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Abstract

Liquids are expected to crystallize at low temperatures. The only exception known

is Helium, which can remain a liquid at 0 K, due to quantum fluctuations. Similarly,

the spins in a magnet are expected to order at a temperature set by their Curie-Wiess

temperature, θCW . Geometrically frustrated magnets represent an exception. In these

systems, the pair-wise spin interactions cannot be simultaneously minimized due to

the lattice symmetry. This frustration leads to unconventional magnetic ground states

and macroscopic degeneracies.

In antiferromagnets, the spins align anti-parallel with each other. In the case

of a triangular lattice, only two spins can align anti-parallel leaving the third spin

frustrated and ”baffled” not knowing what to do. The question we are interested in is:

what will happen in this situation. So far, we’ve studied three examples of triangular

frustrated lattices, the 2-dimensional kagome Zn-paratacamite, and the 3-dimensional

pyrochlore lattice Y2Mo2O7 and Tb2Ti2O7. In the Zn-paratacamite we’ve found that

the spins continue to fluctuate down to 60mK meaning no spin freezing, also µSR

didn’t detect any lattice deformation, NMR T1 revealed that the excitation spectrum

is gapless. In the Y2Mo2O7 pyrochlore, we found that appearance of two (with a

hint of a third) non-equivalent Y sites indicating two (or 3) domains or phases, high

resolution x-ray powder diffraction revealed a magneto-elastic mechanism.

r
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Chapter 1

Frustrated Lattices

In this chapter we introduce the notion of geometric frustration in magnetic systems

(§1.1)and focus on two lattices, the 2D kagomé (§1.2) and it’s 3D equivalent pyrochlore

(§1.3) lattices. The kagomé lattice is based on the triangular lattice by omitting a

spin from every other site on every other line (see Fig.1.2a). The pyrochlore is the

3-dimensional cousin of the kagomé lattice, e.g. instead of having two dimensional

triangles building up the lattice, the tetrahedra is the single unit cell, where in this

case each tetrahedron has 2 spins frustrated (see Fig.1.4). The pyrochlore structure

can be thought of alternating layers of triangular and kagomé lattices, with interaction

between the planes (see Fig. 1.5).

1.1 Introduction

In a physical system, frustration arises from the fact that one cannot simultaneously

minimize the different energies corresponding to multiple interactions that occur in

the system. Here we focus on frustration that occurs due to the topology i.e., due

1
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to the geometric constraints of the lattice. The interactions are the same for all

spins on the lattice and it may include interactions between first, second .. nearest

neighbors. For example, in an antiferromagnetic ising spins system situated on a

triangular lattice one bond will always be geometrically frustrated (see Fig. 1.1).

Figure 1.1: Geometric Frustration occurs when it is impossible to satisfy all bonds
simultaneously. The dotted (full) line represents a frustrated (satisfied) bond.

In an antiferromagnetic lattice, there are two ways to frustrate. One, as shown

above, the system can be frustrated due to the geometry (topological frustration).

This is the case for three spins on a triangle, which can be expanded for the kagomé

or pyrochlore lattices. A second way to frustration, is due to interactions. Such is

the case in spin glasses where the crystallographic disorder creates a disorder in the

interactions, i.e., the distance between magnetic moments is random thus so is the

interaction.

Highly frustrated lattices have in common a large degenerate ground state (’super-

degenerate ground-state’). This can easily be seen using the classical nearest-neighbor
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antiferromagnetic heisenberg hamiltonian,

H = J
∑
<i,j>

Si · Sj (1.1)

where the sum < i, j > is over nearest-neighbor spins, and J is the strength of the

exchange interaction. For q interacting spins, the hamiltonian can also be written,

H = J
∑
<i,j>

Si · Sj =
J

2

∑
∆

(
q∑

i=1

Si

)2

− J

2

∑
i

S2
i (1.2)

where the last sum is over triangles or tetrahedra. Without the constant term

H =
J

2

∑
∆

L2 (1.3)

where L =
∑q

i=1 Si is the total spin of a unit cell (when S are classical vector of unit

length; Jq∆S2/2 is just a constant). Therefore, we can see that the ground state

is composed of states where the total spin L vanishes. Since there’s an extensive

possibilities to achieve such state, the ground state is degenerate macroscopically.

This implies that at zero temperature the entropy is non zero and finite, which violates

the third law of the thermodynamics. For example, it was calculated that on the

kagomé lattice, the S(T = 0) ' 0.502 [6]. However, it is not necessary to have a

macroscopic degeneracy in order to have a finite entropy as T → 0. It is sufficient

that the system will be gapless in its energy spectrum and that its density of states

increases exponentially with the size of the system[7][8].

With the application of an external field, H, the Hamiltonian (Eq.1.3) will now be

added with a field term (Zeeman) HZ = −∑
i gµBSi ·H, this yields the Hamiltonian,

H =
J

2

∑
∆

(
L2 − gµB

J
H · L

)
=

J

2

∑
∆

(
L− h

2

)2

− h2

4
(1.4)

where h = (gµB/J)H. Thus, the ground state will be such that L− h/2 = 0 or,

2J

q∑
i=1

Si − gµBH = 0.
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We still have an extensive ways of producing such states. Furthermore, all states in

this situation bare the same magnetization.

1.2 Kagomé Lattice

As seen in Eq. 1.3 the energy of the heisenberg model on this lattice can be minimized

by placing the spins on each triangle pointing in three different dirrection 120◦ away

from each other. Let us denote these three dirrection by A, B and C. Two configura-

tion are known to posses long range order. One configuration is known as the q = 0

configuration. In this configuration the spins along any line of the kagomé is repeated

in an alternating way (i.e., ABABAB or ACACAC etc.). The other configuration is

known as the
√

3 × √
3. In this case, the spins are aligned in a rotating sequence

(i.e., ABCABC..). The extensive equivalent ground states is greatly enhanced since

the spins do not have to be on the same plane (’noncoplanar’ state). In Fig. 3.1b we

demonstrate how the ground state degeneracy grows with the system size.

On the kagomé lattice, there are two mechanism which destroy such long range

order. One is a chiral domain walls, in which spins are arranged in a different sense

of rotation. (see Fig. 1.3). The generation of such a wall costs no energy however

it increases the entropy. Another possibility is tunneling of spins from the A (or B)

direction to the B direction (or A)[9]. This situation is possible in the
√

3×√3 state.
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Figure 1.2: (a) The kagome lattice, (b) the possibility of the extensive ground state
grows with the systems size
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Figure 1.3: A possible chiral wall on the kagomé.

1.3 Pyrochlore Lattice

As in the kagomé case, the minimum energy state in the heisenberg model (as dictated

by Eq.1.3), for each tetrahedron, is when the sum of the spins of a single unit vanishes.

This constraint leaves two degrees of freedom which can be parameterized as two

angles, as in Fig. 1.6, one is the angle between two spins, α, the other between two

pairs of spins, ϕ.

Placing the tetrahedra on a lattice, imposes further constraint; however, we are

still left with one degree of freedom for each tetrahedron. Therefore, each ground state

can be described by a number of continuous degrees of freedom which is proportional

to the number of units creating the macroscopic lattice.

The presence of a macroscopically degenerate ground state has a profound im-

pact on the low temperature modes of the system. In the harmonic approximation

the pyrochlore lattice exhibits soft modes, in which have zero energy. These soft
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Figure 1.4: The pyrochlore lattice - a corner sharing tetrahedra.

modes correspond to displacements in phase space that lie within the ground state

manifold[10]. If a finite number of spins are able to rotate without an energy cost,

then correlations can effectively be destroyed.

Thermal Fluctuations and quantum flucuations

In most materials thermal fluctuations destroy any long-range order however, in a

geometrically frustrated magnet thermal fluctuations can create ordering[11]. In a

geometrically frustrated magnet the degeneracy is very sensitive to small perturba-

tions. Thus, a thermal fluctuation can preferentially select a subset from the ground
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Figure 1.5: The (100) projection of the
pyrochlore lattice. The projection shows

the layered structure of the lattice -
triangular (dashed black lines), kagomé

(blue lines), triangular (black lines)

S
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2
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1

Figure 1.6: Four spins that satisfy∑4
i=1 Si = 0

state manifold. Therefore long-range order can form in the system at low tempera-

tures. Due to the ground state degeneracy, one can go between states with no energy

cost. Therefore, in a system that doesn’t go order by disorder there should not be

a phase transition out of the paramagnetic state. It was pointed out that in a geo-

metrically frustrated magnet with sufficiently large levels of defects, such as a doped

pyrochlore antiferromagnet should undergo a phase transition into a spin-glass at a

finite temperature[12]. In the kagomé lattice however, the situtation is different. In

a pure kagomé thermal fluctuations cause the system to select a nematic state (no

topological order but long-range orientational order) and not a conventional spin glass

behavior.

