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Abstract

This thesis consists of two parts. In the first one, we present a new method we have

developed to measure the superconducting stiffness tensor ρs, critical current den-

sity J c, and coherence length ξ without subjecting the sample to magnetic field or

attaching leads. The method is based on the London equation J = −ρsA, where

J is the current density and A is the vector potential. Using rotor free A and

measuring J via the magnetic moment of superconducting rings, we extract ρs at

T → Tc. By increasing A until the London equation does not hold anymore we de-

termine J c and ξ. The technique, named Stiffnessometer, is sensitive to very small

stiffness, which translates to penetration depth on the order of a few millimeters.

Naturally, the method does not suffer from demagnetization factor complications,

the presence of vortices, or out-of-equilibrium conditions. Therefore, the absolute

values of the different parameters can be determined.

We apply this method to two different La2−xSrxCuO4 (LSCO) rings: one with the

current running only in the CuO2 planes, and another where the current must cross

between them. We find different transition temperatures for the two rings, namely,

there is a temperature range with two dimensional stiffness. The Stiffnessometer

results are accompanied by Low Energy µSR measurements on the same sample

to determine the stiffness anisotropy at T < Tc.

In the second part of the thesis, we investigated whether the spin or charge de-

grees of freedom were responsible for the nodal gap in underdoped cuprates by

performing inelastic neutron scattering and x-ray diffraction measurements on

LSCO x=0.0192. We found that fluctuating incommensurate spin-density-wave

(SDW) with a bottom part of an hourglass dispersion exists even in this magnetic

sample. The strongest component of these fluctuations diminishes at the same

temperature where the nodal gap opens. X-ray scattering data from the same

crystal show no signature of charge-density-wave (CDW). Therefore, we suggest

that the nodal gap in the electronic band of this cuprate opens due to fluctuating

SDW with no contribution from CDW.



Abbreviations

SC Superconductivity

2D Two Dimensional

AF Anti-Ferromagnetism

HTSC High Tc Superconductors

TSFZ Traveling Solvent Floating Zone

LSCO La2−xSrxCuO4
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SQUID Superconducting Quantum Interference Device
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Symbols

Tc Superconducting critical temperature

Hc1 First superconducting critical field

Hc2 Second superconducting critical field

ρs Superfluid density

x Strontium doping level of La2−xSrxCuO4

∆ The superconducting gap

T Temperature

M Magnetization

D Demagnetization factor

J Electric current density

A Magnetic vector potential

H External magnetic field

B Total magnetic field

χ Magnetic susceptibility

χm Measured susceptibility

χ0 Intrinsic susceptibility

H⊥ Magnetic field applied perpendicular to the planes

H‖ Magnetic field applied parallel to the planes

λ London penetration depth

ρab In-plane resistivity

ρc Resistivity along the c- axis

q Neutron Momentum Transfer
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Chapter 1

Introduction

The existence of two dimensional (2D) superconductivity (SC) in the CuO2 planes

of the cuprates has been demonstrated by either isolated CuO2 sheets [1, 2], or

in bulk, in zero magnetic field [3] or by applying one perpendicular to these

planes [4, 5]. In the vicinity of charge stripes formation, the layers are so well

decoupled [6] that, in fact, two transition temperatures have been found by resis-

tivity [7] and magnetization in needle shaped samples [8], where the demagnetiza-

tion factor tends to zero, and the measured susceptibility equals the intrinsic one.

The magnetization measurements were done in both c-needles, where the CuO2

planes are perpendicular to the field direction, and a-needles where the planes are

parallel to the field. An updated phase diagram showing the magnetization crit-

ical temperature in c-needles T cM and a-needles T aM is presented in Fig. 1.1. The

resistivity critical temperature T cρ of the same samples agrees with T aM . The inset

shows an example of such magnetization measurement for La2−xSrxCuO4 (LSCO)

with x = 0.12.

However, zero resistivity and diamagnetism do not require bulk superconductiv-

ity and can occur due to superconducting islands or filaments. It is not clear

whether the observed in-plane superconductivity is a macroscopic phenomenon and

5
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if the sample supports global 2D stiffness as expected from Kosterlitz-Thouless-

Berezinski (KTB) theory [9–11]. If it does, there should be a temperature (and

doping) range where the intra-plane stiffness ρabs ≡ 1/λ2
ab is finite, while the inter-

plane stiffness ρcs ≡ 1/λ2
c is zero. Here λ is the penetration depth. To test this,

one must be able to measure stiffness very close to the transition temperature.

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 50
5

1 0
1 5
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2 5
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3 5
4 0

1 5 2 0 2 5 3 0 3 50 . 0
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L S C O  x = 0 . 1 2

Figure 1.1: LSCO phase diagram. Temperature versus Sr doping x for
a- and c-needles. TM is the transition temperature taken from magnetization
and Tρ is the one taken from resistivity. The inset introduces an example of

magnetization measuremen, for two x = 0.12 needles at H = 1 Oe.

In light of this, we have developed a new method to measure particularly small SC

stiffness without applying external magnetic field. We implemented this technique,

called “Stiffnessometer”, to investigate 2D SC in LSCO x=0.125. Thus, the goal

of this work is twofold:
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1. To present the “Stiffnessometer”, the ideas behind it, its operating method

and implamanetation, including data analysis and applications.

2. To scrutinize the possibility of macroscopic 2D superconductivity in the bulk

using two different techniques: Low energy muon spin rotation (LE-µSR) and

Stiffnessometer. We focus on the “anomalous doping” x = 1/8 regime, where

the difference between the two transition temperatures is large, and minute

inhomogeneity of Strontium doping does not lead to significant deviations

in the transition temperatures.

Our major finding is that in LSCO x=1/8, there is a temperature interval of 0.7 K

where there is global 2D SC stiffnesss in the planes, while zero stiffness between

them. Namely, in this interval supercurrent can flow in the CuO2 planes but not

between them.

In the rest of this chapter we elaborate on few experimental works showing 2D

SC in the cuprates, and give some background on the LSCO compound and ex-

perimental techniques. In chapter 2 we delve into the Stiffnessometer, presenting

its capabilities and demonstrate them. Then in chapter 3 we show our results on

LSCO x=1/8.

As a side project, we investigated whether the spin or charge degrees of freedom

were responsible for the nodal gap in underdoped cuprates by performing inelastic

neutron scattering and x-ray diffraction measurements on LSCO x=0.0192, which

is on the edge of the antiferromagnetic phase. We found that fluctuating incom-

mensurate spin-density-wave (SDW) with a bottom part of an hourglass dispersion

exists even in this magnetic sample. The strongest component of these fluctuations

diminishes at the same temperature where the nodal gap opens. X-ray scatter-

ing measurements on the same crystal show no signature of charge-density-wave

(CDW). Therefore, we suggest that the nodal gap in the electronic band of this
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cuprate opens due to fluctuating SDW with no contribution from CDW. This work

is presented in chapter 4.

1.1 Copper Oxides and the La2−xSrxCuO4 Com-

pound

High-Tc Superconductivity (HTSC) in the copper oxides (cuprates) was discov-

ered in 1986 [12]. Bendorz and Müller found that the LBCO system had a su-

perconducting transition temperature at Tc = 30K. Later that year, the LSCO

compound was discovered, exhibiting superconductivity up to 38 K. All the com-

pounds in the cuprates family have their crystalline structure consists of layers

of copper oxide planes, CuO2, separated by ions of rare earth elements. The

spacing between Cu ions is about 3.78 Å. In LSCO, the unit cell consists of two

CuO2 planes, each plane is shifted by half a lattice constant with respect to the

other. Between every two CuO2 planes there are two layers of La(Sr)-O. Figure 1.2

demonstrates the crystalline structure of LSCO, which is the simplest one in the

cuprates family.

The cuprates can be doped, either by holes or by electrons, and their charge carrier

concentration can be varied. LSCO is hole doped, and its doping mechanism is

as follows: The valance of La is 3+ and of O is 2-. Therefore, in the “parent

compound” (zero doping, x = 0) all the Cu ions are in a Cu2+ state; they have

one unpaired electron in a d-shell. As x increases, the carrier concentration in the

CuO2 planes is determined by “charge reservoirs” inserted between them. Since

the valance of Sr is only 2+, increasing the Sr content by x attracts negative

charge from the CuO2 planes while leaving holes on the Cu sites. Therefore, the

hole concentration in LSCO is proportional to the Sr content in the unit cell.
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Figure 1.2: The crystalline structure of La1−xSrxCuO4. (adapted from [13])

The cuprates phase diagram is extremely rich, and it is beyond the scope of this

thesis to cover all of its complexities. Nonetheless, we will briefly describe its main

features of the hole doped part (Fig. 1.4), focusing on LSCO and the relevant

phases for our work.

The parent compound is an antiferromagnet (AF) Mott insulator, resulting from

strong Coulomb repulsion. The Néel temperature, TN , is about 300 K. Upon

doping, TN decreases rapidly until it vanishes at x = 0.02. However, short range

spin order in the form of spin glass or spin density waves remains until x = 0.12

Figure 1.3: Schematic drawing of CuO2 plane.
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inside the SC phase. With extra doping, at x ≈ 0.05, superconductivity ap-

pears, and lasts until x ≈ 0.27, where regular Fermi liquid appears. The highest

transition temperature, Tc ' 38K, is achieved at about x = 0.15, called accord-

ingly “optimal doping”. Above and below this doping the compound is referred

to as overdoped and underdoped, respectively. Since the Tc versus x curve form

a dome-like region, the superconducting phase is often called “superconducting

dome”. Moreover, it is well established that the cuprates order parameter has

d-wave symmetry, i.e. it changes sign every 900. The SC gap function can thus be

written as ∆(k) = (∆0/2)(cos(kxa)− cos(kya)). Another aspect of this symmetry,

giving the cuprates even more strange charachteristics and making it unconven-

tional SC, is that the order parameter vanishes at four points, “nodes”, along the

diagonals in the Brillouin zone, giving rise to zero energy excitations.

Figure 1.4: Schematic phase diagram of cuprates. (adapted from [14])
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The normal state of the underdoped and optimally doped sides of the SC dome

exhibits peculiar properties, such as high resistivity relative to metals, giving it the

name “bad” or “strange” metal. This phase is also characterized by linear tem-

perature dependence of the resistivity, contrary to T 2 behavior expected by Fermi

liquid theory. Another hallmark of the bad metal is the absence of quasiparticles.

Thus, this regime is referred to as non-Fermi liquid.

Another exotic phase in cuprates is the Pseudogap. This regime starts at T ∗,

below which a partial gap is opened in the electronic spectrum. This phase is one

of the biggest mysteries regarding the cuprates phase diagram, and its origin is

strongly debated and is still an open question. One explanation is that this phase

stems from the creation of Coopers pairs which are not coherent due to strong

phase fluctuations. Another theory relates this regime to other competing orders

such as charge and spin density wave.

1.2 2D Superconductivity in Cuprates

J. Wen and J.M. Tranquada et al. [15] investigated the temperature dependence

of electrical resistivity, ρab and ρc, upon application of magnetic fields up to 9 T

in single crystals of La2−xBaxCuO4 (LBCO) with x = 0.095. In the configuration

where H was applied perpendicular to the planes, H⊥, the field had a drastic effect

on ρc, significantly depressing the temperature at which ρc → 0, while the effect of

H⊥ on ρab was rather weak (Fig. 1.5). In contrast, the effect of a parallel applied

field was modest for both ρab and ρc. These results indicate that a two-dimensional

phase could exist at high magnetic fields.

R. Zhong and J.M. Tranquada et al. [5] showed similar results in a different cuprate,

La1.85Ca1.15Cu2O6, which has two copper oxide layers in a unit cell. These are

summerized in Fig. 1.6, which shows a phase diagram demonstrating how the
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Figure 1.5: Magnetoresistance in LBCO withx = 0.095. Resistivities vs. tem-
perature for a range of magnetic fields with the corresponding configurations.

Adapted from [15].

sample goes through a 2D SC phase before returning to its normal state. The

different phases are determined by restitivity measurements under magnetic field

perpenicular to the planes, and measuring both ρab and ρc.

Q. Li and J.M. Tranquada et al. [3] showed that in LBCO x=0.125 there is a

temperature range in which the layers are decoupled at zero magnetic field. This

phenomena is attributed to the formation of charge and spin stripes in this com-

pound.

More experimental evidence of a 2D superconducting phase was presented by A.A.

Schafgans and D.N. Basov et al. [16]. A series of magneto-optical reflectance mea-

surements were preformed on underdoped crystals of LSCO at a magnetic field of

up to 8 T applied parallel to the crystal c-axis. These measurements revealed a

complete suppression of the interplane coupling, while the in-plane superconduct-

ing properties remained intact, suggesting a 2D superconducting state (Fig. 1.7).

