarrow Sr^{2+}$: $La_{2-x}Sr_xCuO_4$ hole doping

B. Keimer, Nature 518, 179 (2015)

Single crystal growth

• Travelling Solvent Floating Zone (TSFZ)

Temperature dependence – LSCO x=0.125

Two transitions in LSCO x=0.125

- Stiffness develops before current can flow in the c direction.
- No current dependence below 2mA.

Intermediate conclusions

• We present a new technique to measure small stiffness, or large λ on the order of millimeters, without applying magnetic field.

• We find two superconducting phase transitions in LSCO 1/8.

Is our signal for real?

• Compare two Nb rings: one is closed and the other is disconnected (open).

• We use the open ring to determine the leakage of magnetic field, and use external coil to cancel it.

Extracting the stiffness

Maxwell: $\nabla \times \nabla \times \mathbf{A}_{ring} = -\mu_0 \mathbf{J}(\mathbf{r})$ **London:** $\mathbf{J}(\mathbf{r}) = -\rho_s \mathbf{A}_{tot} = -\frac{1}{\mu_o \lambda^2} (\mathbf{A}_{coil} + \mathbf{A}_{ring})$

Combining the two equations, the built-in Coulomb gauge, and

Stiffness of LSCO x=0.125

symmetry axis

Fitting the data of LSCO x=0.125 at T=30.08K yields:

 $\lambda = 1.05 \pm 0.05 \ mm$

Numerical solution of the PDE

Effective penetration depth for A-ring

Use the isotropic PDE solution for the anisotropic case and extract an effective penetration depth λ_{eff} .

Next we want to determine λ_c .

Extracting λ_c

Maxwell: $\nabla \times \nabla \times \mathbf{A}_{ring} = -\mu_0 \mathbf{J}(\mathbf{r})$ London: $\mathbf{J}(\mathbf{r}) = -\overline{\rho}_s \mathbf{A}_{tot} = -\overline{\rho}_s \left(\mathbf{A}_{coil} + \mathbf{A}_{ring}\right)$ with $\overline{\rho}_s = \begin{bmatrix} \lambda_{ab}^{-2} & 0 & 0\\ 0 & \lambda_{ab}^{-2} & 0\\ 0 & 0 & \lambda_c^{-2} \end{bmatrix}$ and using $\mathbf{A}_{coil} = \frac{Ba}{2\pi r} \hat{\mathbf{\theta}}$. Maxwell dictates $\nabla \cdot \left[\overline{\rho}_s \left(\mathbf{A}_{coil} + \mathbf{A}_{ring}\right)\right] = 0$ only inside the ring.

We chose $\nabla \cdot \mathbf{A}_{ring} = 0$ outside the ring without justification and solve

$\nabla \times \nabla \times \mathbf{A} = \overline{\rho}_s$	$\left(\frac{1}{r}\hat{\boldsymbol{\theta}} + \mathbf{A}\right)$
--	--

Jump conditions:

$$\mathbf{J}_{\perp} = \left[\overline{\rho}_{s} \left(\mathbf{A}_{coil} + \mathbf{A}_{ring} \right) \right]_{\perp} = 0, \ \Delta \mathbf{A}_{\parallel} = 0$$
$$A(r \to \infty, z) = A(r, z \to \pm \infty) = 0$$

Boundary conditions

Numerical solution of the anisotropic PDE

 $\lambda_c = 145 \ \mu m$ and $\lambda_{ab} = 13.9 \ \mu m$

y

Х

 $\lambda_c = 145 \ \mu m$ and $\lambda_{ab} = 13.9 \ \mu m$

Current flows mainly on the inner radius of the ring

Vector potential anisotropic ring

The problem

When we have signal from the a-ring, the c-ring is in saturation. To find λ_c we need to find λ_{ab} at low *T* by some other technique.