In addition to thermal fluctuations, in frustrated magnets, quantum fluctuations
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can help select a specific configuration. These fluctuations arise from the Heisenberg

uncertainty principle, i.e., from our inherent inability to specify Sx, Sy and Sz simul-

taneously. Thus, when two neighboring spins are, on average, parallel (ẑ), there is

still residual interaction between their perpendicular (x̂ or ŷ) components.

1.3.1 Breaking the groundstate degeneracy

The Heisenberg hamiltonian, Eq. 1.3 therefore leads to macroscopic degeneracy. Thus

the frustrated system is very sensitive to additional terms in the hamiltonian. We

concentrate on 3 possible cases: lattice distortions (through a magneto-elastic term),

changes in the susceptibility (through a Dzyaloshinsky-Moriya interaction) and an

exchange anisotropy. There are other possibilities such as next nearest neighbors

interactions[13] or dipolar interactions[14] or others that we do not expand on here.

Magnetoelastic Distortion

In order to break the groundstate degeneracy, it has been suggested that the lattice

distorts[15][16]. In such distortions, the increase in the elastic energy is outweighed by

a reduction in the magnetic energy. This is similar to a cooperative Jahn-Teller effect

where a degeneracy of the electron groundstate in a molecule is broken by a distortion

of the molecule. The difference of course, is that in geometrically frustrated magnets

there is a spin rather than an electronic degeneracy that drives the distortion.

A magnetoelastic term causes a distortion which results in shorter and larger

bonds in each unitcell (tetrahedron or triangle). Assuming J = J(r), the shorter and

longer bonds will posses Js > J and Jl < J respectively. Thus, it becomes favorable

to align the spins anti-parallel in the short bonds and parallel in long bonds. The
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hamiltonian with a magnetoelastic term can be written as,

H = J
∑
<i,j>

Si · Sj − 1

3k

(
dJ

dr

)2 ∑
i>j

(Si · Sj)
2 (1.5)

where k is the elastic energy (spring) constant. Thus, the magnetoelastic term causes

the spins to grow closer or farther depending on their relative orientation and the sign

of the derivative of the exchange constant. In the most spectacular case the magneto-

Figure 1.7: A perfect (red) and a
distorted (green) pyrochlore

Figure 1.8: A perfect (red) and a
distorted (green) triangle.

elastic coupling has been evidenced to lead long range spin order accompanied by a

new lattice structure such as in ZnCr2O4 [17] and CdCr2O4[18]. Alternatively, this

coupling might also be responsible to a short range spin order and short range lattice

deformation in Y2Mo2O7[19, 5, 20], in which the original lattice structure is preserved

on average.

Dzyaloshinsky-Moriya

It has been shown, both theoretically[21, 22, 23, 24] and experimentally[25], that

Dzyaloshinky-Moriya Interactions (DMI) can be significant in the magnetic behavior

of kagomé and pyrochlore lattices. The DMI term in the hamiltonian is represented
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as,

HDM =
∑
<i,j>

Dij · (Si × Sj)

where Dij ¿ Jij is the DM vector which defines the interaction. Dij is antisymmetric

with regards to site permutation, Dij=−Dji. A rigorous derivation of the contribution

of this interaction term is presented in Appendix B, here we outline the contributions

of the DM interaction in mean field approach.

In this approach, we write the Hamiltonian with DMI as,

H = −
∑

i

Si ·
(

J
∑

j 6=i

Sj + Dij × Sj + gµBH

)
. (1.6)

By replacing this Sj with M/gµB the Hamiltonian of Eq. 1.6 can be written as

H = −gµB

∑
i Si ·Heff where

Heff =
1

gµB

·
∑

i

(JSi + Dij × Sj) + H

However, in the kagome (see Fig.1.9) and pyrochlore lattices

∑

j 6=i

Dij = 0 (1.7)

and the DM interaction does not contribute in the mean field level.

Exchange Anisotropy

The exchange anisotropy Hamiltonian is written as,

H = −
∑
<i,j>

(
JzS

z
i S

z
j + J⊥S⊥i S⊥j

)− gµB

∑
i

Si ·H (1.8)

we take a mean field approximation, and receive that the magnetization measured in

different directions differs,

M =
C

T
·Heff (1.9)

Mz,⊥ =
C

T + θz,⊥
CW

·Hz,⊥ (1.10)
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⊗⊗

⊗

Figure 1.9: Orientation of the in-plane and out-of-plane components of the DM
vector.

where θz,⊥
CW = C(gµB)−2Jz,⊥.

In the kagome case exchange anisotropy leads to an unusual ground state. Accord-

ingly the spins are coplanar, with a single angle, ϕ, which determines the direction

of the spins (see Fig. 1.12). We look at the anisotropic super-exchange hamiltonian,

H =
∑

<i,j> JxS
x
i Sx

j + JzS
z
i S

z
j , and assume all spins are of the same size. Thus, we

can write the energy as a function of the super-exchange constants and the angle ϕ.

We observe the contributions of spins in the x̂− ẑ plane along each axis,

S1 = S(sin ϕ, 0, cos ϕ) (1.11)

S2 = S(− sin ϕ, 0, cos ϕ)

S3 = S(0, 0, 1) (1.12)

thus,

E(Jx, Jz, ϕ) = −Jx sin2 ϕ + Jz cos ϕ(cos ϕ + 2) . (1.13)
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Figure 1.10: DM vectors on the pyrochlore lattice are possible in two scenarios.

Minimizing the energy with respect to ϕ results in,

cos ϕ = − Jz

Jz + Jx

. (1.14)

Thus, in the isotropic case (where Jz = Jx), cos ϕ = −1/2 hence ϕ = 120◦ as

expected and the magnetization vanishes. In the anisotropic case this leads to a finite

magnetization: the magnetization per spin along ẑ would be,

M =
1 + 2 cos ϕ

3
(1.15)

the 1/3 factor is for 3 spins, 1 + 2 cos ϕ is from one spin pointing along ẑ and the

two others pointing anti-parallel with an angle ϕ. Thus, the anisotropic kagomé is

expected to have a ferromagnetic ground state.
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Figure 1.11: Expansion of the single tetrahedra DMI onto the pyrochlore lattice.

1.4 Existing Data

Strongly frustrated compounds have also a characteristic susceptibility fingerprint

(See Fig.1.13)- their inverse susceptibility, χ−1, follows the usual Curie-Wiess law

down to temperatures well below of their expected ordering temperature θCW . At

some temperature, T = TF ¿ θCW , a deviation from the linear behavior occur.

Different compounds enter different states at T < TF . This state can be ordered (such

is the case in Y2Ru2O7) or glassy (as in the case of Y2Mo2O7). In some circumstance

it can be neither, such is the case of Y2Tb2O7, this compound remains in a fluctuating

state down to extremely low temperatures (50 mK). The smallness of the frustration

parameter, f = TF /θCW , represents a ’strong’ geometric frustration. At T > θCW

the state is usually paramagnetic, whereas at T < TF the state differs from one
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x

z

Figure 1.12: The Ising kagomé lattice has one angle which defines the orientation of
the spins in the triangle unit cell.

compound to another. At TF < T < θCW , the intermediate regime, is the cooperative

paramagnetic, where spin correlations remain weak although the temperature is below

the scale set by the interactions.

1.4.1 Spin 1/2 Kagomé ZnxCu4−x(OH)2Cl2

The Herbertsmithite is considered the Holy Grail compound since it is the first ex-

perimental realization of a perfect S=1/2 Kagomé structure. It is a part of the

Paratacamite family ZnxCu4−x(OH)6Cl2. The Herbertsmithite (x = 1) is named af-

ter Herbert Smith who first discovered it in a mine in Chile in the early 1970s. The

Paratacamite family can be found in mines in Iran as well. Unfortunately, the natu-

rally occurring single crystals lack the purity needed for physical measurements. The
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Figure 1.13: Characteristic susceptibility of a highly frustrated compound, below TF

the susceptibility behavior is compound specific.

magnetism of the Paratacamite family is obtained from the Cu2+ electronic spin car-

rying a S=1/2. The electronic spin couple to its nearest neighbors through oxygen

super-exchange.

The parent compound of the family is the Clinoatacamite, (x = 0, Cu2(OH)3Cl)

which has a distorted pyrochlore structure. The system consists of Cu tetrahedra with

a distortion along and perpendicular to the kagomé planes. The structure reveals three

different Cu sites, two in the plane and another out of the plane (see Fig.1.14). At

x > 0.33 the distortion along the kagomé plane is removed and the system consists

of two different Cu sites. The Cu sites in the kagomé plane are identical, leaving

elongated tetrahedra. When all out-of-plane Cu2+ are replaced with non-magnetic

Zn2+ we obtain the Herbertsmithite, where the kagomé planes are fully decoupled

(see Fig.1.14).