Two different sets of theories were conceived to explain the experiments. E. Berg

and A. Kivelson proposed a theory which discusses dynamical layer decoupling in
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Figure 1.6: La1.85Ca1.15Cu2O6 phase diagram. Large squares and circles
represent the superconducting transition of the resistivy ρc and ρab respectively.
Magnetic field is applied perpendicular to the planes, and induce decoupling of

the layers, thus creating 2D SC region. (adapted from [5])

Figure 1.7: Magneto-optical measurements of LSCO x=0.1, showing the evo-
lution of the Josephson plasma resonance (JPR) at T=8 K in magnetic field.
The JPR is the only feature in the spectra that is sensitive to field, and by

H=8 T (well below Hc2) the JPR signal is suppressed. Adapted from [16].
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stripe-ordered high Tc superconductors [6]. The theory argues that under certain

circumstances, the superconducting condensate can occur in a two-dimensional

system. This theory was proposed as the underlying cause for the layers decoupling

as was observed in LBCO x=0.125. It was suggested that the existence of stripe

order can lead to an enormous suppression of the inter-plane Josephson coupling.

This in turn could explain the existence of a broad temperature range in which

2D physics is apparent. Furthermore, D. Pekker [17] and T. Vojta [18] proposed

independently two complementary theories with the same underlying conclusions.

Both theories discuss the different phase transitions in a weakly coupled layered

system with c-axis disorder. One prediction of these theories is a temperature

region at which an intermediate phase exists where the in-plane superfluid stiffness,

ρabs , reaches a finite value while the inter-plane superfluid stiffness ρcs remains zero.

Hence, the superfluid splits into an array of 2D puddles with no phase coherence

along the c-axis.

Last but not least, we shortly discuss measurements of bulk vs. isolated sheets stiff-

ness, emphasizing their different behavior. I. Hetel et al. [1] measured the super-

fluid density in underdoped 2-unit-cells-thick Y1−xCaxBa2Cu3O7−δ (Ca-YBCO)

films using a two-coil mutual inductance method. They found that the stiffness

exhibits an abrupt downturn as the temperature approaches Tc, as expected from

a 2D KTB transition. In contrast, D.M. Broun et al. [19] probed the stiffness of

bulk underdoped samples of YBCO with width of 0.3mm using cavity perturba-

tion when H applied perpendicular to the CuO2 planes. They did not observe 2D

KTB behavior, but the stiffness rather went down smoothly through the expected

jump in the stiffness.
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1.3 Traveling Solvent Floating Zone Method

1.3.1 General Description

Crystal growth using the optical floating zone technique has been extensively used

to grow a variety of bulk crystals, particulary of metal oxides such as cuprate

superconductors. A large high quality single crystal enables a reliable measurement

of physical properties, and is specially important for studying direction dependent

ones. High-Tc cuprates superconductors melt incongruently. Namely, they do not

melt uniformly and decompose into other substances after solidification, hence

growth methods that rely on direct crystallization from self melt are rendered

useless for the cuprates. Therefore solution growth have been developed to grow

crystals of cuprates. One of the popular methods to grow the high-Tc materials is

the Traveling Solvent Floating Zone Method (TSFZ), which allows a high degree

of control of the crystal growth parameters.

1.3.2 The image furnace

In all image furnaces, the basic concepts is that either ellipsoidal or parabolic

mirrors are used to focus light from halogen or xenon lamps onto a vertically

held feed rod to produce a molten zone. Figure 1.8 presents a schematic view

of the image furnace core parts. The feed and seed material rods are placed

inside a quartz tube and mounted on vertical shafts that can be rotated with a

variable speed in the same or opposite directions. The quartz tube is used to

create a controlled atmosphere, usually of Argon, Nitrogen and Oxygen gas mix,

and under desired pressure between 0 to 10 bars. The gap between the two rods is

then placed at the common focal point where the temperature can be as high as

3000 o C, which depends on the sample absorption, lamp power, and the applied
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voltage on the lamps. The high temperature zone melts the rods and creates a

molten zone between them. By raising the mirrors and lamps, this zone moves

upwards along the feed rod, while the previously molten part is crystalizes after

had been moving out ot the high temperature zone. An example of this process is

shown in Fig. 1.9.

Figure 1.8: Schematic draw of the Floating Zone Image Furnace.

1.3.3 Key Process Parameters in Crystal Growth

Although very powerful method, growing crystals with the TSFZ is somewhat

tidious. It requires carefull optimization of different control parameters in order

to achieve a high quality single crystal.
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Figure 1.9: LSCO single crystal during growth. Left: The floating zone
furnace at work. Right: Feed and seed rods are connected with a molten zone

in between during crystal growth.

High quality feed rod

The preparation of a feed rod is the initial stage of crystal growth using the

TSFZ method. For feed rods made from compacted powder, such as most metal

oxides, excess porosity can undermine the stability of the molten zone due to

penetration of the melt into the feed rod. This penetration can be attributed to a

capillary effect in which the melt is partially absorbed by the cavities among the

fine particles in the feed rod. For most materials, such porosity can be decreased

by either increasing the pressure at which the rod is compacted or sintering the

feed rod at temperatures near its melting point prior to loading it to the image

furnace.

Therefore, the feed rod should be homogeneous and uniform in composition and

its geometry (straight with constant diameter), and its density should be as close

as possible to that of the final single crystal.
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Crystallization rate (growth speed)

The growth speed or crystallization rate is unarguably one of the most critical

parameters governing crystal quality. Crystallization rate can strongly vary from

240 mm/h (GaAs) to 0.05 mm/h (Bi-based superconductors). It has been widely

reported that changing growth speed can affect the grown crystal in terms of

crystal size, formation of bubbles, cracks, chemical composition, crystal alignment,

twin formation and has a great influence on the solid-liquid interface and molten

zone stability. The growth rate is mainly restricted by the slow solution diffusion

process at the solid-liquid interface boundary, thus the typical growth rate required

for optimal crystal quality depends on whether the materials melt congruently or

incongruently. For congruently melting materials the composition of the molten

zone is the same as the feed rod, crystallization process is not much limited by

slow diffusion processes and relatively higher growth speed can be achieved. For

incongruently melting materials, the composition of the melt differs from the one

of the original solid. This difference necessitates solution diffusion at the solid-

liquid interface, which generally takes place slowly and therefore limits growth

speed to a very slow rate.

Growth atmosphere and gas pressure

Both atmosphere and gas pressure are crucial parameters when growing crystal in

the TSFZ method and play a key difference between success and failure. These

parameters are fairly easily controlled during the crystal growth by selecting the

right gas mixture coming in, and the desired pressure coming out from the quartz

tube. The main reason quoted for growing in higher than atmospheric pressure is

to reduce the vaporization of volatile components from the sample.
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Lamp power and temperature of the molten zone

The power level depends mainly on the chemical properties of the grown mate-

rial, but is also affected by factors such as gas content and pressure, growth rate

,density and diameter of the feed rod ,lamp de-focusing and the temperature gra-

dient around the molten zone. For incongruently melting materials it is extremely

important to adjust the power level according to the material phase diagram,

then it must be kept constant. Failing to fulfill this condition will result in either

secondary phases or completely wrong chemical composition of the grown crystal.

1.3.4 La2−xSrxCuO4 Crystal Growth

Powders of CuO (99.9%), La2O3 (99.99%) and SrCO3 (99.9%) were dried at high

temperature between 500 oC to 1050oC, then weighted accordingly to the calcu-

lated stoichiometric values. The desired doping level of the end product crystal is

therefore determined in the beginning of the process by adding the right amount

of SrCO3 into the mixture. An extra 2.5% of CuO were added due to evaporation

during the crystal growth. The weighted powders were mixed and grinded together

until smooth and homogeneous texture is achieved. The mixed powder was placed

in alumina crucible and underwent firing at 960oC in a box furnace. Such high

temperatures induce diffusion of the reactants and binds the chemicals together to

form La2−xSrxCuO4. The grinding and firing process was repeated three time in

order to eliminate possible impurity phases. After this process was completed, the

powders were inspected with x-ray analysis to ensure right doping concentration

and purity. The second stage of preparation involves making a cylindrical shaped

rod, which will be used as a feed and seed for the crystal. The powder mixture

was compacted into a rubber tube which was then inserted into an isostatic press.

Pressure of up to 60000 psi (4000 bar) compacts the powder into a long rod (up
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to 20cm), reaching approximately 60% of the crystal density. The compacted rod

was sintered at T = 1230 oC near its melting point temperature for 24h. This step

brings its density very close (≈ 95%) to the crystal one. Figure 1.10 demonstrates

such feed rod.

Figure 1.10: A sintered feed rod of LSCO.

The crystals were grown under elevated pressure of mixed Argon/Oxygen (10:1)

atmosphere. A slow rate of 1 mm/hour was chosen to let the diffusion in the

melt to take place, the liquid and the solid being of different composition. The

feed and seed/crystal were rotated in opposite directions at 15 RPM in order to

improve the liquid homogeneity. All the growths were ended voluntarily after the

whole feed rod was consumed by growth, yielding black semi-metallic color crystal

with lengths ranging from 70 mm to 120 mm and typical diameter of 5 mm to 7

mm depending on the starting rod dimensions and pull rate of the feed rod. An

exemplary crystal is shown in fig. 1.11. After growth, the crystals were annealed

in Argon atmosphere at 8500C for 120 hours to remove excess oxygen and relieve

thermal stress.

Figure 1.11: As grown single crystal of LSCO.
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1.4 SQUID Magnetometer

Superconducting Quantum Interference Devices (SQUIDs) are commonly used to

detect the smallest magnetic signals and function as highly sensitive magnetic

flux-to-voltage transducers. The SQUID relies on the physical principal of the

Josephson junction, making it sensitive to a change in magnetic flux of one flux

quantum Φ0 = h
2e

= 2.07× 10−7Gcm2.

The measurement system that was used in this work was an S600 SQUID SUSCEP-

TOMETER of CRYOGENIC LTD. This system can work at either high magnetic

field regime up to 6.5 T, or at a low field regime up to 200 G, with field resolution

of 0.001G. The measurement is performed by moving a sample trough a set of

pickup coils in a configuration known as a second-order Gradiometer. The move-

ment induces a change of magnetic flux and creates screening currents that flow

into the flux transformer. This flux change is detected by the SQUID device. The

output voltage is converted to physical units of magnetic moment. More informa-

tion regarding the SQUID operation is discussed in chapters 2 and 3 where it is

relevant.

1.5 Muon Spin Rotation (µSR)

Muon spin rotation, relaxation or resonance (µSR) is a technique used for studying

magnetic properties in materials, by directly measuring the time dependence of the

muons spin, after injecting it into the sample. This technique allows detection and

measurement of static magnetic fields in the range of 10−5 − 1 Tesla or magnetic

field fluctuations on a time scale of 10−3 − 10−11 sec.
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1.5.1 Principle of µSR

The production of muons is achieved by using high energy proton beams produced

in cyclotrons. The protons are fired into a target to produce pions via

p+ p→ π+ + p+ n

and then the pions decay into muons via

π+ → µ+ + νµ

The pions that decay at the target surface have zero momentum so the outgoing

muon and neutrino will have opposite momenta. The pions are spin-less particles,

thus by angular momentum conservation the muon and the neutrino must have

opposite spins. The neutrino has a definite chirality, and its spin must always

be aligned in the opposite direction to its momentum, implying that the muons

produced in this process are 100% spins polarized. The muons are transported

through the beam-line using a system of magnets, that maintain the spin polariza-

tion. They hit the sample with an energy of 4MeV, where they lose their energy

via Coulombic scattering processes which have no effect on their spin, leaving the

spins polarized in a certain direction.

In the presence of external or internal magnetic field, the muon spin begins to

rotate with an angular frequency of ωµ = γµB, where γµ, the gyro-magnetic ratio,

is 13.55 KHz/Gauss. The life time of the muon is τµ = 2.2µs, and it decays in a

three body process

µ+ → e+ + νe + ν̄e
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Figure 1.12: The angular distribution of emitted positrons from muon decay.

The angular distribution of the emitted positrons is shown in Fig 1.12. The decay

involves the weak interaction which violates parity, and leads to the positron being

emitted preferentially along the direction of the muon’s spin after it has been

decayed. This effect allows one to measure the polarization of precessing muons.

1.5.2 The µSR experiment

A schematic diagram of the µSR experiment is shown in figure 1.13. Once a muon

is implanted in the sample, a clock starts running and stops only when a positron

is detected, using an array of plastic scintillators connected via a light-guide to a

set of photo-multipliers. In the simplest setup we have two detectors, the detector

in the incident direction of the muon named the “forward detector” (denoted as

F in the sketch) and the “backward detector” in the opposite direction (B in the

sketch).