Muon Spin Rotation (µSR)

Animation by Omri Keren

Low Energy Muon Spin Rotation (LE-µSR)

Animation by Omri Keren

Sample and stopping profile

Raw data and analysis

Time (µsec)

 $A(E,t) = A_0 e^{-t/u} \int_0^\infty p(E,x) \cos\left(\gamma B_0 e^{-x/\lambda} t\right) dx$

•

LE- μ SR, sensitive to $\lambda < 10 \mu m$, 10^{1} 9 9 cannot detect two transitions. 9 e 10^{0} 10^{-1} $\lambda^{-2} (\mu m^{-2})$ 10^{-2} $\lambda_{ab}^{LE\text{-}\mu SR}$ 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 15 20 25 30 10 Temperature (K)

•

LE- μ SR, sensitive to $\lambda < 10 \mu m$, 10^{1} 9 9 cannot detect two transitions. 9 10^{0} 10^{-1} $\lambda^{-2} (\mu m^{-2})$ 10^{-2} $\lambda_{ab}^{LE\text{-}\mu SR}$ 10^{-3} λ^s_{ab} Ŏ 10^{-4} 8 10^{-5} 10^{-6} 10^{-7} 15 20 25 30 10 Temperature (K)

- LE- μ SR, sensitive to $\lambda < 10\mu m$, cannot detect two transitions.
- λ_{ab} and λ_{eff} start at different Tc.

d=1.3nm

d=10nm

30

25

Temperature (K)

LE- μ SR, sensitive to $\lambda < 10 \mu m$, 10^{1} cannot detect two transitions. 10^{0} • λ_{ab} and λ_{eff} start at different Tc. 10^{-1} • $\lambda_{ab}^{-2} = C_0 \exp[C_1 / (1 + C_3 (1 - T / T_c)^{\delta})] \stackrel{\text{eq}}{\underbrace{\exists}} \frac{10^{-2}}{10^{-3}}$ $\lambda_{ab}^{LE-\mu SR}$ λ^{-2} $\lambda^{-2} (\mu m^{-2})$ Berezinskii-Kosterlitz-Thouless 10^{-4} transition $\lambda_{ab}^{-2} = \frac{8\pi\mu_0k_B}{d\Phi_0^2}T_{BKT}$ requires 10^{-5} \oplus $d \sim 10$ unit cells. 10^{-6} **KTB** lines 29.0 29.2 29.4 29.6 29.8 30.0 10^{-7} Finite size effects are not 15 20 10 responsible for the two T_c .

Other indication for two transitions

• We cut LSCO needles with the symmetry axis perpendicular or parallel to the CuO_2 planes.

• We measure the magnetization of the needles with H parallel to the symmetry axis.

Stiffness vs. magnetization LSCO x=0.12

Magnetic response also develops before current can flow in the c direction.

New phase diagram

- The T_c difference is strongest at the 1/8 doping.
- The 1/8 anomaly is absent from c-needles.
- The 1/8 anomaly represents difficulty of current to flow in the c direction.
- Resistance T_c measurements agree with the low magnetization T_c .

Current dependence near T_c

- The voltage due to the ring increases linearly.
- The stiffness is A independent up to some critical A (some critical current).

Critical A at $T \rightarrow T_c$

Now we have to be more careful

$$\nabla \times \nabla \times \mathbf{A}_{ring} = \frac{1}{\lambda^2} \left(\mathbf{A}_{coil} + \mathbf{A}_{ring} + \nabla \varphi \right)$$
$$\nabla \varphi = \frac{n}{r}, \text{ ϕ is the phase of the order parameter.}$$

Up to a critical A_{tot} , n=0 since we cool first. Once we cross the critical A_{tot} , n changes so that $A_{coil}+n/r=constant/r$.

At the critical current vortices cross the sample.

 $J_c \sim 1 \text{ Acm}^{-2}$

Conclusions

• Studying superconducting properties with the stiffnessometer leads to new results.

• Most intriguing result is two stiffness transition temperatures in the same sample.

Thank you!

Finite coil vector potential

Sample roughness is tens of nanometers