X-ray diffraction reveals the unit cell parameters of the Herbertsmithite, which is
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Figure 1.14: Three members of the paratacamite family. Each bond color represent
a different bond length. The two extremes, the Clinoatacamite and the

Hebertsmithite, x = 0 and x = 1, are shown on the left and right hand-sides
respectively.

found to have a=b=6.834Å and c=14.032Å, the three vectors of the unit cell form

the angles α = β = 90◦ and γ = 120◦. Thus the planes are well separated, thereby

creating a perfect kagomé lattice. The octahedron around a planar Cu site consists

of four groups of hydroxyl (OH−) and two chlorine ions (Cl−). This octahedron is

elongated along the Cl-Cl axis. On the other hand, the octahedron around a Zn site

(between planes) has six hydroxyl groups, all with the same bond lengths creating a

symmetric octahedron. Thus, this site is of higher symmetry relative to the in-plane

Cu site. The original sample makers note that because of this symmetry difference,

during the synthesis of the sample, Cu occupy preferentially the plane sites whereas
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the Zn remain out the plane. Furthermore, X-ray powder diffraction analysis indicate

a better likelihood of a 100% Cu on the kagome site and the interlayer site covered

with 100% Zn. [26].

Various compositions of the paratacamite family were studied by susceptibility

measurements[27]. The inverse susceptibility (χ−1) data shows antiferromagnetic cor-

relations, but shows no signature of a transition at the measured temperature range

2 < T < 350 K. At high temperatures (T > 100 K) the susceptibility shows a Curie-

Wiess behavior and a linear fit to χ−1(T > 100) reveals θCW to be in the 200-300 K

range (200 K for x = 0 then increases almost linearly to 314 K for x = 1). The

exchange constant is can then be calculated from[28]

θCW =
zJ

2kB

J = 190 K ∼ 170 meV.

Below ∼ 75 K a sharp increase in the susceptibility occurs, deviating from the

ideal kagomé Heisenberg model[27] [29]. This upturn was accounted for by DMI

[22, 30] or anisotropy in the bonds [31, 32]. Recent low temperature[33] (0.1 < T <

3 K) magnetization of the hebertsmithite was measured using dc-magnetization with

a squid magnetometer. At low temperatures, 0.1 < T < 10 K the susceptibility

increases more rapidly down to ' 0.5 K where it eventually saturates. Even at

these low T there is no sign of a magnetic transition. The study suggested that the

low temperature magnetization is dominated by defect contribution[33].However, free

impurities, or even interacting impurities that generate an additional ferromagnetic

Curie-Weiss law [22][34], have been shown not to describe this upturn completely.

Several neutron studies [35, 36, 37] performed on powder samples of Herbert-

smithite. Ref. [35, 36] indicated that there might be a presence of defects in the
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system. They attributed the anomalous behavior to a substitution of Cu2+-Zn2+. In

such a case there’s two magnetic defects: (i) an introduction of a non-magnetic Zn2+

ion in the kagomé plane, and (ii) the presence of a magnetic Cu2+ ion between the

planes. Calculation suggests approximately 8% Zn ions in the kagomé plane. How-

ever, The super exchange interaction between nearest-neighboring Cu2+ moments

mediated via oxygen is very sensitive to the Cu-O-Cu bond angle, θ, and it changes

from strongly antiferromagnetic when θ = 180◦, to zero when θ ∼ 95◦ to ferromag-

netic θ < 95◦. From neutrons data refinement, θ found to be 115 . θ < 119.2◦,

indicating that the interactions between the kagome Cu2+ and the doped triangular

Cu2+ spins are weak, which makes the Cu moments at the triangular sites almost in-

dependent spins and thus makes ZnxCu4−x(OH)6Cl2 a weakly coupled kagome system

for all Zn concentrations x < 1. Susceptibility measurements from the same group

suggested a 5% to 10% defects.

Local probes measurements were also performed. NMR was performed on different

nuclei (for the atomic environment, see Fig. 1.15), 1H[3], 17O in enriched samples[1],

63Cu[2] and 35Cl[2].

Proton

The proton posses a nuclear spin 1/2 which has a big gyromagnetic ratio (γ =

42.57 MHz/T) and gives an excellent NMR signal. The NMR spectrum does not re-

veal any shift, which indicated the absence of hyperfine coupling between the protons

and the copper atoms. Thus this nuclei could not reveal susceptibility information

on the kagome planes.[3]
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Cu
OH
Zn
Cl

Figure 1.15: The structure of the Hertbertsmithite. Two Cu triangles of successive
kagome planes are represented.

Copper

The copper nuclei has two isotopes carrying both a spin 3/2. The NMR spectrum

was studied in detail at temperature 1.9 < T < 40 K[2]. Above that temperature

the relaxation becomes too fast so Cu NMR signal cannot be detected. The 63Cu

NMR shift measurements were not successful due to technical difficulties. However,

T1 measurements were carried out indicating that below 30 K, 1/T1 decreases with

negative curvature revealing that paramagnetic spin fluctuations show no magnetic

instabilities.
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Oxygen-17

The oxygen is therefore found to be ideal for probing the magnetic kagome planes since

they are bound to planar coppers. The 17O carries a spin 5/2 thus a unique central

−1/2 → 1/2 transition is observed. The shift of this peak reflects the susceptibility of

the two neighboring Cu (K ∝ AχCu - where A = 35kG/µB is the hyperfine constant

between O and Cu+2 electronic orbital). This shift is depict in Fig. 1.16 as the

intrinsic 17O shift. In the observed 17O line, two different central transitions were

found indicating a possibility of the existence of two different environments. As with

previous neutrons scattering this second environment was attributed to a possible

Zn/Cu interchange. This shift is noted as 17O defect. Spin-lattice relaxation, T1,

were also conducted.
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Figure 1.16: 17O NMR Knight shifts. Data is taken from Ref.[1]
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Chlorine

In parallel to our work, a different group[2] have taken dynamic and static mea-

surements with great precision on oriented powder samples. Here we describe these

measurements.

Due to the orientation of the samples, it was possible to follow the NMR spec-

trum down to 4.2 K. The center peak of the line, which originated from oriented

crystallines, was measured with high accuracy, thus extracting the shift correspond-

ing to this resonance (35Kpeak). Since the 35Cl lineshape begins to tail off to lower

fields with decreasing temperatures, an additional shift measurements were taken at

the half-intensity position on the lower field side (35K1/2) as well at the edge of the

line (35Kedge). These shifts are shown in Fig.1.17 along with the squid measurement

from §3.1.1. Clearly, the 35K1/2 behaves as the bulk squid measurements which there-

fore represent a bulk average of this susceptibility. The 35Kpeak and 35Kedge at low-T

behaves differently, it follows Curie-Wiess down to ∼ 25 K, whereas the bulk sus-

ceptibility begins to deviate below ∼ 100 K. The 1/T1 data agreed with our premier

measurements (§3.1.1) 17O and 63Cu NMR.

To conclude these NMR measurements, the T variations of the NMR T1 of 17O

63Cu and 35Cl are similar. These measurements point to a zero-gap,

T−1
1 ∝ exp(−∆/T ) (1.16)

where ∆ is the energy gap, data fits shows ∆ < 1 eV ¿ J . The shift (susceptibility)

however, differs one from another as well as from bulk measurements except from

35Cl.
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Figure 1.17: 35Cl NMR Knight shifts. The solid line is a fit to a Curie-Wiess
behavior, −22.14973/(x + θCW ) + 0.02062 where θCW = −237(40) K. Cl shifts are

taken from Ref.[2]. The bulk susceptibility, χbulk measured using a SQUID.

1.4.2 A2B2O7 Pyrochlores

The oxide pyrochlores family, with the chemical formula A2B2O7, has a variety of

magnetic compounds each with its own magnetic characteristics. A more general

chemical formula is A2B2O6O
′. In Fig.1.19 we depict the A, B and O sites. The A

and B sites, each form a network of corner-sharing tetrahedra, forming an interwoven

kagomé nets. However, the A and B sites differs in their oxygen environment, the A

site has an eightfold oxygen coordination and is occupied by a rare-earth ion (such

as Y (S = 1/2), Nd (S = 7/2), Tb (S = 3/2) and others). The B site has a six-fold

coordination and is occupied by a metal ion (as Mo (S = 1), Ru(S = 3/2, S = 5/2),

Mn and others). The O′ site creates an FCC structure, since the O′ sites are situated
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Figure 1.18: Comparison of T1 measurements for different nuclei, 17O, 35Cl and
63Cu. Data taken from [3] (17O) and [2] (35Cl, 63Cu).

in the middle of the A-site tetrahedra the pyrochlore lattice can be seen as an FCC

structure (see Fig. 1.20).