In principle there could be up to six detectors: Forward and backward, right

and left, top and bottom. From each detector a histogram of decay times is

built (NF and NB). The number of positrons detected in all the detectors decays

exponentially with time, but if the muon “feels” a magnetic field, the histogram

will oscillate with the frequency ωµ. The muon polarization can be extracted from
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Figure 1.13: Schematics of µSR experiment.

the normalized difference between the histograms of the forward and backward

detectors.

A (t) =
NF (t)−NB (t)

NF (t) +NB (t)

A(t) is known as the asymmetry. It contains information about the local magnetic

environment in materials, and is usually measured as a function of temperature.

When no external field is applied, the muon will precess and reveal the internal

field distribution. This method is known as Zero Field µSR ( ZF-µSR) and it is

useful in research of ferromagnets, anti-ferromagnets and spin-glasses. µSR can

be also carried out when applying external magnetic field. There are two different

configurations for µSR in external field: Longitudinal field µSR, in which the initial

muon spin polarization is parallel to the applied field direction, and transverse field
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µSR, in which the initial muon spin polarization is perpendicular to the applied

field direction.

1.5.3 Low Energy µSR

In Low energy µSR (LE-µSR), by controlling the muons energy E, the muons stop

with high probability at some chosen depth inside the sample while keeping their

polarization intact. The experiemnt was performed in the LEM beam line [20] at

the Swiss Muon Source SµS, Paul Scherrer Institute, Villigen, Switzerland. 4 MeV

spin-polarized muons are stopped at a moderator, made of 300 nm thick layer of

solid Argon grown on top of a silver foil. They are then accelerated to a chosen

energy between 1 to 30 keV by applying a voltage difference between the foil and

the sample. The sample holder is placed on a sapphire plate hence electrically

isolated.

The whole chamber is kept in ultra high vacuum of 10−10 mbar, and the stopping

and accelerating proceses of the muons preserve most of the polarization. Once

in the sample, the muon spin rotates in the local external or internal magnetic

field and the time dependent polarization is reconstructed from asymmetry in the

positrons decay, which are emitted preferentially in the muon spin direction.

More information, including data analysis methods, is preseneted in the main text

in Chapter 3.



Chapter 2

Stiffnessometer, a

Magnetic-Field-Free

Superconducting Stiffness Meter

and its Application

In this chapter, we introduce a new method to measure superconducting stiffness

ρs, critical current density J c, and coherence length ξ without subjecting the

sample to magnetic field or attaching leads. We start by presenting the technique

and the underlying ideas behind it, then show data taken on different types of

superconductors (type I, II and high Tc superconductor), discuss the strengths

and weaknessess of the method, and finally demonstrate its application to LSCO

x=0.12. We put stress on verification experimental tests taken to assure that our

method works.

Superconducting stiffness ρs is defined via the quantum mechanical, gauge in-

variant relation between the current density J, the vector potential A, and the

26
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complex order parameter ψ = |ψ| eiϕ(r) according to

J = ρs

(
~c
q
∇ϕ−A

)
(2.1)

where q is the carriers charge [21]. When ∇ϕ = 0 1 the London equation is

obtained:

J = −ρsA. (2.2)

ρs can be expressed in units of length via

ρs =
c

4πλ2
, (2.3)

where λ is known as the penetration depth, and describes the length upon which

external magnetic field decays into a supercondtor, namely the Meissner effect.

London’s equation can be derived from the following argument: Quantum mechan-

ically, the canonical momentum operator obeys p = mv + qA/c. Bloch’s theorem

states that 〈p〉 must vanish at the ground state. Together with the current density

definition J = nsqv, one gets the London equation J = −nsq2A/mc.

Since ρs provides information on the ratio between superfluid density and effective

mass, it is the most fundamental property in the study of superconductors. For

example, in underdoped high temperature superconductors (HTSC) the transition

temperature Tc is found to be proportional to the stiffness at low temperatures.

This finding is known as the Uemura relation [22]. It has also been found by C.

Homes [23] that in the cuprates Tc multiplied by the DC conductivity just above

Tc is proportional to the superfluid stiffness. These two scaling laws must play

a key role in any theory of HTSC [22]. Another important expample is that the

1The conditions under which this assumption holds are discussed later in this chapter and on
the next one.
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temperature dependence of the stiffness, ρs(T ), is determined by the symmetry

of the superconducting order parameter, thus allows one to infer the underlying

pairing mechanism, e.g. s-wave or d-wave [24].

The standard method to measure the stiffness is via the penetration depth; one

applies a magnetic field and measures its penetration into a material [22, 24–26].

However, magnetic field raises issues one must consider: first, it is essential to take

into account the sample shape via the concept of the demagnetization factor. This

factor is known exactly only for ellipsoidal samples, which are nearly impossible

to come by. Second, magnetic fields introduce vortices, which can complicate the

interpretation of the penetration depth measurements. Third, all methods have

an inherent length scale window. The longest penetration depth that has been

measured to the best of our knowledge is 10 µm [24–26]. This is far shorter than

a typical sample size. Therefore, there is a temperature range below Tc at which

λ > 10 µm where the behavior of ρs is obscured. For highly anisotropic samples,

this range could extend to temperatures well below Tc.

Similarly, there is no direct way to measure Jc. The standard method is to connect

leads, and to determine the current at which voltage develops across the sample.

However, the voltage first develops in the vicinity of the leads, where heat is

generated. This heat affects the rest of the sample.

Here we present a new instrument to measure stiffness in zero magnetic field

based on the London equation. This method determines ρs directly without the

use of the penetration depth concept. Consequently, we name the instrument

Stiffnessometer. As we explain below, the Stiffnessometer can measure very weak

stiffness, which corresponds to λ ranging from tens of microns to few millimeters.

This allows measurements of stiffness closer to the critical temperature Tc than

ever before, or measuring the stiffness of very anisotropic systems. Finally, vortices

or demagnetization factor are not a problem for the Stiffnessometer since the
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measurement is done in zero field. We also demonstrate that the Stiffnessometer

can measure critical currents without leads and hence provide information on the

coherence length ξ.

2.1 Experimental setup

Figure 2.1: Experimental setup. (a) An illustration of the Stiffnessometer:
The superconducting ring is threaded by an inner-coil, placed in the center of
a gradiometer, and surrounded by a main-coil that serves as a shim coil. (b) A
typical inner-coil, 60 mm long with 2 mm outer diameter. The data collected
in this work are taken using this inner-coil. Also shown are two La2−xSrxCuO4

rings with a rectangular cross-section (c) A zoom-in on other inner-coils with
outer diameters ranging from 2 mm to 0.25 mm, and length of 60 mm.

The method is based on the fact that outside an infinitely long coil (defining

the ẑ direction), the magnetic field is zero while the vector potential is finite.

This vector potential is tangential and points in the ϕ̂ direction. When such an
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inner-coil is placed in the center of a superconducting ring, the vector potential

leads to a current density in the ring according to Eq. 2.1. This current flows

around the ring and generates a magnetic moment. The magnetic moment is

detected by moving the ring and the inner-coil rigidly relative to a pickup-loop.

The concept of the measurement is depicted in Fig. 2.1(a). A typical inner-coil and

two superconducting rings of the cuprate superconductor La2−xSrxCuO4 (LSCO)

with x = 0.12 are shown in Fig. 2.1(b). More details on these coil and rings are

given in the analysis section. In Fig. 2.1(c) we present a zoom-in on three different

coils with outer diameters of 2, 0.8, and 0.25 mm. They have two layers of wires,

and their length is 60 mm. Our Stiffnessometer is an add-on to a Cryogenic SQUID

magnetometer.

Rather than using a single pickup-loop we actually use a second order gradiometer.

It is made of three winding groups. The outer two are made of two loops each

wound clockwise and the inner group is made of 4 loops wound anticlockwise.

This is also demonstrated in Fig 2.1(a). The gradiometer ensures that a magnetic

moment generates a voltage only when it is in the vicinity of the gradiometer

center. Also, any field uniform in space gives zero signal even if it drifts in time.

The gradiometer is connected to a superconducting quantum interference device

(SQUID). The output voltage V of the device is proportional to the difference

between flux threading the different loops of the gradiometer. We record V (z) as

the relative distance between the gradiometer and the ring changes when the ring

and inner-coil move. Our gradiometer detects magnetic moments within a range

of 15 mm on each side of its center. This sets the length of our inner-coils. It

allows us to detect contribution from the ring while minimizing contribution from

the ends of the inner-coil.

The measurements are done in zero gauge field cooling (ZGFC) procedure: we cool

the ring to a temperature below Tc, turn on the current in the inner-coil when the
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Figure 2.2: Raw Data. SQUID signal for an Nb ring at high temperature
when the ring is not superconducting and at low temperature when the ring is

superconducting. The inset shows the difference between them.

ring is superconducting, and measure while warming. A measurement above Tc

is used to determine the value of the flux inside the inner-coil. For any circle

of radius r in the ring ∇ϕ = l/r ϕ̂ where l is an integer. The ZGFC procedure

sets l = 0. This value of l does not change as A is turned on, and Eq. 2.2 holds

throughout the measurements.

To better appreciate why ∇ϕ = 0, one can view the phase ϕ as an in-plane arrow.

Cooling at A = 0 must set ∇ϕ = 0 to minimize the kinetic energy, namely, all

the arrows point in the same direction. Since the phase is quantized, to change ϕ

means to make a twist of all arrows in a closed loop, such that the phase between

the first arrow and last one in the loop changes by 2π. This would lead to a

discontinuity in the phase value, a procedure that costs energy. A nice analog is a
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ferromagnetic ring with the spins pointing in the same direction. Rotating the last

spin with respect to the first one by 2π requires to break a bond. This procedure

is not energetically favorable for a ferromagnet (or the SC ring). Therefore, when

turning A on after cooling, all the arrows continue to point in the same direction

and ∇ϕ = 0, until A exceeds a critical value. At this point, the current in the

SC is too high and it is worthwhile for the superconductor to “break a bond” and

reduce the current.

2.2 Results

A typical measurement is demonstrated in Fig. 2.2. The red symbols represent

the signal when the entire inner-coil has moved through the pickup-coil at T >

Tc. Before the lower-end of the inner-coil has reached the gradiometer, the flux

through it is zero. During the time the lower-end of the inner-coil transverse the

gradiometer its contribution to the total flux changes from zero to positive to

negative and back to zero. The upper-end of the inner-coil has the opposite effect;

its contribution to the flux goes from zero to negative to positive and back to

zero. But there is a time (or distance) delay between the lower-end and upper-end

contributions, leading to the observed signal. A linear drift of the voltage can

easily evaluated as demonstrated by the dotted lines. We define the inner-coil

maximum voltage difference ∆V max
IC as demonstrated in Fig. 2.2.

At T < Tc the ring adds its own signal, as shown in Fig. 2.2 by blue symbols. The

ring produces current that generates opposite flux to the one in the inner-coil.

The ring signal is concentrated on a narrower range on the z axis. By subtracting

the high temperature measurement from the low temperature one, it is possible to

obtain the signal from the ring alone ∆VR as demonstrated in the inset of Fig. 2.2.

We define the maximum ring voltage difference ∆V max
R as shown in the inset. The
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Figure 2.3: Temperature dependence. The SQUID signal difference be-
tween high and low temperatures ∆VR for an LSCO x = 0.12 ring at different
temperatures. The CuO2 planes are perpendicular to the ring symmetry axis.
The inset shows the normalized voltage difference as a function of temperature.

ratio ∆V max
R /∆V max

IC stores the information on the stiffness, as will be discussed

in the Data Analysis subsection. For a given inner-coil and current it is enough to

determine VIC once.

In Fig. 2.3 we present the Stiffnessometer signal evolution with temperature from

an LSCO x=0.12 ring. At temperatures between 5 K and 22 K there is no change

in the signal. But, between 22.5 K and Tc = 27.9 K the signal diminishes rapidly,

as expected. The normalized voltage difference ∆V max
R /∆V max

IC is plotted in the

inset of Fig. 2.3.

There is a risk that field generated in the inner-coil leaks since no coil is infinitely

long or perfect. To overcome this leak, a main coil, also shown in Fig. 2.1, acts as

a shim to cancel the field on the ring when it is at the gradiometer center. Our
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Figure 2.4: Experimental tests. (a) The signal with a current of 0.3 mA
in the inner-coil and 0 and 1 mOe fields demonstrating the quality of the field
cancelling procedure. (b) The SQUID signal for an open and closed rings when
the field is zero and the vector potential is finite. (c) A test experiment: the
SQUID signal for an open and closed rings when the vector potential is zero
but the field is finite. (d) Demonstrating that when λ is much smaller than the

sample size the signal is material independent.

main-coil has a field resolution of 10−3 Oe from 0 up to 200 Oe. Therefore, we can

keep the field on the ring as low as 1 mOe.