Y2Mo2O7

Y2Mo2O7 is a narrow band gap semiconductor, its magnetic Mo4+ (S = 1) forms

a pyrochlore lattice. Susceptibility indicates antiferromagnetic interactions (θCW ∼
200 K) with an effective moment of 2.55µB. Early susceptibility measurements reveal

evidence for a spin-glass transition at Tg ∼ 22 K[39][40]. Fig. 1.21 shows the suscep-

tibility with (zero) field splitting in the susceptibility which is indicative of spin-glass

transition. This transition is appears without the presence of disorder (randomness)

since the samples used were of very high purity (less than 1%). This spin glass tran-

sition was also observed by nonlinear dc susceptibility, χnl[39]. χnl diverges at Tg in
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Figure 1.19: The pyrochlore lattice showing the A (black spheres), B (blue spheres)
and O (green circles) sites

a thermodynamic spin glass phase transition as,

χnl ∼ t−γ =

(
T − Tg

Tg

)−γ

(1.17)

a detailed investigations on the critical exponents reveal similarity to those found in

conventional spin-glasses despite the immeasurably small disorder in Y2Mo2O7[39].

A similar analysis to other frustrated lattices such as SrCu8Ga4O19 (SCGO) demon-

strate resemblance to typical spin glass (a field splitting of the linear susceptibility)

however, scaling of the non linear susceptibility is inconsistent with conventional spin

glasses behavior.

The first indication of randomness (distortion) in the structure of Y2Mo2O7 was

found by X-ray absorption fine structure (XAFS)[20]. The Mo-Mo pair distance
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Figure 1.20: The pyrochlore as an FCC. Showing the A (black dots) and O′ (hollow
circles) sites

has a relatively large amount of pair-distance disorder (about 0.15Å compared to

3.5Å Mo-Mo mean pair separation). This results indicate that although the high

purity of the sample, there is still bond modulation. Thus, a disorder in J exists

for spin-glass transition to occur. The second indication of disorder was from 89Y

NMR[19]. A multiple discrete values of the local susceptibility at the Y sites were

found at T > 92 K. These discrete values results from small discrete changes in the

Mo-Mo bond lengths. At high temperatures, T > |θCW | the NMR line is smooth,

whereas as the temperature decreases below θCW , more discrete changes appear in

the spectra. Therefore, this distortion along the Mo sublattice relieves the magnetic

geometric frustration. The third indication, of such magneto-elastic distortion, was
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Figure 1.21: Zero-field-cooled (ZFC) and field-cooled (FC) susceptibility
measurements of Y2Mo2O7. A transition to spin glass is observed at T ∼ 20 K
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from µSR[5]. It was shown that at Tg, the static field distributions, which is asso-

ciated with lattice deformation, increased with applied magnetic field. Furthermore,

the ratio between the static field distribution width, ∆, and the susceptibility was

shown to be non linear, hence the distribution of muon coupling to electronic spins is

temperature dependent (see §2.1.1). This was concluded to be the result of random

lattice distortions similar to that seen in the NMR.

Tb2Ti2O7

The Tb2Ti2O7 is unique in the oxide pyrochlore family A2B2O7 being a spin-liquid; de-

spite its short-range AFM correlations at temperatures lower than 100K, the Tb2Ti2O7

remains in a fluctuating paramagnetic state down to 70mK (susceptibility indicate

θCW = −19 K)[41]. A cluster glassy behavior is observed by susceptibility below

0.2 K[42]. However, it was demonstrated that, under pressure[43] high magnetic field

field[44] or both[45], Tb2Ti2O7 does order magnetically. It was suggested that lattice

distortions caused by the anisotropic pressure induce the magnetic order.

1.5 Summary

Under the constraints of the classical Heisenberg model with nearest neighbor an-

tiferromagentic couplings, Eq. 1.3 raises the T = 0 K ground state condition of
∑q

i=1 Si = 0. In frustrated magnets this condition does not uniquely defines the

ground state, thus there is an extensive ground state degeneracy.

The presence of a macroscopically degenerate ground state on the classical py-

rochlore results in the absence of ordering down to T = 0 K. However, all pyrochlores

(here we report on Y2Mo2O7, §3.2.1) but one (Tb2Ti2O7 §3.2.2) freeze.
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On the kagomé lattice, the situation is reversed. Theoretically, the quantum

kagomé
√

3 × √
3 state is expected at T = 0 K whereas the classical kagomé is

predicted to freeze at a finite T . However, the experimental picture is reversed, the

only quantum kagomé realized (Herbertsmithite §3.1.1) does not freeze.

1.6 Objectives

The frustrated system is very sensitive to additional terms in the Hamiltonian, we’ve

presented the bi-quadric magneto-elastic coupling which result in lattice distortion,

the bi-linear Dzyaloshinksy-Moriya and the linear exchange anisotropy. The most

general hamiltonian we consider is,

H = −
∑
<i,j>

(
JzS

z
i S

z
j + J⊥S⊥i S⊥j

)
+

∑
<i,j>

Dij · (Si × Sj)− 1

3k

(
dJ

dr

)2 ∑
i>j

(Si · Sj)
2 .

(1.18)

The aim in this thesis is find such perturbation in various compounds, and investigate

their impact of the ground state properties. Using our experimental methods, which

we describe in the next chapter, we can probe for exchange anisotropy and magnetoe-

lastic terms. We are unable to detect DMI without heavily relying on theory, since

it has no effect at the mean field level (see Eq.1.7).



Chapter 2

Experimental Techniques

In this chapter we describe the various techniques used in the thesis. We begin with

an introduction to µSR and elaborate on a Transverse-Field configuration, which was

the main tool used in the study of ZnCu3(OH)6Cl2 and Tb2Ti2O7. We move on to

give a description of the NMR technique, discussing the methods for powder-averaging

the signal of a powder. This was the main tool in the study of Y2Mo2O7. We then

turn to describe a SQUID, which complemented all of our studies. We finish with a

description of X-ray diffraction which were carried out in the study of Y2Mo2O7.

2.1 µSR

µSR is acronym for muon spin rotation/relaxation. The basic idea behind the tech-

nique is to measure the time evolution of a muon in a sample, which in turn will tell

us about the magnetism of the sample. The positive muon particle (µ+) is a lepton,

the heavy analogue of the positron. The muons are produced through the decay:

π+ → µ+ + νµ.

30
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Thus in order to conserve the total spin 0 of the pion, and since there are only left

handed neutrinos (spin is antiparallel to the momenta), the muons created are 100%

spin-polarized. The muon is unstable and decays via the weak interaction with an

average lifetime of τµ ' 2.19703 µsec into a positron and two neutrinos:

µ+ → e+ + νe + νµ.

Because of the parity violation of the weak interaction, the positron from the decay

is emitted preferentially in the direction of the spin of the muon at the instant of the

decay. By ’preferentially’ that is the positron is emitted asymmetrically relative to

the muon spin direction, and the angular distribution of the decay positrons depends

on their energy. The angular distribution is expressed as

dN =
1 + a(ε)cosθ

4π
ρ(ε)d cos(θ)dε

where a(ε) = (2ε− 1)/(3− 2ε), ρ(ε) = 2(3− 2ε)ε2 and ε = E/Emax is the normalized

positron energy, E = Emax when both neutrino are emitted in the same direction,

E = 0 when they are opposite to each other (Emax = mµc
2/2 = 52.8 MeV). θ is

the angle of the positron emission measured from the muon spin direction. After

integrating over the energy ε the angular distribution obtained is plotted in Fig.2.1 .

The radial distance represents the relative probability that a positron is emitted in a

given direction.

In conventional magnetic resonance experiments, spin polarization is achieved by

a combination of High-Field and low-Temperature. In µSR the muon produced is

100% spin polarized due to the parity-violation decay of the pion. In the rest-frame

of the pion, the muon and neutrino are emitted ’back-to-back’, and since the neutrino

has chirality −1, the muon will also have chirality of −1. The production of the muon

beam in a muon facility is basically the following,
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Figure 2.1: The angular distribution of the muon. The radial distance represents
the relative probability that a positron is emitted in a given direction.

• A beam of protons is accelerated and aimed at a target such as beryllium or

carbon.

• Nuclear reactions occur in target which produce π+. Some remain in the target,

other have some kinetic energy and are emitted.

• The pions decay, the muons have a distribution of momenta. High momentum

muons from energetic pions decaying in flight, the low momentum muons from

pions within the target.

• A separator is used to filter only muons with a specific momentum which corre-

spond to muons from pions which decay at rest near the surface of the target.

These are surface muons with a well-defined kinetic energy of 4.1 MeV.

• The beam of the surface muons is then focused on the material studied. The
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4.1 MeV kinetic energy of the muon can be converted to a mean stopping range

of 140 mg/cm2.

The decay positrons are detected in one of the scintillator detectors which surround

the sample environment. Each detector creates an histogram of the time differ-

ences between the muon implantation and decay positron. The number of detected

positrons in a histogram of detector i correspond to

Ni(t) = Ni0e
−t/τµ [1 + AiPµ(t)] + Bi

where Ni0 is a normalization, Bi is time-independent background, Ai is the exper-

imental asymmetry (typically 0.24), Pi is the muon polarization function in the

direction sample→detector.

The cyclotron based facility in PSI provide us with a continuous muon beam. As

a result, a muon counter on the beam path right before the sample is required to

record the muon arrival time. The timing resolution is limited by electronics to be of

the order of nsec (0.625 nsec in LTF and 1.25 nsec in GPS) and the time window is

about 6 to 10sec.

The time differential measurements fall into three categories depending on the

direction of the field applied relative to the direction of the muon initial polarization:

Longitudinal (LF), transverse (TF) and zero (ZF). The basic idea is to investigate

the nature of the changes in the local environment of the muon as the temperature

decreases. We determine whether only the spin polarization is changing or whether

the lattice is involved as well. Electronic spin polarization contributes to the shift of

the muon spin rotation frequency. Lattice distortions are responsible for muon spin

polarization relaxation.
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ZF µSR is a sensitive site-based probe of static magnetism, in which the muon po-

larization Pµ is determined by the small internal magnetic fields in the sample itself.

In a LF configuration, the relaxation (RLF ) in Pµ is usually exponential and stems

from dynamic fluctuating fields within the sample. In a TF configuration, the relax-

ation (RTF ) is a bit more involved. It is a result of both static field inhomogeneities

on the time scale of one muon spin turn, and dynamically fluctuating fields. In the

next section we deal with the physical parameters we extract in a TF experiment.

2.1.1 Transverse Field Configuration

A schematic diagram of a typical setup of a transverse field configuration is shown in

Fig. 2.2 . In a TF geometry, the initial polarization, Pµ(0), is perpendicular to H.

Thus, Pµ(t) exhibits oscillations at the Larmor frequency, ωµ = γµH (γµ = 13.554

MHz/kG). The TF relaxation (RTF ) is a result of both static field inhomogeneities

and dynamically fluctuating fields. TF experiment is usually refer to as analogous to

a free induction decay in NMR with RTF identified as (T ∗
2 )−1.

As a starting point, we assume a static local field distribution that has an isotropic

Gaussian distribution. Thus the muon polarization is exponential gaussian relaxation

combined with oscillations at the muon Larmor frequency,

Pµ(t) = P0 exp(
−t

T ∗
2

) cos(ωt). (2.1)

To investigate the relation between the RTF and the susceptibility we look at the

muon hamiltonian,

H = ~γµI ·B (2.2)

where I is the muon spin and B is the field the muon experiences, which is the
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Figure 2.2: A typical TF µSR configuration. The red box indicates the sample.

contribution of the external and internal fields,

B = HTF + Hint (2.3)

HTF is the applied transverse field and Hint is the magnetic field from neighboring

electrons. The internal fields the muon experiences is created by the coupling between

the muon and electronic spin,

Hint = gµB

∑
j

Aj · Sj

where the sum j runs over the muon’s neighboring electrons, A = A(r) is the coupling
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between the muon and the electronic spin and S is the electronic spin. For simplicity

we assume the coupling to only one electronic spin thus
∑

j AjSj → AS. By a mean

field approximation, we replace S by its expectation value 〈S〉 = M = χH. Thus,

the muon experiences a field given by,

B = (1 + Aχ)HTF (2.4)

assuming isotropic couplings A and χ then the muon polarization,

Pµ(t) = P0 cos[γµ(1 + Aχ)HTF t] (2.5)

by averaging over a distribution of couplings (ρ(A)),

P µ(t) =

∫
P0 cos[γµ(1 + (A + δA)χ)HTF t]ρ(A)dA (2.6)

thus, if the experimental polarization is Eq. 2.1 we can equalize the two equations

and extract ρ(A),

ρ(A) =
1

δA
√

2π
exp(−1

2
(
A + δA

δA
)2)

where the width of the gaussian,

δA = | 1

χT ∗
2 γµH

| (2.7)

thus,

1

T ∗
2

= δAγµH · χ . (2.8)

Therefore, according to Eq.2.7 if the ratio between (T ∗
2 )−1 and χ remains constant as

T decreases, one can conclude that δA is T independent and no lattice deformation

occur.

In this calculations we assumed that the Longitudinal Field Relaxation, RLF , thus

the dynamically fluctuating fields are orders of magnitude smaller than the Transverse
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Field Relaxation, RTF = (T ∗
2 )−1, i.e., the static field inhomogeneities. In such case

that this assumption is not correct, one has to observe the difference between the

relaxation given by the static relaxation rate, ∆ =
√

R2
TF −R2

LF , this is described in

Ref.[46].

2.2 NMR

Nuclear Magnetic Resonance (NMR) was first described by Purcell and Bloch during

mid 1940s, they then received the Nobel prize in physics in 1952: ”for their develop-

ment of new methods for nuclear magnetic precision measurements and discoveries in

connection therewith”. NMR is possible since nuclei of many atoms possess magnetic

moments and angular momenta. The magnetic moment (spin) of the nuclei interacts

with a static magnetic field (H = H0ẑ) in such a way that the field polarizes the

nuclear moment (spin) along its direction (ẑ). The result is that the nuclei (spin)

precess about the field. The precession frequency of the moment (spin) is propor-

tional and uniquely determined by the gyromagnetic ratio γ and the strength of the

magnetic field H0,

ω0 = γH0 .

ω0 is the Larmor velocity (the larmor frequency is, ν0 = ω0/(2π)). The gyromagnetic

ratio differs from one nuclei to the other (also, from one isotope to the other) thus

the angular momentum (spin) of each nuclei is defined uniquely by µ = γI~.

The NMR phenomena can be described by classical and quantum derivation. In

a quantum mechanics treatment, the orientation of a spin in a field is quantized. The

number of allowed orientations is 2I +1, where I is the nuclear spin quantum number.
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The energy of each orientation is described by the schrodinger equation,

H|mI〉 = E|mI〉

E = −~γBzmI (2.9)

therefore a transition between the energy levels, will occur when ∆E = ~γBz∆mI .

This transition can be induced by absorption or emission of a photon of frequency ν0

such that,

∆E = ~γBz∆mI = hν0. (2.10)

This energy transfer occurs when another field H1 is applied in the x̂ − ŷ plane.

The evolution of the spin under the combined magnetic fields is described by the

hamiltonian,

i~
∂

∂t
|n〉 = −γ~H · I|n〉

= −γ~[H1 (Ix cos(ωt) + Iy sin(ωt)) + H0Iz]|n〉 (2.11)

Since R̂z(β)ÎxR̂z(−β) = Ix cos β + Iy sin β (where R̂j(β) = exp(−iβIj) is the rotation

operator) this can be further developed to

i~∂t|n〉 = −γ~
[
H0Iz + H1e

−iωIztIxe
iωIzt

] |n〉

=
[
ĤZ + Ĥrf

]
|n〉 . (2.12)

Using a rotating reference frame of the spin (|ñ〉 = R̂z(−ωt)|n〉 = exp(iωIzt)|n〉) will

simplify the hamiltonian giving,

i~∂t|ñ〉 = (−~ωIze
iωIzt + i~eiωIzt∂t)|n〉

= −~ωIze
iωIzt|n〉+ eiωIzt(HZ + Hrf )|n〉

= (−~ωIze
iωIzt + eiωIzt(HZ +Hrf ))e

−iωIzt|ñ〉 (2.13)

= H̃|ñ〉
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where,

H̃ = eiωIzt(HZ +Hrf )e
−iωIzt − ~ω . (2.14)

Lets examine a case where HZ is the only term in H̃, in that case,

H̃ = eiωIztHZe−iωIzt − ~ωIz

= eiωIzt(−γ~H0Iz)e
−iωIzt − ~ωIz (2.15)

= −γ~H0Iz − ~ωIz

since rotation along the same axis has no effect. Thus,

H̃ = −γ~H0Iz − ~ωIz

= −(ω0 + ω)~Iz

= Ω0~Iz (2.16)

In the case with Hrf ,

H̃ = Ω0~Iz − γ~eiωIztHrfe
−iωIzt

= Ω0~Iz − γ~eiωIztH1e
−iωIztIxe

iωIzte−iωIzt

= Ω0~Iz − γ~H1Ix . (2.17)

Pulses

The time dependent solution to Eq.2.14,

|t̃〉 = e
iH̃t
~ |ñ〉 (2.18)
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in the resonance case, where ω0 + ω = 0 ⇒ Ω = 0, the expectation value for I will

therefore,

〈Iz(t)〉 =
∑

ñ

pñ〈ñ|e−iγH1IxtIze
iγH1Ixt|ñ〉 (2.19)

=
∑

ñ

pñ〈ñ|Iz|ñ〉 cos(γH1t)− pñ〈ñ|Iy|ñ〉 sin(γH1t) (2.20)