To ensure that our signal is not due to leakage of magnetic field from the inner-coil

or any other field source, we perform two tests. In the first one we apply current

in the inner-coil, measure the field leakage at the ring position using an open ring

and cancel it using the main coil. Then we increase the field by only 1 mOe. The

measurements before and after the field increase are depicted in Fig. 2.4(a). They

indicate that we can cancel the field in the ring position to better than 1 mOe.

Clearly in zero field there is no signal. In the second test we measure the stiffness

(zero field and applied current in the inner-coil) of closed and open rings, which
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are otherwise identical in size. The results are shown in Fig. 2.4(b). The signal

from a closed ring is much bigger than the background from an open one. In

Fig. 2.4(c) we repeat this measurement with an applied field in the main coil of

1 Oe, and no current in the inner-coil. In this case both open and closed rings give

strong and similar signal. The difference between the two signals is consistent with

the missing mass in the open ring. These tests confirm that the field leakage is

not relevant to our stiffness measurement. Our ability to determine small stiffness

depends on how well we can cancel the field at the ring position.

Another important test of the Stiffnessometer comes from comparing the signal

from rings of exactly the same dimensions, but made from different materials.

At temperatures well below Tc the stiffness is expected to be strong, namely, the

penetration depth should be much shorter than all the ring dimensions. In this

case a superconducting ring produces a current which exactly cancels the applied

flux through it, regardless of the material used. Therefore, all materials should

produce the same signal. This is demonstrated in Fig. 2.4(d) for Niobium (Nb),

Lead (Pb) and LSCO. They all have the same ∆VR.

The Stiffnessometer can also be used to measure critical currents. This is depicted

in Fig. 2.5 for the LSCO ring at T = 25.8 K. The signal from the ring grows linearly

with the applied current in the inner-coil until ∆V max
R reaches a saturation value.

It means that the superconductor can generate only a finite amount of current.

Therefore, we are detecting a critical current, but in a thermal equilibrium fashion

since we do not use leads or inject power into the system as usually done in

critical current measurements [27, 28]. Thus, it is more adequate to compare

our measurements of critical current with theoretical expectations. Moreover,

the critical current density in the ring must be related to the applied critical

current divided by dimensions of area, which in our case are of order 1 mm2. This

demonstrates that the critical current we are measuring must be on the order of
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Figure 2.5: Critical current. The normalized voltage difference, which is
proportional to the stiffness, induced by an LSCO ring as a function of the
current in the inner-coil. The data were taken at T = 25.8 K. The stiffness is
practically current independent up to Ic and then falls off like 1/I as demon-
strated by the solid red line. The upper right inset shows the unnormalized
signal. The lower left inset demonstrates that the critical current is propor-

tional to (T − Tc)1.75.

1 Acm−2; a more detailed analysis is given below. The critical current density

measured with the Stiffnessometer is several orders of magnitude smaller than the

critical current density measured by other methods, which are on the order of

106 Acm−2.

As the current in the coil exceeds Ic, vortices start to flow into the center of the

ring, so that the current density in the ring never exceeds the critical value Jc. In

other words ∇ϕ = l/r with l 6= 0. Therefore, for I > Ic, the current in the ring

and ∆V max
R are fixed. In contrast, ∆V max

IC increases linearly with I so that the

stiffness decreases like 1/I. This behavior is demonstrated in the upper right inset

and main panel of Fig. 2.5.
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Figure 2.6: Vector potential and magnetic field profile. Numerical
calculation of the vector potential and magnetic field per current at z=0 for one
of our inner coils. The coil parameters are: current I = 1 A, length l = 6.0 cm,
inner diameter = 0.08 cm, outer diameter = 0.2 cm, there are 4 layers and 1600
turns. The ring position relative to the inner-coil center is demonstrated by
the arrows. The vector potential falls off like 1/r over the range of the ring as
the solid line demonstrates. Inset: APLIC and AGIC/A

PL
IC as a function of z, as

explained in the main text.

2.3 Data Analysis

Before analyzing the Stiffnessometer signal it is essential to determine the realistic

vector potential generated by our inner-coil. The vector potential outside of an

infinitely long coil is given by

AIC =
ΦIC

2πr
ϕ̂, (2.4)

where r is the distance from the center of the coil, and ΦIC is the flux produced

by the inner-coil. To check the validity of this expression in our case we calculated
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numerically the magnetic field Bz and vector potential Aϕ (in the Coulomb gauge)

produced by the inner-coil as a function of r and z. This coil is 6.0 cm long, has

inner diameter (I.D.) of 0.08 cm, outer diameter (O.D.) of 0.2 cm, 4 layers, and

1600 turns in total. In the calculation we used a current of 1 A. The measured

LSCO ring has an I.D. of 0.2 cm, O.D. of 0.5 cm, and height of 0.1 cm. Fig. 2.6

shows the result of the calculations. The 1/r approximation, presented by the solid

line, is perfect for our ring size and even for much larger rings. The calculation

also shows that the strongest field just outside of the inner-coil is 103 times smaller

than the field at its center.

Analyzing the Stiffnessometer signal is done in two steps and on two levels. The

steps are first to consider a single pickup-loop and only then a gradiometer. The

levels are: weak stiffness and strong stiffness. Weak stiffness means that the vector

potential on the ring is only due to the applied current. The vector potential gen-

erated by the internal current of the ring is ignored. This approximation is valid

when the ring current is small, namely, the stiffness is weak, or the penetration

length is longer than the sample dimensions. The weak stiffness analysis is ana-

lytical and valid close to Tc. At the strong stiffness level the self vector potential

is taken into account. This leads to a partial differential equation (PDE), which

we solve numerically.

2.3.1 Single pickup-loop

Had we used a single pickup-loop, the voltage would have been proportional to

the flux threading it
∫

Bda =
∫

Adl = 2πRPLA(RPL), where RPL = 1.3 cm

stands for our pickup-loop radius. Above Tc, maximum voltage is achieved when

the pickup-loop is at the center of the inner-coil so that V max
IC = kΦIC where k

is a proportionality constant. Similarly, a ring at the center of and parallel with
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a pickup-loop would have generated a maximum voltage proportional to its own

flux, namely, V max
R = k2πRPLAR(RPL) where AR is the vector potential generated

by the ring. Therefore,

∆V max
R

∆V max
IC

=
AR(RPL)

AIC(RPL)
(2.5)

so we only need to calculate the ratio of the vector potentials at the pickup-loop

radius.

2.3.1.1 Weak stiffness

The current from each ring element is dI(r) = J(r)hdr where h is the ring height

and dr is a ring element width. Using the London equation, the magnetic moment

generated by each ring element is dm = πr2

c
dI = rρsΦICh

2c
dr. Integrating from the

inner to the outer radii yields the total moment of the ring m = ρsΦICh
4c

(R2
out−R2

in),

and

AR =
m

r2
(2.6)

Using Eq. 2.3, the penetration depth is given by

λ2 =
h(R2

out −R2
in)

8RPL

AIC(RPL)

AR(RPL)
. (2.7)

Since all the dimensions of the ring and pickup-loop are on the order of 1 mm,

and we can measure voltage ratios to better than 5%, we can measure λ bigger

than 1 mm.

The critical current density in the ring J c can also be calculated in the weak

stiffness limit. In this case we define a critical current in the coil IcIC , as the

current at which the linearity between the signal ∆V max
R and coil current IIC

breaks. This happens when AIC(Rin) reaches a certain critical value AcIC(Rin).

We take AcIC(Rin) from the numerical calculation presented in Fig. 2.6 using IcIC .
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The critical current density in the weak stiffness limit is

J cweak =
c

4πλ2
AcIC(Rin). (2.8)

Similarly, the coherence length is given by [21]

ξweak =
φ0

2
√

3πAcIC(Rin)
. (2.9)

Since λ ∼ 1 mm, and the critical current is on the order of 1 mA, [AcIC(Rin) ∼

10−2 Oe-cm] we can measure J c ∼ 1 Acm−2, and ξ ∼ 1 µm.

2.3.1.2 Strong stiffness

In the strong stiffness case, the total vector potential experienced by the ring AT

is a sum of AIC and, in the Coulomb gauge,

AR(r) =
1

c

∫
Ring

J(r′)d3r′

|r− r′|
, (2.10)

namely, AT = AIC +AR. Using the fact that ∇2(1/r) = −4πδ(r) and the London

equation one finds that

∇2AR =
1

λ2(r)

(
ΦIC

2πr
ϕ̂+ AR

)
(2.11)

where λ is infinite outside of the ring and a constant inside of it. In cylindrical

coordinates, AR = A(z, r)ϕ̂, and with the coordinate transformation

r/RPL → r,AR/AIC(RPL)→ A, λ/RPL → λ (2.12)
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the equation in the ring becomes

∂2A

∂z2
+
∂2A

∂r2
+

1

r

∂A

∂r
− A

r2
=

1

λ2

(
A+

1

r

)
(2.13)

but now r, z, and λ are in units of RPL, and A is in units of AIC(RPL). Outside of

the ring, the right hand side of the equation is zero. The solution of this equation,

evaluated at RPL, is the quantity one would measure with a single pickup-loop as

indicated in Eq. 3.1.

Figure 2.7: AT distribution inside the ring. The total vector potential
obtained from the solution of Eq. 2.13 and the vector potential of the inner-coil

AIC , as a function of r and z for λ/RPL = 0.1/13.

We solved Eq. 2.13 for different λ values and our LSCO ring parameters with

both the Comsol 5.2a and FreeFem softwares. We used finite elements in a box

[−Lz, Lz]× [0, Lr] where Lz = Lr = 8. Dirichlet boundary conditions are imposed

at z = ±Lz, r = 0, and r = Lr. Maximal mesh spacing is set to be h = 0.01

in the ring and its immediate vicinity, and h = 0.25 elsewhere. The total vector

potential AT for λ/RPL = 0.1/13, and for all values of r and z in the ring’s cross

section is presented in Fig. 2.7. Clearly, the vector potential hence the current is

strongest close to the inner radius of the ring. They decay towards the center of

the ring. The solution at r = 1 and z = 0 and a range of λ values is presented
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in Fig. 2.8 on a semi-log plot. The upper right inset is a zoom-in on the long λ

region emphasized by a rectangle. The solid line represents Eq. 2.7 again with the

LSCO ring parameters. There is a good agreement between the PDE solution at

long λ and the weak-stiffness approximation.
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Figure 2.8: Solution of the Stiffnessometer PDE. A semi-log plot of the
solution of Eq. 2.13 evaluated at the pickup coil radius, for different values of
(RPL/λ)2. The inset shows the behavior for large λ. The solid line is given by

Eq. 2.7

2.3.2 Gradiometer

At this step we convert between the signal as detected by a gradiometer to the

vector potential calculated above for a single pickup-loop. We find a conversion

factor, the “G factor”, from the vector potential evaluated at the position on a

single pickup-loop APL to the differences in the vector potential generated by the

gradiometer ∆AG. This has to be done for both the ring and the inner-coil. The
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Figure 2.9: London penetration depth and coherence length. λ (T)
and ξ (T) are calculated as described in the text. Inset: log-log plot of λ and

ξ as a function of 1− T/Tc.

vector potential of a ring on the pickup-loop depends on its height z from the

plane of the loop according to A = 2πmR2
PL/(R

2
PL + z2)

3
2 . Therefore, for a ring

and our gradiometer

AGR(z)

APLR
=

−2R3
PL

(R2
PL + (z + ∆zPL)2)

3
2

+
4R3

PL

(R2
PL + z2)

3
2

+

+
−2R3

PL

(R2
PL + (z −∆zPL)2)

3
2

, (2.14)

where ∆zPL = 7 mm is the separation between the different groups of gradiometer

windings. The difference between the maximum and minimum of this function,

∆AGR/A
PL
R = 1.7, is the conversion factor for the ring.
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Next we convert from APLIC to ∆AGIC . For this purpose we plot by the green line in

the inset of Fig. 2.6 the vector potential generated by our coil at RPL as a function

of z, APLIC (z). The function

AGIC(z)

APLIC
=
−2APLIC (z + ∆zPL) + 4APLIC (z)− 2APLIC (z −∆zPL)

APLIC (0)
(2.15)

is also plotted in the inset by the blue line. The difference between the maximum

and minimum of this function is the conversion factor for the inner-coil. We find

numerically that ∆AGIC/A
PL
IC = 0.47. Thus

∆V max
R

∆V max
IC

= 3.62
APLR
APLIC

(2.16)

In Fig. 2.8 we see that when the penetration depth is very short, APLR /APLIC =

−0.17. Multiplying the absolute value of this number by 3.62 we expect a satu-

ration value of ∆V max
R /∆V max

C = 0.615. The measured value, however, is 0.816

as seen in the inset of Fig. 2.3. To resolve this issue, we extract the G factor

experimentally from the data by dividing the measured voltages ratios by the the

numerical saturation value. For the presented data of LSCO x=0.12 this yields

G = 4.8.