= 〈Iz(0)〉 cos(γH1t)− 〈Iy(0)〉 sin(γH1t) (2.21)

as a consequence, for Iy the result will be,

〈Iy(t)〉 =
∑

ñ

pñ〈ñ|e−iγH1IxtIye
iγH1Ixt|ñ〉 (2.22)

= 〈Iz(0)〉 sin(γH1t) + 〈Iy(0)〉 cos(γH1t) (2.23)

and for Ix,

〈Ix(t)〉 =
∑

ñ

pñ〈ñ|e−iγH1IxtIxe
iγH1Ixt|ñ〉 (2.24)

=
∑

ñ

pñ〈ñ|Ix|ñ〉 = 〈Ix(0)〉 (2.25)

π/2 pulse

The initial conditions dictate the polarization of I, that is all spins are polarized to

the direction of H0ẑ,

〈Iz(0)〉 = Tr
exp(−H̃/kT )

Z
Iz (2.26)

' Z−1TrIz + Z−1Tr
γ~H0

kT
I2
z (2.27)

' 1

2I + 1

γ~H0

kT

I(I + 1)(2I + 1)

3
(2.28)

' γ~H0I(I + 1)

3kT
(2.29)

and for Ix and Iy,

〈Ix(0)〉 = 〈Iy(0)〉 = 0 (2.30)
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thus, when γH1τ = π/2,

〈Iz(τ)〉 = 〈Ix(τ)〉 = 0 (2.31)

〈Iy(τ)〉 = Iz(0). (2.32)

When we have electrons producing internal fields in the sample, B, the nuclear spins

will experience a distribution of fields thus they will precess at slightly different fre-

quencies.

Spin Echo

The spin echo (π/2− τ −π) sequence is a two-step procedure, the first step, applying

a π/2 pulse. The π/2 pulse rotates the nuclear magnetization 90◦ to the x− y plane.

The second step takes place after time τ , during which the spin dephase. The second

step is applying a π pulse. The π pulse rotates the magnetization 180◦. In the top

of Fig. 2.3 we plot the spin-echo sequence. At t = 0 . . . t1, RF is applied producing

the π/2 pulse (ωt1 = π/2). During τ = t1 . . . t2 the spins precess freely. The second

pulse is applied at t2 . . . t3 such that it produces the π pulse. In the rotating reference

frame of the nuclei,

i~∂tψ = H̃ψ

= −γ~
((

H0 − ω

γ

)
Iz + H1Ix

)
. (2.33)

During the pulses, H1 À (H0 − ω/γ), thus we can write the hamiltonian as time

dependent as

H̃(t) =
−γ~H1Ix 0 < t < t1; t2 < t < t3

−γ~
(
H0 − ω

γ

)
t1 < t < t2

(2.34)
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Although H̃ is time dependent, in each step it is independent of time so we can use

ψ = exp
(
−(i/~)H̃t

)
ψ to solve for ψ. The solution comes about to be,

ψ(t1) = eiγH1t1Ixψ(0) (2.35)

where during 0 < t < t1 we apply the π/2 pulse i.e., γH1t1 = π/2. The progressive

solutions are therefore,

ψ(t2) = ei(γH0−ω)(t2−t1)Izψ(t1)

ψ(t3) = eiγH1(t3−t2)Ixψ(t2) = eiπIxψ(t2) (2.36)

ψ(t > t3) = ei(γH0−ω)(t−t3)Izψ(t3)

where at t2 < t < t3 we apply the π pulse. We now define,

T (t) = ei(γH0−ω)tIz

X(θ) = eiθIx (2.37)

T (t) is the development of ψ during H1 = 0, X(θ) is the operator rotating the spins

by an angle θ, thus for example,

X−1(π/2)IyX(π/2) = Iz

X−1(π)IyX(π) = −Iy . (2.38)

Now ψ(t) after the second (π) pulse, can be represented as,

ψ(t) = T (t− τ)X(π)T (τ)X(π/2)ψ(0) . (2.39)
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Using X−1(θ)X(θ) = X(θ)X−1(θ) = 1 and X−1T−1X = T and T (τ)T−1(τ) = 1 we

can calculate the expectation value for Ix at t = 2τ ,

〈Ix〉 = 〈ñ|X−1(π/2)T−1(τ)X−1(π)T−1(τ)IxT (τ)X(π)T (τ)X(π/2)|ñ〉

= 〈ñ|X−1(π/2)T−1(τ)X−1(π)T−1(τ)X(π)X−1(π)IxX(π)X−1(π)T (τ)X(π)T (τ)X(π/2)|ñ〉

= 〈ñ|X−1(π/2)T−1(τ)X−1(π)T−1(τ)X(π)IxX
−1(π)T (τ)X(π)T (τ)X(π/2)|ñ〉

= 〈ñ|X−1(π/2)T−1(τ)T (τ)IxT
−1(τ)T (τ)X(π/2)|ñ〉

= 〈ñ|X−1(π/2)IxX(π/2)|ñ〉 = 〈ñ|Ix|ñ〉

= 0 (2.40)

since at t = 0 the magnetization is completely polarized to ẑ. We apply the same

technique for the calculation of Iy,

〈Iy〉 = 〈ñ|X−1(π/2)T−1(τ)X−1(π)T−1(τ)IyT (τ)X(π)T (τ)X(π/2)|ñ〉

= . . . = X−1(π/2)IyX(π/2)|ñ〉 = 〈ñ|Iz|ñ〉

thus, the echo we receive at t = 2τ has the same magnitude of the net magnetization

just before the sequence began.

Saturation Recovery and T1 measurement

At equilibrium, all spins are polarized with the external field, H0. In order to change

the direction of the spins a transverse field H1 is applied. The time constant which

describes how the the spins return to equilibrium is called the spin-lattice relaxation,

T1. T1 measures the density of excitation in the frequency γH (Eq. 1.16).

The saturation recovery sequence is a technique to measure T1. The beginning of

the sequence is a series of π/2 pulses at short repetition times (∼ T2), and then a

regular spin echo sequence is applied after a delay τ . The multiple π/2 pulses destroys
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Figure 2.3: Echo sequences, top: the spin-echo sequence, bottom: a saturation
recovery sequence, each color represents a different delay time, τ , between the π

pulses and the spin-echo sequence.
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the magnetization at t right after the pulses. The sequence is executed with different

τ ’s. When τ → 0 the echo intensity → 0, when τ →∼ 5T1 the echo intensity reaches

its almost maximal value (∼ 99.3%). Thus at short (long) τ the echo magnitude

should be small (approximately the same) compared to its maximum value. The

bottom of Fig. 2.3 displays the saturation recovery sequence.

Powder Average

Generally, the greatest amount of information concerning nuclear or paramagnetic

sites in solids can be obtained from measurements in single crystals. However, many

compounds lack single crystals. In other cases, the difficulty or expense in obtaining

a single crystal may not be justified by the nature of the information desired. Thus,

the analysis of the powder spectra is essential in order to extract the relevant infor-

mation. In Appendix A we derive the powder spectrum, here we show an outline for

a completely anisotropic sample.

The NMR hamiltonian can be represented as,

H = −~γI · (1− σ) ·H (2.41)

where σ is a magnetic shift tensor, any may represent a chemical shift (in the case of

diamagnetic compounds) or a paramagnetic shift (in the case of a strongly paramag-

netic compound) or a Knight Shift tensor (in the case of metallic compounds). In any

case, all magnetic shifts have the same functionality, so for convenience we concern a

Knight shift tensor (K = −σ).

In a single crystal, the resonance frequency depends on the orientation of the single

crystal with respect to the applied magnetic field. In a polycrystalline, the nuclear

spins are randomly oriented with respect to the field, thus the powder pattern is an
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average over the resonance condition for all possible orientations of the nuclear site.

The powder average, S(H), represents the amplitude of the magnetic resonance

signal at field H comes to be,

S(H) =

∫
dϕ

2H2

H1H2H3√
(H2 −H2

1 )
√

(H2
3 −H2

2 )

· 1√
1− (H2

2−H2
1)H2

H2
2(H2−H2

1)
sin2 ϕ

√
1− (H2

2−H2
1)H2

3

H2
1(H2

3−H2
2)

sin2 ϕ

(2.42)

where Hi are the locations in the magnetic field of ordinary singularities and is defined

by the principal values of electronic g tensor, Hi(ν) = hν/(g~γ). ϕ is an Euler angle

of external magnetic field, H, relative to the principal axis of K. Eq. 2.42 has the form

of an elliptic integral, K(k) =
∫ π/2

0
(1−k2sin2θ)−1/2dθ =

∫ 1

0
(1−k2t2)−1/2(1−t2)−1/2dt.

Thus in order to simulate the powder pattern we use the elliptic integral polynomial

approximation[47],

K(m) = [a0 + a1m1 + . . . + a4m
4
1] + [b0 + b1m1 + . . . + b4m

4
1]ln(1/m1) (2.43)

where the coefficients ai and bi are given in table 2.1 . Where m = k2 and m1 are the

elliptic integral parameter and its complementary parameter respectively, m+m1 = 1,

m =
H2

2 −H2
1

H2
3 −H2

2

· H2
3 −H2

H2
2 −H2

1

(2.44)

In Fig. 2.4 we present a theoretical powder spectrum for a single site. This demon-

strates that a single site contributes one NMR peak under powder averaging.

i 0 1 2 3 4

a 1.38629 0.09666 0.0359 0.03742 0.01451

b 0.5 0.12498 0.0688 0.03328 0.00441

Table 2.1: The polynomial coefficients of Eq.2.43 .
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Figure 2.4: A theoretical powder-averaged NMR for a spin-1/2, γ = 2.11MHz/T,
ν = 16.44MHz.

2.3 Squid

The SQUID is an acronym for Superconducting Quantum Interference Device. It is

one of the most sensitive form of magnetometry. SQUIDs function as a magnetic

flux-to-voltage transducers. The physical idea behind the squid are the properties

of electron-pair (’cooper pairs’) wave coherence and Josephson junctions thus being

able to detect very small fields (a squid can measure 1 flux quantum where the earth

magnetic field passing through the area of a typical squid correspond to ∼ 100 flux

quanta).

Cooper pairs are pairs of electrons which carry the resistanceless current in su-

perconductors. Each pair can be considered as a single particle with double mass

and double charge of a single electron, the velocity of the pair is of the center
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of mass of the pair. Each pair can be represented by a wavefunction of the form

ΦP = Φ exp (i(P · r)/~), where P is the momentum of the pair whose center of mass

is at r. In a uniform current density all electron wavelengths will be equal and with the

superposition of these coherent waves making up the single many-body wavefunction

ΨP = Ψ exp (i(P · r)/~) . (2.45)

In a closed superconduncting ring, due to the long coherence of the superconducting

wavefunction (Eq. 2.45), the phase difference between one point X and another point

Y is constant in time,

(δφ)XY = φX − φY = 2π

∫ Y

X

P

h
r̂ · dl (2.46)

where r̂ is a unit vector in the direction of the wave propagation and dl is an element

along the path X − Y . In the special case of X = Y , δφXY = 2π. Using the

supercurrent density (which is an analogue to the current density ~j = nq ~vd),

js =
1

2
ns · e · v (2.47)

where ns is the super fluid density thus 1/2ns is the cooper pair density, (thus,

v = 2js/(nse)) and we can write Eq. 2.46 as,

δφXY =
2m

e~ns

∫ Y

X

jsdl . (2.48)

Under applied field the momentum P of the cooper pair must be revised to P =

2mv + 2eA where A is the magnetic vector potential. The difference in the phase is

now written,

δφXY = (δφXY )j + (δφXY )B (2.49)

where the first term is the contribution from the supercurrent,

(δφXY )j =
2m

e~ns

∫ Y

X

jsdl (2.50)
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and the second due to the applied field,

(δφXY )B =
2e

~

∫ Y

X

Adl . (2.51)

In a closed encircling path (the path can encircle a non superconducting region), the

phase difference can be written as,

δφ =
2m

e~ns

∮
jsdl +

2e

~

∮
Adl . (2.52)

since
∮

∂Σ
F · dr =

∫
Σ
∇× F · dΣ (stokes theorem) and B = ∇×A,

δφ =
2m

e~ns

∮
jsdl +

2e

~

∫

S

BdS (2.53)

where S is the enclosed area. Due to the long coherence of the superconducting

wavefunction, the difference in phase of a closed loop (a ring) must equal 2πn where

n is an integer. Thus, we arrive at,

δφ =
m

e2ns

∮
jsdl +

∫

S

BdS = n
h

2e
(2.54)

i.e., due to the long coherence, in a closed rings, the flux can only exist in quantized

form, where the flux quantum value is,

Φ0 =
h

2e
= 2.07× 10−15Wb (2.55)

= 2.07× 10−7G-cm2 . (2.56)

The second important physical phenomena needed for a squid to work is Joseph-

son Tunneling. When two superconductors are isolated one from another, the phases

in each of the superconductors may differ. However, when the two are brought closer

together, tunneling may occur and thereby the two superconductor interact. The

tunneling of an electron-pair creates a superconducting current. Thus, the supercur-

rent, i, which flows across a gap between two superconductors which have a phase
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difference δϕ, is given by,

i = ic sin δϕ (2.57)

where ic is the critical current. Hence, the maximum current which can flow across

a gap occurs when ϕ = π/2, giving a current i = ic. The gap can be created by any

weak coupling between two parts of a single superconductor - this maybe microscopic

point contacts, crystallographic grain boundaries or any weakly conducting layers.

As mentioned previously, the SQUID (specifically the dc-SQUID) is based on the

long coherence of the superconducting wavefunction, i.e., on the flux quantum, and on

the Josephson effect. The dc-SQUID is a superconducting loop with two Josephson

junctions. When a magnetic field is applied perpendicular to the plane of the ring,

a screening current, is is induced. Normally, is can be sufficient to cancel out the

field in the ring, but the critical current at the junctions might prohibits this. The

magnetic field thus produces a phase difference,

δφB = 2π
Φa

Φ0

(2.58)

where Φa is the flux of the applied field. Φa may not necessarily be equal to 2πn

therefore to ensure the total phase change is indeed a multiple of 2πn a small current

i flows so that around the loop across the two junctions, δφB + 2δφi = 2πn. Using

Eq. 2.57 and Eq. 2.58 the current will be

i = ic sin π
Φa

Φ0

. (2.59)

Thus, when Φa increases from 0 to Φ0/2 the current i increases, reaching a maximum

at Φ0/2. When Φa continues to increase from Φ0/2, i changes direction and flows the

other way. This current is periodic in the applied flux. The overall phase difference,

which must be 2π, is a sum of the phases produced by currents across the junctions
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and due to the applied field,

ϕ1 + ϕ2 + 2π
Φa

Φ0

= 2πn . (2.60)

where ϕ is the phase difference across a junction. When a current flows ϕ1 and ϕ2 are

different, however their sum must be constant (since 2πΦa/Φ0 and 2πn are constants),

thus,

ϕ1 + ϕ2 = 2π

(
n− Φa

Φ0

)
(2.61)

hence it is possible to write,

ϕ1 = π

(
n− Φa

Φ0

)
− δ (2.62)

ϕ2 = π

(
n− Φa

Φ0

)
+ δ (2.63)

where δ is related to the measuring current I. Using Eq.2.57,

I = ic

[
sin

(
π

Φa

Φ0

+ δ

)
+ sin

(
π

Φa

Φ0

− δ

)]

= ic

[
sin

(
π

Φa

Φ0

)
cos δ + cos

(
π

Φa

Φ0

)
sin δ −

[
sin

(
π

Φa

Φ0

)
cos δ − cos

(
π

Φa

Φ0

)
sin δ

]]

= 2ic

[
cos

(
π

Φa

Φ0

)
sin δ

]
. (2.64)

since | sin δ| ≤ 1 thus the absolute critical measuring current is

|I(Φa)| = 2ic| cos

(
π

Φa

Φ0

)
| (2.65)

we now see that we have a periodic dependance on the magnetic flux (and field),

with a maximum when Φa = Φ0n, with integer n. Assuming that the Josephson

junctions are identical when a bias current, Ibias < ic, flows across the loop splits to

the two junctions. As long as the current through the junctions is small, there will

be no voltage detected across the ring. As I increases it reaches a critical measuring

current, at which voltage begins to be detected.
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Figure 2.5: A typical paramagnetic SQUID signal. The voltage across the squid as a
function of the samples position.

The measurement in the Cryogenic SQUID is performed by moving the sample

through the pickup coils. As the sample moves through the coils, the magnetic

moments of the sample induces an electric current in the pickup coils thus creating a

change in the magnetic flux which is then detected in the SQUID (see Fig. 2.5).

The pickup coils are a set of three coils configured as a second-order gradiometer.

In this configuration, the upper coil is a a single turn wound clockwise, the center

coil has two turns wound counter-clockwise and the bottom coil is again a single

turn wound clockwise. This gradiometer configuration is used to reduce noise in

the detection circuit. Over long periods of time currents may build up in the coils

thereby producing noise in the system. To prevent this from occurring by heating a

small section of the coil circuit.
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2.3.1 Experimental Setup

Here we describe the experimental setups which were used in the various experiments

conducted in the lab’s Cryogenic SQUID magnetometer.

Herbertsmithite and Y2Mo2O7

The magnetization measurements were performed in the ’usuall’ manner, that is,

the measurements performed on powdered samples placed in a gel capsule inside the

squid’s Helium dewar. A summary of the measurements is given in table 2.2.