We now extract the penetration depth from the data in the inset of Fig. 2.3 using

the conversion factor, and the PDE solution presented in Fig. 2.8. The extracted

λ versus temperature is depicted in Fig. 2.9. Clearly we can determine λ as long

as 2.5 ± 0.044 mm. The shortest λ we can pinpoint is 0.1 ± 0.04 mm. In order

to determine the behavior near Tc = 28 K, λ(T ) ∼ (1 − T/Tc)−ν , we show a log-

log plot of the data in the inset of Fig. 2.9. Linear fit yields a critical exponent

ν = 1.0± 0.1, whereas mean field theory predicts ν = 0.5 [21].

The calculation of the critical current needs an adjustment

J c =
1

µ0λ2
Amax
T (λ) = J cweak

[
Amax
T (λ)

AIC(RPL)

Rin

RPL

]
(2.17)
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where AmaxT (λ) stands for the maximum total vector potential in the ring evaluated

for λ at the temperature at which the critical current is measured. Similarly, the

coherence length is given by

ξ =
φ0

2π
√

3Amax
T (λ)

=
ξweak

Amax
T (λ)

AIC(RPL)
Rin

RPL

(2.18)

For example, using this strong stiffness approach we find that at T = 27.0 K (Ic =

0.75 mA), λ = 0.1 mm, J cweak = 50 Acm−2 and ξweak = 29.3 nm, Amax
T (λ)/AIC(RPL) =

4.5, J c = 17.3 Acm−2, and ξ = 83 nm.

We present ξ(T ) in Fig. 2.9, while log-log plot is presented in the inset. We linearly

fit the data and get critical exponent of 1.43 ± 0.06, whereas Mean Field theory

predicts ν = 0.5 [21].

2.4 Conclusions

We demonstrated that the Stiffnessometer can measure penetration depth two

orders of magnitude longer, or stiffness four orders of magnitude smaller than ever

before. This allows us to perform measurement closer to Tc and explore the nature

of the superconducting phase transition, or determine the stiffness at low T in cases

where it is naturally very weak. The Stiffnessometer also allows measurements of

very small critical current or long coherence lengths, properties which again are

useful close to Tc. The measurements are done in zero magnetic field with no

leads, thus avoiding demagnetization, vortices, and out-of-equilibrium issues.
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The Nature of the Phase

Transition in the Cuprates as

Revealed by the Stiffnessometer

The Stiffnessometer, as expalained in Chapter 2, gives an oportunity to measure

stiffness close to Tc, and to gain new insight with respect to the superconducting

phase transition. In this chapter, we utilize this new tool to examine the phase

transition in LSCO, and the possibility for bulk 2D SC. We start by recapitulat-

ing the Stiffnessometer method, but here we generalize the London equation and

represent the stiffness as a tensor. This, as will be shown, will allow to measure

both inplane and out ot plane stiffness. We will then show and discuss the results,

and compare them to measurements of Low Energy µSR.

46
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Figure 3.1: Stiffnessometer (a) An illustration of the Stiffnessometer op-
eration principal and a photo of typical ring and coil with 2400 windings. A
long coil is threaded through a ring and they both move with respect to a
Gradiometer which is connected to a SQUID. The SQUID measures the flux
through the Gradiometer and hence the average vector potential on it

〈
Aθ
〉
.

(b) Temperature dependence of an LSCO x = 0.125 c-ring signal as measured
by the Stiffnessometer with I = 1 mA in the inner-coil. The data presented are
after subtraction of the coil contribution, ∆VR(z), as explained in the text and
in Ref. [29]. The inset shows raw Stiffnessometer data for a temperature above
and below Tc. The difference is due to the ring contribution. (c) The currents
streamlines in the ring at midheight (z = 0) derived from the solution of Eq. 3.2
for the a-ring with λc = 145 µm and λab = 13.9 µm. The false colors show the
current intensity. Naturally the flow is not isotropic. Vortices develop on both

sides of the x axis.

3.1 Stiffnessometer

The Stiffnessometer is based on the fact that outside an infinitely long coil, the

magnetic field is zero while the vector potential A is finite. When such a coil

is threaded through a superconducting ring, the vector potential leads to super-

current density J according to the London equation J = −ρsA, where ρs is the

stiffness tensor. This current flows around the ring and generates a magnetic mo-

ment. We detect this moment by moving the ring and the inner-coil (IC) rigidly

relative to a Gradiometer, which is a set of pickup loops wound clockwise and

anticlockwise. The Gradiometer is placed in the center of a bigger coil which is

used to cancel stray field on the sample. The experimental set-up, our coil and

ring are presented in Fig. 3.1(a). The voltage generated in the Gradiometer by the

inner coil and the sample movement is measured by a SQUID magnetometer. The
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measurements are done in zero gauge-field cooling procedure, namely, the ring is

cooled to a temperature below Tc, and only then the current in the inner coil is

turned on. It is the change in magnetic flux inside the inner coil which creates an

electric field in the ring, and sets persistent currents in motion.

To examine the orientation dependent response of LSCO to different directions of

A, we cut two types of rings from a single crystal rod: “c-ring” where the crystal-

lographic ĉ direction is parallel to the ring symmetry axis, i.e. the supercurrent

flows in the CuO2 planes, and “a-ring” where the crystallographic â direction is

parallel to the ring symmetry axis, i.e. the supercurrent travels both in the planes

and between them. The rings, shown in Fig. 3.2(a), have inner radius of 0.5 mm,

outer radius of 1.5 mm and 1 mm height.

The inset of Fig. 3.1(b) presents raw Stiffnessometer data of c-ring taken with inner

coil current of 1 mA. The vertical axis is the measured voltage by the SQUID.

The horizontal axis is the position z of the ring relative to the center of the

Gradiometer. The red data points are measured above Tc and represent the signal

generated by the inner coil alone. The blue points are measured below Tc and

correspond to the inner coil and the ring. The difference between them, ∆VR(z),

is the signal from the ring itself. This signal is shown in Fig. 3.1(b) for different

temperatures. Between 4.5 K and 27 K there is hardly any change in the signal,

because the Stiffnessometer is not sensitive to short penetration depth compared

to the sample size. However, above 28 K the signal drops dramatically fast with

increasing temperature.

We define the peak-to-peak voltage of the rings and the inner coil, ∆V max
R and

∆V max
IC respectively, as shown in Fig. 3.1(b). Their ratio holds the information

about the stiffness, as we explain shortly. Figure 3.2(a) presents ∆V max
R of both

rings. These voltages are normalized by their maximal value for comparison pur-

poses. We detect two different stiffness transition temperatures, T cs = 30.1 K for
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Figure 3.2: LSCO x = 0.125 stiffness. (a) Comparison between a- and c-
ring, which are demonstrated in the figure, as measured by the Stiffnessometer.
The signal is normalized by the maximum measured ring voltage. Different
transition temperatures are observed for the two kind of rings with 0.7 K dif-
ference between them. The transition does not depend on the applied current
in the inner coil up to 1 mA. (b) Semi-log plot of λ−2

ab as measured by LE-µSR
(purple solid triangles) and Stiffnessometer (blue solid spheres). Black dashed
line represents the sensitivity limit of LE-µSR. Black solid line is a fit to a phe-
nomenological function described in the text. Dashed blue lines represent the
KTB line for layer widths d = 1.3 nm and d = 10 nm. Green solid spheres repre-
sent the penetration depth of an a-ring from the Stiffnessometer, analyzed as if
the ring is isotropic with λeff which is some combination of λab and λc. Orange
open symbols show λc obtained at the temperature range where their ratio is
manageable numerically for analysis. The inset is a zoom in on temperatures

close to the transitions.
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the c-ring, and a lower one T as = 29.4 K for the a-ring. We also examine the

influence of the inner coil current on the transition. Data corresponding to three

different currents are shown in the figure. Below 1 mA there is no change in the

transition, which otherwise widens and appears at slightly lower temperature.

The Stiffnessometer data reveal a new phenomenon. There is a temperature range

with finite 2D stiffness in the planes, although supercurrent cannot flow between

them. In other words, upon cooling, the SC phase transition starts by establishing

a global 2D stiffness, and only at lower temperature a true 3D superconductivity

is formed.

3.1.1 Stiffnessometer Data Analysis

To analyze the data, we relate the measured voltage to the vector potential. Since

SQUID measures flux, and the vector potential on the Gradiometer is proportional

to the flux threading it, the ratio of the peak-to-peak voltages satisfies

∆V max
R

∆V max
IC

= G

〈
AθR(RPL)

〉
AθIC(RPL)

(3.1)

where AθR and AθIC are the rings and inner coil vector potential components in

the azimuthal direction θ̂ respectively, RPL is the Gradiometer radius, 〈〉 stands

for averaging over the pickup loops, and G is a geometrical factor determined

experimentally (see Supplementary Information).

In order to extract ρs from the voltages ratio of Eq. 3.1 we must determine the

dependence of AR(RPL) on the stiffness. This is done by numerically solving the

combined Maxwell’s and London’s equation

∇×∇×AR = ρs

(
AR +

ΦIC

2πr
θ̂

)
(3.2)
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where ΦIC is the flux through the inner-coil, and ρs is finite only inside the ring.

For c-ring ρs is merely a scalar and equals λ−2
ab . For a-ring, it is diagonal in

Cartesian coordinates, with ρxx = λ−2
c and ρyy = ρzz = λ−2

ab .

We solve Eq. 3.2 numerically for our rings geometry and various λab and λc with

FreeFEM++ [30] and Comsol 5.3a. The c-ring solution, which is sensitive to λab

only, is discussed in Chapter 2. Using Eq. 3.1, the numerical solution, and the

data in Fig. 3.1(b) we extract 1/λ2
ab, and plot it in Fig. 3.2(b) on a semi-log scale

(blue solid spheres).

In order to extract λc we have to know λab at the temperatures of interest. As can

be seen from Fig. 3.2(a) the c-ring Stiffnessometer measurements are in saturation

just when a-ring stiffness becomes relevant. Therefore, we applied LE-µSR to the

same samples.

3.2 LE-µSR

In LE-µSR spin polarized muons are injected into a sample. By controlling the

muons energy E between 3 to 25 keV, the muons stop with high probability at some

chosen depth inside the sample while keeping their polarization intact. When an

external magnetic field is applied, the muon spin rotates at the Larmor frequency

corresponding to the field. Since the magnetic field decays in the sample on a

length scale determined by λ, the frequency becomes smaller as the muons stop

deeper in the sample.

For our LE-µSR measurements, the sample is a mosaic of plates cut in the ac

crystallographic plane from the same LSCO x = 0.125 crystal used for the Stiff-

nessometer. Each plate was mechanically polished to a roughness of few tens of

nanometers. The plates were glued to a Nickel coated plate using silver paste
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(see Fig. 3.6 inset). We cooled the sample to 5 K in zero magnetic field. Then a

transverse magnetic field was applied along the â or ĉ directions, and we warmed

to the desired temperature.

There are two methods by which one can extract the penetration depth. The

simple method is to fit each data set (at each temperature and energy) to A(t) =

A0 exp(−t/T2) cos(ωt). From this fit one can extract asymmetry, relaxation, and

the average internal field as a function of average implantation depth and temper-

ature.

Figure 3.3 summarizes the internal magnetic field as a function of implantation

energy for different temperatures and field orientations. The field here is calculated

by B = ω/2πγ, where ω is the angular frequency of the muon polarization and

γ is the gyromagnetic ratio. Noticeably, close to the surface and at low T , the

magnetic field does not change with increasing implantation depth for H ‖ c.

Only for energies above 5 keV does a linear trend of decay appears. This 10 to 20

nanometers of “dead layer” could be a byproduct of the polishing process.

Figure 3.4 depicts the temperature dependence of the individual fit parameters

for the highest implantation energy. The magnetic field (panel (a))seems to be-

have erratically close to the phase transition into the superconducting state. We

attribute this behavior to demagnetization factor and mutual coupling between

different pieces of the sample. The asymmetry (panel (b)) decreases upon cooling

since LSCO x=0.125 is known to have a magnetic phase concomitant with the

superconducting one [31–33]. The muon spin relaxation (panel (c)) has a peak at

the critical temperature, which is also unusual.

The presence of magnetism could be detrimental to our analysis if it depends on

depth. To verify that this is not the case, we perform zero field (ZF) measurements

for different implantation energies at T = 5 K well below Tc and for T = 30 K
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Figure 3.3: Magnetic field as a function of implantation energy. Closed
symbols are H ‖ c and open symbols are H ‖ a. Straight lines are guides to
the eye. The magnetic field below E = 5 keV does not fit the linear trend of
the field decay, indicating a dead layer of about 10 to 20 nanometers, possibly

caused by the polishing treatment.

above Tc. The results are presented in Fig. 3.5. Fast relaxation and reduction

of the asymmetry are observed at low temperature due to local random fields

originating from the magnetic stripes in the sample. Nevertheless, there is no

change in the magnetic relaxation with implantation depth.

The more sophisticated analysis method, which we use rather than the simple one,

takes into account the stopping depth probability of the muons. The stopping pro-

file p(x,E), where x is stopping depth, is simulated by the TRIM.SP Monte Carlo

code [34]. Figure 3.6 presents the LSCO stopping profiles for different implantation

energies. For each energy, we fit the function
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Figure 3.4: Temperature dependance of LE-µSR parameters. The
measurement was done at constant energy of 24 keV. The magnetic field (a)
displays peculiar behavior near Tc. Its magnitude below Tc is larger than that
of the normal state. The asymmetry (b) is constant until 20K, where it starts
to drop due to magnetic freezing. The magnetism is also exhibited in an uprise

of the decay rate (c) at low temperatures.
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Figure 3.5: Depth independent magnetism in LSCO x=0.125. Asym-
metry vs. time at T = 5 K (close symbols) and T = 30 K (open symbols) for
different implantation energies. The signal does not change as a function of en-
ergy at low temperatures, justifying a depth independent relaxation component

(see main text).

p(x,E) =
p0(x0 − x)3

exp[(x0 − x)/ξ]− 1
H(x0 − x). (3.3)

to this profile. Here x0 is some cut-off position the muon cannot cross and is energy

dependent, H(x0 − x) is Heaviside’s function, and ξ and p0 are energy dependent

free parameters. The energy dependence of the fit parameters is
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p0(E) = exp
[
−6.4− 0.8 lnE − 0.18(lnE)2

]
x0(E) = 12 + 6E − 0.11E2 + 0.0028E3

ξ(E) = 2.77 + 0.49E − 0.0165E2 + 0.0003E3
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Figure 3.6: Muon stopping profiles. The probability distribution of a
muon to stop at some depth x inside the sample for different implantation
energies. The inset shows the LSCO x = 0.125 single crystal samples used in
the experiment. All the pieces were polished to roughness of several nanometers.
The crystallographic axes a and c are in the plane of the samples, and shown

in the picture.

We assume an exponential decay of the magnetic field along the direction perpen-

dicular to the sample surface, x, resulting from the Meissner effect. In this case,

the asymmetry is given by
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A(E, t) = A0e
−t/u

∫ ∞
0

p(x,E) cos
(
γB0e

−x/λt
)
dx, (3.4)

where 1/u represents contributions to the relaxation from depth independent pro-

cesses and B0 is the mangetic induction outside of the sample and parallel to its

surface.

Figure 3.7 presents asymmetry data for both magnetic field orientations and differ-

ent implantation energies. Panels (a) and (b) show data for H ‖ ĉ at two different

temperatures, and panel (c) depicts data for H ‖ â. The data sets are shifted

vertically for clarity. We limit the presentation to temperatures above 10 K, since

below it strong relaxation due to spin density wave order obscures the oscillatory

signal.

For each temperature, we fit all data sets with energy larger than 5 keV due to the

presence of a dead layer, using Eq. 3.4. In the fit A0 is a free parameter, and λ, u

andB0 are shared. A0 is free because the number of muons actually penetrating the

sample varies with energy. u represents relaxation processes that are implantation

depth independent such as magnetism or field variations perpendicular to x. These

are taken into account as some Lorentzian probability distribution of the total

internal magnetic field with FWHM of 2/u. λ and B0 are naturally common to

each temperature.

At T = 20 K H ‖ ĉ, we observe a clear frequency shift as a function of implantation

energy, indicating a Meissner state. However, for T = 30 K, where the Stiffnes-

someter clearly shows ρab > 0, we could not detect any change in frequency, even

though we used high statistics data acquisition of 24 million muons for E = 23keV

and 8 million for the rest. This can be explained from the fact that the penetra-

tion depth here is much longer than the muon stopping length scale of the order
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Figure 3.7: LE-µSR spectra. Asymmetry as a function of time for different
muon implantation energies for: (a) H ‖ ĉ, H = 26.7 Oe, T = 20 K, (b)
H ‖ ĉ, H = 26.7 Oe, T = 30 K, (c) H ‖ â, H = 26.3 Oe, T = 11 K. A
clear frequency shift as a function of implantation energy is observed in (a).
In the (b) conditions, the Stiffnessometer clearly detects stiffness in the ab
plane [Fig. 3.2(a)], while no frequency shift is observed by LE-µSR within our

sensitivity. For H ‖ â (c) there is no frequency shift at all temperatures.



Chapter 3. LSCO phase transition 59

of hundred nanometer. When H ‖ â we did not observe any frequency shift at all

temperatures, even though the sample is in the Meissner state.

We fit Eq. 3.4 to our LE-µSR data and extract λab. We add the results to

Fig. 3.2(b). There is a gap between the available data from the two techniques be-

cause the longest penetration depth that LE-µSR can measure, represented by the

horizontal dashed line in the figure, is much smaller than the shortest λ for which

the Stiffnessometer is sensitive to. The function λ−2
ab = C0 exp

[
C1/

(
1 + C3 (1− T/Tc)δ

)]
is fitted to the combined data and serves for interpolation. Since at T = 10 K we

could only measure λab and not λc, we deduce an anisotropy λc(0)/λab(0) ≥ 10, as

was observed in µSR, optical, and surface impedance measurements [23, 35, 36].

3.3 Results

We are now in position to extract λc from Eq. 3.1, Eq. 3.2 and the Stiffnessometer

a-ring data in Fig. 3.2(a). In this case, two coupled partial differential equations

must be solved, where λab is determined from the c-ring interpolation.

The gauge choices are as follows: Inside the ring, applying divergence to Eq. 3.2

yields the gauge ∇·(ρsAtot) = 0, where Atot = AR+AIC. This gauge also enforces

the continuity equation for the current density J = ρsAtot. Outside the ring we

apply the Coulomb gauge ∇ ·Atot = 0, which is also used to determine AIC and

Atot in the isotropic case. The boundary conditions are A(∞) = 0. In practice,

infinity is understood as the domain surface, and the domain is taken to be large

enough so that finite-domain effects are negligible. The domain of the problem is

defined as a cylinder with height 100 times that of the ring, i.e. 7.7RPL and outer

radius 100 times that of the ring, i.e. 11.5RPL. Since no current can cross the

ring surface, we demand J⊥(rin) = J⊥(rout) = 0 where ⊥ stands for the direction

perpendicular to the surface, and rin (rout) is the inner (outer) radius of the ring.
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Finally, from the absence of a surface field, we demand ∆A‖(rin) = ∆A‖(rout) = 0,

where ∆A‖ stands for the difference between the vector potential parallel to the

surface inside the ring and outside of it.

Figure 3.8 shows the numerical results of the vector potentials ratio that appears

in Eq. 3.1 as a function of (a) (R/λab)
2 and (b) (R/λc)

2 for λab = 13.9 µm at

T = 29.16 K. In our analysis, λab is extracted from the c-ring data in the isotropic

case. Then, for each temperature, the corresponding λab is used to generate the

result in panel (b), and combining with the a-ring data λc is extracted.
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Figure 3.8: Extracting the stiffness. Numerical results of the vector po-
tentials ratio as appears in Eq. 3.1 as a function of (a) (R/λab)

2 and (b) (R/λc)
2

for λab = 13.9 µm at T = 29.16 K.

Figure 3.9 presents the numeric solution of the ring vector potential AR at z = 0

plane (midheight of the ring), calculated for LSCO x=0.125 a-ring at T = 29.16 K

with λab = 13.9 µm, extracted from the extrapolation function presented in the

main text, and λc = 145 µm. Panel (a) shows the azimuthal part of A, whereas

panel (b) the radial one.

Figure 3.10 shows the absolute value of the current density J inside the rings for

two cuts at fixed angeles: (a) xz plane, (b) yz plane. At the xz plane, the current

concentrates at a very thin layer close to the ring inner rim, while in the yz plane

the current penetrates further into the bulk. This corresponds, of course, to the

large difference in the penetration depth in the two directions.
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Figure 3.9: Vector potential for LSCO x=0.125 a-ring. Numeric so-
lution of the radial (a) and azimuthal (b) components of the vector potential

inside the ring at z=0 for λab = 13.9 µm and λc = 145 µm

Figure 3.10: Current density simulation inside LSCO x=0.125 a-ring.
False color map of the current density distribution in a ring with λab = 13.9 µm
and λc = 145 µm in the (a) xz plane and (b) yz plane. Most of the current

concentrates on the inner rim.

Finally, Fig. 3.11 shows the magnetic field generated by the ring as calculated

from the curl of AR. The penetration pattern of the field is of an ellipse due to

the penetration depths anisotropy.

Currently, we manage to extract λc for only few temperatures close to T as , where

the anisotropy ratio is not too big and numerically solvable. These values of λc

are presented as orange open symbols in Fig. 3.2(b). The SC currents in the ring
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Figure 3.11: Magnetic field False color map of the magentic field z compo-
nent inside the a-ring and its vicinity for λab = 13.9 µm and λc = 145 µm

at z=0 emerging from the numerical solution for T = 29.16 K are depicted in

Fig. 3.1(c) by combined contour and quiver plots.

For all a-ring Stiffnessometer data we also applied the c-ring stiffness extraction

method ignoring the anisotropy. By doing so we determine an effective stiffness

λ−2
eff , which is some combination of λ−2

ab and λ−2
c . These values are presented as

green solid spheres in Fig. 3.2(b). λ−2
eff is larger than λ−2

c but shows the same trend

and indicates two transition temperatures.

3.4 Discussion

The observation of two transition temperatures is awkward; a material should have

only one SC critical temperature. One possible speculation for this result is a finite
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size effect, namely, if the rings could be made bigger the difference between the

two transition temperatures would diminish. This, however, cannot be the case

since the sample size is taken into account when extracting the stiffness. Bigger

samples should lead to the same λ values. A more plausible explanation is that the

phase transition starts in the form of wide superconducting filaments [37] or finite

width sheets [17] in the planes, but disconnected in the third direction. Whether

this is the case, or our result indicates a new type of phase transitions, requires

further and more local experiments.

The two transition temperatures suggest that there is a temperature range in

which the system behaves purely as 2D. Therefore, we examine whether λ−2
ab follows

the KTB behavior. At the KTB transition, the stiffness should undergo a sharp

increase (a “jump”) at a temperature TKTB that satisfies λ−2 = γTKTB, where

γ = 8kBe
2µ0

π~2d and d is the layer thickness [38]. We plot the line λ−2 = γT in

Fig. 3.2(b) for thickness d = 1.3 nm of one unit cell (u.c.) and for d = 10 nm

of about 8 u.c., both in cyan dashed lines. Clearly, the KTB line for thickness of

one u.c. does not intersect λ−2
ab where it exhibits a jump. The line for d = 10 nm,

however, does seem to intersect at the beginning of a jump. Thus, for the transition

to be of the KTB nature, an effective layer of about 8 unit cells and more is needed.

In summary, using new magnetic-field-free superconducting stiffness tensor mea-

surements, which are sensitive to unprecedented long penetration depths, on the

order of millimeters, and which are not affected by demagnetization factors or

vortices, we shed new light on the SC phase transition in LSCO x = 1/8. In

this compound, there is a temperature interval of 0.7 K where SC current can

flow in the CuO2 planes but not between them. When stiffness develops in both

directions, the ratio of penetration depths obeys λc/λab ≥ 10.



Chapter 3. LSCO phase transition 64

3.5 Supplementary Information

Materials

The LSCO single crystals were grown using Traveling Solvent Floating Zone fur-

nace, annealed in Argon environment at T = 850 C for 120 hours to release

internal stress, and oriented by Laue x-ray diffraction. Stiffnessometer samples

were cut into a shape of rings using pulsed Laser ablation, after which the rings

were annealed again. LE-µSR samples were mechanically polished using diamond

paste. They were treated eventually with 20 nm alumina suspension. The resulting

roughness of few tens of nanometers was determined by Atomic Force Microscope

(AFM). A typical AFM data is presented in Fig. 3.12.

Figure 3.12: Sample surface roughness. AFM image of one polished LSCO
x=0.125 plate treated with 20 nm Alumina suspension. Height profiles along

two lines are presented, demonstrating fairly smooth surface.

Stiffnessometer

The Stiffnessometer is an add-on to a Cryogenic SQUID magnetometer. The

components of the experiment shown in Fig. 3.1 in the main text are as follows:
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The inner coil is 60 mm long with a 0.05 mm diameter wire and two layers of

windings. It is wound on top of a 0.54 mm diameter polyamide tube. The outer

diameter of the coil is 0.74 mm, and it has 40 turns per millimeter. The second

order Gradiometer is 14 mm high, with inner diameter 25.9 mm, outer diameter

26.3 mm, and made from 0.2 mm diameter wire. We takeRPL = 13±0.15 mm. The

Gradiometer is constructed from three groups of windings distanced 7 mm apart

from each other. The upper and lower ones have two loops wound clockwise, while

the center windings have four loops wound anticlockwise. Numeric evaluation of

the G factor in Eq. 3.1 using the Gradiometer dimensions gives a reasonable result.

However, the G factor used here is extracted experimentally. As shown in Fig. 3.2

in the main text, the signal from the rings ∆V max
R saturates at T � Tc. It happens

when the penetration depth is much smaller than the ring dimensions. The ratio

between the voltages saturation value to the vector potentials ratio calculated

numerically gives G.
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Opening a Nodal Gap by

Fluctuating Spin-Density-Wave in

Lightly Doped La2−xSrxCuO4

This chapter describes a different work we performed to investigate whether the

spin or charge degrees of freedom were responsible for the nodal gap in underdoped

cuprates. It is based on our paper published in Physicsl Review B journal [39].

4.1 Introduction

There are several indications by now from angle-resolved photoemission spec-

troscopy (ARPES) that in underdoped cuprates a gap opens at the Fermi surface

in the diagonal (nodal) direction [40–44]. In La2−xSrxCuO4 (LSCO) this nodal

gap (NG) extends to x = 8%. At doping around x = 12.5% samples develop a

charge-density-wave (CDW) below T ≈ 100 K [45]. Traces of antiferromagnetism

(AFM) in the form of spin-density-waves (SDW) [46] or spin-glass [47] appear at

66
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doping up to x = 12.5% and temperatures T ≈ 10 K. It is therefore natural to

speculate that one of these symmetry breaking phenomena is responsible for the

opening of a nodal gap. In this work, we would like to clarify which one is the

most likely. Our strategy is to carefully examine a sample which is known to have,

at least, both AFM and SDW order, and opens a nodal gap at low temperatures.

The sample is LSCO with x = 1.92% [40].

Previous neutron diffraction measurements on LSCO x = 1.92% [40] showed a

magnetic Bragg peak at the AFM wave vector QAF below T = 140 K, and two

satellites that stand for static SDW order (on top of the AFM one). The satellites

appear below T = 30 K. Like in Matsuda et al. [46], there are two domains

in the sample. We focus on one of them, in which the AFM peak is observed

when scanning near (1,0,0), with no contribution from SDW. In contrast, the

SDW peaks are observed when scanning near (0,1,0), with no contribution from

the AFM peak. Neutron scattering detects the component of spin fluctuations

perpendicular to the momentum transfer q [48]. Hence, the SDW fluctuations

are perpendicular to the AFM order. ARPES measurements on the same sample

found that a nodal gap opens below TNG = 45 K [40]. Even though there is a

temperature mismatch between the NG and SDW appearance, the two phenomena

might be related. Moreover, CDW in LSCO x = 1.92% is expected to be very

weak [49], and indeed this sample is out of the CDW dome [45, 50]. Therefore, a

priori, CDW is not expected to generate the nodal gap.

Here we add to the available ARPES and neutron diffraction data, inelastic neu-

tron scattering (INS) and x-ray diffraction data on the same piece of LSCO

x = 1.92%. We show that the fluctuating SDW amplitude of the frequency where

it is the strongest, decreases at a temperature equal to TNG within experimental

error. In addition, we could not find any indications for CDW in our sample. We



Chapter 4. Nodal Gap from Fluctuating SDW 68

argue that these findings explain the previously measured 15 K discrepancy be-

tween the SDW freezing and the opening of a NG, and tie the latter to fluctuating

SDW.

Figure 4.1: SDW dispersion. False color map of normalized intensity as a
function of neutron energy transfer ~ω and momentum transfer q at T = 50 K
(a) and T = 2 K (b). The raw data is interpolated. The black horizontal line
in panel (b) demonstrates a constant energy cut along which the intensity is
integrated and plotted in Fig. 4.3. Dashed white lines in panel (b) represent
cuts along which the background is determined. The black symbols indicate
the center of the ~ω = 0 and 2 meV peaks demonstrated in Fig. 4.2, and make
the bottom part of an hourglass. At the right peak of ~ω = 2 meV we had 50

counts per 2 million at the monitor.

4.2 Results

The neutron experiment was performed at Rita-II, the cold neutrons triple axis

spectrometer at the Paul Scherrer Institut. Throughout this paper, we work in

orthorhombic notation, with cell parameters a = 5.344 Å, b = 5.421 Å and c =

13.14 Å at T = 2 K. In this notation, the tetragonal 2D QAF = (1/2, 1/2, 0) is

equivalent to (0, 1, 0) in reciprocal lattice units (r.l.u) of 2π/a. More information

is available in the Methods section. In Fig. 4.1 we present a false color map of
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neutron counts versus energy transfer ~ω and momentum transfer q. The raw data,

in this figure alone, is interpolated for presentation purpose. Data is presented

at two temperatures, 2 K and 50 K, which are below and above the freezing

temperature of the incommensurate magnetic order of 30 K [40]. In both cases,

strong intensity is observed at ~ω = 0. This is due to high order contamination

of the incoming beam scattering from a nuclear Bragg peak at (0, 2, 0), despite

the use of Br filter. Around (0, 1, 0), the intensity extends to energy transfers as

high as 8 meV for both temperatures, in a cone shape, which is in fact a poorly-

resolved bottom part of an hourglass. This will be demonstrated subsequently.

The scattering intensity is stronger at elevated temperatures. Interestingly, at

T = 2 K spectral weight is missing at low energies, suggesting the presence of a soft

gap for spin excitations. A similar spectrum, including the gap, was observed at the

fully developed hourglass dispersion of La1.875Ba0.125CuO4 [51], La1.88Sr0.12CuO4

[52, 53], and La1.6Sr0.4CoO4 [54], and also at La2CuO4 [55].

q-scans at specific constant energies at T = 2 K are presented in Fig. 4.2, showing

the evolution of the SDW peaks with energy transfer. The intensities are shifted

vertically for clarity. At ~ω = 0.6 meV, some intensity is detected around (0, 1, 0)

above the background. However, this could stem from the tail of the high order

contamination. At ~ω = 2 meV two clear peaks appear

For fitting, the instrument was modeled using Popovici ResCal5 [56], and the reso-

lution was calculated. Black horizontal lines in Fig. 4.2 represent the q-resolution

at each energy. This was taken into account as a constant width Gaussian at

each energy, which was convoluted with a Lorentzian (Voigt function). The fit

with two Voigt functions is demonstrated in Fig. 4.2 by solid lines. The fit to the

~ω = 2 meV data indicates a peak separation of 0.04 r.l.u. The same separation

is found in the elastic peaks [40], as demonstrated in the inset. The peaks centers

are illustrated in Fig. 4.1(b) by the solid points. The static and dynamic SDW
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correlation lengths, determined from the peaks width, are 85± 12 Å and 44± 5 Å

respectively. With increasing energy to 4 meV and then to 6 meV, the two peaks

are no longer resolved. However, the measured peak is asymmetric because of the

two underlying incommensurate peaks coming closer together. At 8 meV the in-

tensity diminishes. This behavior reminds two “legs” dispersing downwards from

some crossing energy as in the hourglass.

To further investigate the inelastic behavior, we sum the intensity over q at con-

stant energy cuts. The horizontal line in Fig. 4.1(b) presents one such cut. Back-

ground contribution is estimated from the data along the dashed diagonal lines

in Fig. 4.1(b), and subtracted. Fig. 4.3 presents the background subtracted q-

integrated intensity versus energy transfer 〈I〉(ω) =
∑

q I(q, ω), starting from

~ω = 0.15 meV to avoid the high intensity elastic peak. At T = 50 K, 〈I〉(ω)

monotonically grows as the frequency decreases. In contrast, at T = 2 K, 〈I〉(ω)

reaches a maximum at some ~ωmax between 2 and 3 meV, and drops towards

~ω = 0, although residual elastic scattering intensity is observed near ~ω = 0.

Measurements on La2−xBaxCuO4 with 0.0125 ≤ x ≤ 0.035 which were limited to

energies below 1meV agree with our results [57]. This plot demonstrates more

clearly the aforementioned soft gap in spin excitations which develops at low tem-

peratures.

We summarize the available data on LSCO x = 1.92% in Fig. 4.4(a). In this figure

we show the temperature dependence of the q-integrated scattering intensity at

three different energies. The data at ~ω = 0 is taken from Ref. [40] and multiplied

by 2 × 10−3 for clarity. It shows that a long range static SDW appears at a

temperature of 30 K. The intensity at ~ω = 0.6 meV increases as the temperature

is lowered, peaks at 38 K, and then decreases. This result demonstrates that

dynamically fluctuating SDW at ~ω > 0 diminishes upon cooling before long
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Figure 4.2: Evolution of the SDW peaks with energy at T = 2 K.
Momentum scan along k centered at (0,1,0) for different energy transfers at
T = 2 K. Scans are shifted consecutively by 2.5×10−5 counts/monitor for clarity.
Inset: SDW elastic peaks for the same q scan also at T = 2 K. Background from
higher temperature was subtracted. For energies of ~ω = 0 and 2 meV, a sum of
two Voigt functions is fitted to the data (solid black lines). The peak separation
for ~ω = 2 meV is 0.04 r.l.u, as in the ~ω = 0 case (see inset). Black horizontal

lines represents the instrumental resolution.
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Figure 4.3: q-integrated intensity vs. neutron energy transfer at low
(2 K) and high (50 K) temperatures. Integrated intensity is calculated for
each energy as sum of the counts over q along horizontal lines like the one shown
in Fig. 4.1. Background is estimated from the counts along the two dashed lines

shown in Fig. 4.1(a) and subtracted from the raw data.

range static incommensurate order develops. The same effect, although less sharp,

is observed for ~ω = 2 meV at 45 K.

Figure 4.4(b) depicts the temperature dependence of the nodal gap from Ref. [40]

as measured by ARPES. This gap opens at TNG = 45 K, which is the same temper-

ature where the spectral density at ~ωmax begins to diminish. The maximum elec-

tronic gap value ∆ agrees with isolated dopant-hole bound state calculations [58].

We note that ~ωmax and kBTNG are of the same order of magnitude. Our result

indicates a strong link between the dynamically fluctuating SDW and the nodal

gap.

In order to investigate whether CDW plays a role in the nodal gap [59], we con-

ducted a search for CDW in this sample by two different methods: off resonance



Chapter 4. Nodal Gap from Fluctuating SDW 73

0.0

0.5

1.0

1.5

2.0

2.5
 [1

0-4
 c

ou
nt

s/
m

on
ito

r]

=0    meV
=0.6 meV
=2    meV

x2 10-3

(a)

0 10 20 30 40 50 60 70 80 90 100
0
4
8

12
16
20

(m
eV

)

Temperature [K]

(b)

Figure 4.4: Temperature dependence of all experimental parameters.
(a) Elastic and inelastic incommensurate SDW intensities at different energies
from neutron scattering. (b) ARPES measurement of the nodal gap at kF [40].
The dashed vertical line emphasizes the fact that the nodal gap opens when the

amplitude of dynamic spin fluctuations at ~ω ≈ 2meV decreases.

x-ray diffraction (XRD) and resonance elastic x-ray scattering (REXS). The ex-

periments were done at PETRA III on the P09 beam-line and at BESSY on the

UE46-PGM1 beam-line, respectively. In REXS, the background subtraction is not

trivial, so we only present here our XRD data. Nonetheless, the final conclusion

from both methods is the same.

In Fig. 4.5 we show results from LSCO samples with x = 1.92%, x = 6.0%, and

La2−xBaxCuO4 (LBCO) x = 12.5%. The data sets are shifted vertically for clarity.



Chapter 4. Nodal Gap from Fluctuating SDW 74

The LBCO sample is used as a test case, since it has well established CDW and

presents strong diffraction peaks. The measurements were taken at 7 K and at

70 K, which are below and above the CDW critical temperature of LBCO [60].

We performed two types of scans: a “stripes” scan along (0, δq, 8.5) direction and

a “checkerboard” scan along (δq, δq, 8.5) direction. We chose to work at l = 8.5

to minimize contribution from a Bragg peak at l = 8 or l = 9. For LBCO at

T = 7 K, there is a clear CDW peak at δq = ±0.24 in the “checkerboard” scan,

which is absent at high temperatures. In contrast, for the LSCO samples there

is no difference between the signal at high and low temperatures. Since δq of

the CDW peak depends on doping, in our sample it is expected to be close to

δq = 0, where a tail of the Bragg peak could potentially obscure the CDW peak.

Arrows in Fig. 4.5 show where we might expect the CDW peaks, should they

appear, based on linear scaling with doping. These positions are out of the δq = 0

peak tail, and not obscured. Thus, although we are in experimental conditions

appropriate to find a CDW, it is not observed within our sensitivity. In fact, CDW

is even absent at higher doping as demonstrated by our experiment with LSCO

x = 6% sample. We observed the same null-result with the REXS experiment. It

is important to mention that hourglass excitations with no stripe-like CDW were

observed previously [54].

Our main results are as follows: we find the bottom part of an hourglass dispersion

inside the AFM phase of LSCO. The hourglass does not start from zero energy,

but has a soft gap from the static SDW order. A CDW order seems to be absent in

our sample. Upon cooling the system, a nodal gap in electronic excitations opens

just when the strongest spin excitations start to diminish. It is therefore sufficient

for the SDW fluctuations to slow down without completely freezing out in order

to modify the band structure.



Chapter 4. Nodal Gap from Fluctuating SDW 75

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-200

-100

0

100

200

300

400

500
C
ou

nt
s/
se
c

q (r.l.u)

LBCO 12.5% ( q, q,8.5) T=7.0K  T=70.0K 
LSCO 6.00% (0, q,8.5)   T=7.0K  T=70.0K 
LSCO 6.00% ( q, q,8.5) T=7.0K  T=70.0K 
LSCO 1.92% (0, q,8.5)   T=7.0K  T=70.0K 
LSCO 1.92% ( q, q,8.5) T=7.0K  T=70.0K 

Figure 4.5: Hard x-ray diffraction on three different samples: LSCO
with x = 1.92% and x = 6%, and LBCO x = 12.5%. Scans are done in two
different orientations and two different temperatures. CDW is detected only in

LBCO.

4.3 Methods

For the Neutron scattering experiment, the sample was mounted on aluminum

holder covered with Cd foils, and oriented in the (h,k,0) scattering plane. A Be

filter was used to minimize contamination from high order monochromator Bragg

reflections. The scattered neutrons are recorded with a nine bladed graphite ana-

lyzer. All the blades are set to scatter neutrons at the same final energy of 5 meV,

and direct the scattered neutrons through an adjustable radial collimator to differ-

ent predefined areas on a position sensitive detector [61, 62]. This monochromatic

q dispersive mode allows for an efficient mapping of magnetic excitations with an

excellent q resolution.
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Two types of scans were used: I) energy scan, in which the incoming neutrons

energy is swept, and the q information is embedded in the position of each blade.

II) momentum scan, in which the incoming neutrons energy is fixed, the nine blades

cover a small window in q, and the entire window is scanned. The contribution to

a given q is a weighted sum from the different blades.

Despite the Be filter, some contribution from the nuclear structure is unavoidable.

For elastic scattering, this contribution survives to higher temperature than does

the magnetic part, and therefore can be easily subtracted. For inelastic scattering,

the contribution from phonons could not be subtracted, but it is expected to vary

slowly with temperature close to the magnetic phase transitions. Therefore, all

features in this scattering experiment which show abrupt temperature dependence

around and below T = 50 K are associated with the electronic (magnetic) system.



Chapter 5

Conclusions

We demonstrated that the Stiffnessometer can measure penetration depth two

orders of magnitude longer, or stiffness four orders of magnitude smaller, than ever

before. This allows us to perform measurements closer to Tc and explore the nature

of the superconducting phase transition, or determine the stiffness at low T in cases

where it is naturally very weak. The Stiffnessometer also allows measurements of

very small critical current or long coherence lengths. The measurements are done

in zero magnetic field with no leads, thus avoiding demagnetization, vortices, and

out-of-equilibrium issues.

Using this new magnetic-field-free superconducting stiffness technique, we shed

new light on the SC phase transition in LSCO x = 1/8. In this compound, there

is a temperature interval of 0.7 K where SC current can flow in the CuO2 planes

but not between them. That is, in this temperature range, the in-plane stiffness

if finite while the interplane stiffness is zero. When stiffness develops in both

directions, the ratio of penetration depths obeys λc/λab ≥ 10.

Thus, studying superconducting properties with the stiffnessometer leads to new

results. The most intruiging one is two stiffness transition temperatures in the
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same sample.

Moreover, studying the relationship between spin and charge degrees of freedom

in extrem underdoped LSCO, we found the bottom part of an hourglass dispersion

inside the AF phase. The hourglass does not start from zero energy, but has a

soft gap from the static SDW order. A CDW order seems to be absent in our

sample. Upon cooling the system, a nodal gap in electronic excitations opens just

when the strongest spin excitations start to diminish. It is therefore sufficient for

the SDW fluctuations to slow down without completely freezing out in order to

modify the band structure.



Appendix A

Vector potential of finite coil

The finite coil is treated as a collection of current loops. The radius of the loops

and the distance between them is taken from the specs of the coil itself. The radius

is taken to be at the center of the wire. For a circular loop of radius R lying in the

xy plane centered around the origin and carrying a current I, the vector potential

has only φ component (cylindrical coordinates), and is given by

Aφ(ρ, z) =
µ0

4π

4Ia√
R2 + ρ2 + z2 + 2Rρ

[
(2− k2)K(k2)− 2E(k2)

k2

]

where K, E are the complete elliptic integrals of the first and second kind, and

k2 =
4Rρ

R2 + ρ2 + z2 + 2Rρ

(taken from [63] page 182)

Note that here for the elliptic integrals I use Matlab notation, where
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K(m) =
π/2∫
0

dθ√
1−msin2θ

=
1∫
0

dt√
(1−t2)(1−mt2)

E(m) =
π/2∫
0

dθ
√

1−msin2θ =
1∫
0

dt
√

1−mt2
1−t2 ,

whereas Jackson, for argument of m will use m2 in the integrand, i.e. KMatlab(m) =

KJackson(
√
m).

Thus, the vector potential of the coil of length L with wires of diameter d is given

by

Acoil(ρ, z) =
∑
R

L/2d∑
j=1

Aloop,R(ρ, z − jd) + Aloop,R(ρ, z + jd)

Figure A.1 presents the vector potential of a finite coil as a function of the distance

from its center, r, in mm, for different z positions. The coil is 60mm high, has

0.54mm polyamide core and two layers of windings with a 0.05mm diameter wire.

The potential drops off as 1/r like in the case of infinite coil, which appears in

the figure in blue line. The different prefactor does not affect the Stiffnessometer

PDE and its solution, as everything is normalized by AIC(RPL), and the absolute

value of the vector potential is measured by ∆V max
IC .

The inset of figure A.2 shows the vector potential of the same coil at the pickup

loop position r = RPL = 13 mm as a function of the height z. The main figure is a

zoom-in on the ring area from z = −h/2 to z = h/2. This demonstrates that the

vector potential is z-independent for that region, as expected from infinite coil.
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מימדית בגבישים יחידים -מוליכות דו-חיפוש אחר על

2של   4x xLa Sr CuO−   
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 המחקר נעשה בהנחיית פרופסור עמית קרן בפקולטה לפיזיקה

 

 אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי.

  



 תקציר

בודדים של קופרטים הודגמה הן במישורים מימדית ב-מוליכות דו-קיומה של על
2CuO ידי הפעלה של -והן בצובר על

שבו נוצרים פסים של גלי צפיפות מטען, נמצא כי המישורים אינם  אילוחשדה מגנטי בניצב למישורים. בדגמים בעלי 

מצומדים, ולמעשה, שתי טמפרטורות מעבר נמצאו במדידות התנגדות ומגנטיזציה. עם זאת, מדידות מסוג זה אינן מצריכות 

מוליכים. לא ברור, אם כן, אם -פילמנטים עלומספיקים איים או צובר, כלומר בדגם כולו, מוליכות ב-קיומה של על

יהעל שנמצאה במישורים היא תופעה מקרוסקופית, ואכן קיימת -מוליכות מימדית גלובלית כמצופה -דו (stiffnessת )וּקַשְׁ

אנו מצפים לקיומו של טווח , חיוביתלשאלה זו תשובה באשר ה. )KTBמהתיאוריה של קוסטרליץ, תאולס וברזינסקי )

/21מוליכה במישור -העל קשיותמסוים(, שבו ה אילוחטמפרטורות )ב ab מישורית -הבין קשיותהיא סופית, בעוד ה

21/ c  מתאפסת, כאשר קרוב מאוד  קשיותמייצג עומק חדירה מגנטי. כדי לבחון השערה זו, חייבים למדוד את ה

 לטמפרטורה הקריטית. 

 קשיותפיתחנו שיטה חדשה למדידת טנזור ה, על מנת לענות על שאלה זו, וצרכים נוספים מסוג זה בחקר מוליכות העל

בלי להפעיל שדה מגנטי חיצוני או לחבר מגעים. השיטה מ ,  ואורך קוהרנטיות cJ, זרם קריטי  s  מוליכה-העל

=s מבוססת על משוואת לונדון −J A  כאשר ,J היא צפיפות הזרם ו-A ידי -. עלהוא הפוטנציאל הווקטורי המגנטי

בטמפרטורות  sמוליכות, אנו מחלצים את -דרך המומנט המגנטי של טבעות על Jה של חסר רוטור ומדיד A-שימוש ב

עד לגבול שבו משוואת לונדון איננה מתקיימת, אנו קובעים   Aה של ידי הגדל-. עלcTהשואפות לטמפרטורה הקריטית 

קטנה ביותר, המיתרגמת  קשיות, רגישה ל(Stiffnessometer" )קשיומטר". השיטה, אותה אנו מכנים ואת  cJאת 

 לעומק חדירה מגנטי מסדר גודל של מספר מילימטרים. כמו כן, השיטה רגישה לצפיפות זרם קטנה במיוחד

21cJ Acm−  גורם לא מופיעים סיבוכים של שיטה שלנו ב. באופן טבעי, מסדר גודל של מיקרוניםולאורך קוהרנטיות

זרם או תנאים מחוץ לשיווי משקל תרמי, ועל כן הערכים המוחלטים של הגדלים השונים ניתנים  דימגנטיזציה, מערבולות

 למדידה. 

מימדית בקופרטים. -מוליכות דו-עלקטנה ובקרבת טמפרטורות המעבר, ניגשנו לחקור  קשיותמשיש בידינו שיטה למדידת 

2גביש יחיד של השתמשנו בלשם כך  4x xLa Sr CuO− (LSCO)  0.125 אילוחעםx  שתי טבעות:, ממנו חתכנו =

מוליכים זורמים רק במישורים; השניה, -האחת, שבה מישורי נחושת וחמצן ניצבים לציר הסימטריה, כלומר זרמים על

שתי מוליכים חייבים לחצות את המישורים. מצאנו -שבה המישורים הללו מקבילים לציר הסימטריה, כלומר זרמים על

, שבו זרמים מימדית-מוליכה דו-על קשיותבו קיימת דהיינו, יש טווח טמפרטורות ש ;טמפרטורות מעבר עבור הטבעות

מלוות במדידות ספקטרוסקופיה של מיואונים  קשיומטר. התוצאות שהפקנו מהיכולים לזרום רק במישורים, אך לא ביניהם

LE)בעלי אנרגיה נמוכה  SR−( מנת לקבוע את האנאיזוטרופיה בטמפרטורות מתחת -של אותם דגמים, וזאת על



/מוליכה בשני הכיוונים, יחס עומקי החדירה מקיים -על קשיות. גילינו כי כאשר יש לטמפרטורה הקריטית 10c ab   

.  

( nodal gap)ער בנקודת הצומת כפרויקט צד, חקרנו האם דרגות החופש של הספין או של המטען הן האחראיות לפ

אלסטי של ניוטרונים ומדידות -. למטרה זו, ביצענו מדידות פיזור לאאילוח-של קופרטים בתתהאלקטרוני ביחס הנפיצה 

0.0192x אילוחעם  LSCOעקיפת קרני איקס על גבישים יחידים של  האנטיפרומגנטית. , אשר נמצא בקצה הפאזה =

 fluctuating incommensurate spinספין מתנדנדים, שאינם משותפים מידה עם הסריג ) מצאנו כי גלי צפיפות

density waves קיימים אפילו בדגם מגנטי זה, עם יחס נפיצה הנראה כמו חלקו התחתון של "שעון החול" המוכר ,)

בקופרטים. הרכיב החזק ביותר של תנודות אלו מתחיל לדעוך בדיוק בטמפרטורה שבה נפתח הפער בנקודת הצומת. 

(. מסיבות אלה אנו מציעים כי הפער CDWמדידות קרני רנטגן של אותו דגם לא הראו סימנים של גלי צפיפות מטען )

  בנקודת הצומת ביחס הנפיצה האלקטרוני נובע מדרגות החופש של הספין. 