Oriented Herbertsmithite

The sample orientation was done by curing ZnCu3(OH)6Cl2 powder overnight with

Stycast in a field of 8 T. The samples were cured in a Teflon form producing a ball

6 mm in diameter. During the first 40 minutes of the orientation, a shaking mechanism

was applied to the sample form. A particularly small amount of powder was used to

avoid saturating the Stycast and eliminating powder residues at the bottom of the

ball. We prepared a second “test” sample in the same manner, but this time without

orientation. In §3.1.2 we refer to the second ball as the powder sample. We also

prepared a ball made of Stycast only.

Measurements of the oriented samples were conducted in two configurations. One

configuration, which we label as ‘z’, is when the orienting and the applied (SQUID)

fields coincide, (H||c). The other configuration, noted as ‘⊥’, is when the oriented

sample is rotated by 90◦ and thus the applied field is in the kagomé plane, (H ⊥ c).
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T [K] H [kG]

ZnCu3(OH)6Cl2 2 ≤ T ≤ 280 2 ≤ H ≤ 60

Oriented ZnCu3(OH)6Cl2 2 ≤ T ≤ 280 0.1 ≤ H ≤ 60

Y2Mo2O7 17 ≤ T ≤ 290 10 ≤ H ≤ 60

Table 2.2: Magnetization measurements performed.

2.4 X-ray diffraction

X-ray diffraction is a powerful experimental tool, its uses ranges almost all fields

of science, from biological specimen to physical or material engineering samples to

medical applications (CT). X-ray is basically an electomagnetic wave. Diffraction

uses a wavelength of 0.5− 2Å which is the order of the distance between planes in a

lattice. Impurity atoms can cause lattice distortions which can be detected by x-rays.

Therefore it is essential to use high purity samples.

The use of synchrotron radiation gives an outstanding x-ray capabilities which

is not available with standard laboratory sources. For example, in such synchrotron

facility, the primary beam can be used to generate intense incident radiation, which is

monochromatized better than ∆λ/λ < 10−4. Another aspect, it is possible to choose

the optimal x-ray energy for a specific compound, which provides maximum diffraction

intensity with a minimization of absorption effects. Thus, with a high brilliance source

(the number of photons per phase space volume - photon/s/0.1% BW/mm2/mrad2 -

0.1%BW denotes a bandwidth 10−3ω centered around the frequency ω) we are able

to perform very high resolution diffraction on a very small sample.

The x-ray work shown here has been carried out in the Material Science beam line

(MS-X04) at Swiss Light Source (SLS) in PSI, Switzerland[48]. This beam line has
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the capability of performing high resolution (> 0.005◦), which is powerful for the in-

vestigation of small crystallographic changes. Calibration of the instrument and wave-

length refinement were performed with Si standard samples and NAC (NaCa2Al3F4)

standard.

The instrument is as such that we apply an external field perpendicular to the

incoming beam, Ki. The multi-crystal detector scanned the outgoing wavevector Ko.

The angle between Ki and Ko is 2θ; thus the field made an angle θ with the scattering

wavevector q = Ko −Ki (see Fig. 2.6, 2.7). The geometry is therefore fulfills,

q =Ko −Ki

q2 =K2
o + K2

i − 2Ko ·Ki = K2
o + K2

i − 2KoKi cos 2θ

since we are concerned with elastic scattering (hν = 0) |Ko| = |Ki| = 2π/λ,

q2 = 2k2(1− cos 2θ) = 2k2(1 + sin2 θ − 1)

thus,

q =
4π

λ
sin θ

2.4.1 The von-laue formulation for x-ray diffraction

We regard the crystal as composed of identical microscopic objects (the ions of the

lattice) placed at sites R of a bravais lattice. Peaks will occur in directions and

wavelengths for which the xray is scattered constructively.

The condition for constructive interference, for 2 scatterers with a displacement

vector d is derived as follows. The incident x-ray with wavelength λ hence wavevector
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Figure 2.6: The MS X04 experimental hatch. The incoming beam wavevector Ki is
shown by the black arrow, which is diffracted by the sample positioned at the red

dot. The outgoing wavevector Ko is marked by the blue arrow.

k = 2π/λn̂ is diffracted to k’ = 2π/λn̂’. The path difference of the x-ray beam

diffracted from the 2 scatterers would be ,

d cos(θ) + d cos(θ′) = d · (n̂− n̂′). (2.66)

therefore, for a constructive interference,

d · (n̂− n̂′) = mλ (2.67)
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Figure 2.7: The incoming and outgoing wavevectors, Ki and Ko. The field direction
H and q.

or by multiplying 2π/λ,

d · (k̂− k̂
′
) = 2πm (2.68)

for an array of scatterers in a Bravais lattice, with R Bravias lattice vector, this

equation turns out to be

R · (k̂− k̂
′
) = 2πm (2.69)

which equivalently is written,

ei(k̂−k̂
′
)·R = 1 (2.70)

hence, constructive interference will occur whenever the change in the wave vec-

tor,K=k’-k, is a vector of the reciprocal lattice. [reminder: K belongs to the re-

ciprocal lattice of a bravias lattice of points R, provided that eiK·(r+R) = eiK·r for

any r]. An incident wave k will lead to a diffraction peak if the tip of the wave vector

lies on a k-space Bragg plane.
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2.4.2 Diffraction by monoatomic lattice with a basis

We consider the content of the primitive cell as a set of identical scatterers located

at d1, ...,dn within the cell. If the bragg peak which is associated with a change in

the wave vector K′ = k’-k, then the phase difference between the rays scattered at

di and dj will be K · (di − dj) and the amplitudes of the two rays will differ by a

factor of eiK·(di−dj). Thus, the amplitudes of the rays scattered from d1, ..,dn will be

eiK·d1 , .., eiK·dn . The sum of all rays scattered from the sites di is the net ray scattered

from the entire primitive cell. It is known as the geometrical structure factor,

SK =
n∑

j=1

eiK·dj (2.71)

This factor expresses the extent to which interference of the waves scattered from

identical ions within the basis can diminish the intensity of the bragg peak associated

with the reciprocal lattice vector K. The intensity of the bragg peak is proportional

to the absolute value of the amplitude, therefore, |SK|. However it is not the only

K dependance to the intensity, and therefore cannot be used alone to determine the

absolute intensity of the peaks. But it can be used to determine where the intensity

vanishes. This occurs when the elements of the basis are arranged so that there is a

complete destructive interference for the K in question.

2.4.3 BCC scattering

since BCC is a bravais lattice, its reciprocal lattice is a FCC. Bragg reflections will

occur when K will be a vector of the FCC. the basis of the BCC can be written by
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the primitive vector a(x̂ + ŷ + ẑ) with the basis d1 = 0 and d2 = a/2(x̂ + ŷ + ẑ).

Hence, the structure factor is

SK = 1 + eiK·a
2
(x̂+ŷ+ẑ) (2.72)

A general vector in the reciprocal lattice can be written as

K =
2π

a
(n1x̂ + n2ŷ + n3ẑ) (2.73)

therefore, the structure factor (substituting K),

SK = 1 + eiπ(n1+n2+n3) (2.74)

= 1 + (−1)n1+n2+n3 (2.75)

= 2, n1 + n2 + n3 even (2.76)

0, n1 + n2 + n3 odd (2.77)

2.4.4 FCC scattering

FCC is also a bravais lattice, where its reciprocal lattice is a BCC. the basis of the

FCC can be written by the primitive vectors a1 = a/2(ŷ + ẑ), a2 = a/2(ẑ + x̂) and

a3 = a/2(x̂+ŷ). Additionally, the FCC can be written with a four-point basis, a1 = 0,

a2 = a/2(x̂+ ŷ), a3 = a/2(ŷ+ ẑ) and a4 = a/2(ẑ+ x̂). Therefore, the structure factor,

SK = 1 + eiK·a/2(x̂+ŷ) + eiK·a/2(ŷ+ẑ) + eiK·a/2(ẑ+x̂) (2.78)

using a general vector in the FCC reciprocal lattice, K = 2π/a(hx̂+ kŷ + lẑ), getting

the structure factor,

SK =1 + eiπ·(h+k) + eiπ·(k+l) + eiπ·(l+h) (2.79)

=1 + (−1)h+k + (−1)k+l + (−1)l+h (2.80)



CHAPTER 2. EXPERIMENTAL TECHNIQUES 60

for example, when h + k odd and k + l even and l + h odd, SK = 0 for other

combinations we can arrive to SK = 4 (when all sums are even).

2.4.5 Experimental Setup

The x-ray powder diffraction experiments were conducted in the Swiss Light Source

Material Science (SLS-MS) beam line powder diffraction station. A collimated 14.9 keV

x-ray beam was used with a high-resolution multicrystal analyzer. In order to per-

form the field-dependent X-ray diffraction experiment, we constructed a sample holder

with two prism-shaped NdFeB permanent magnets (see Fig. 2.8, 2.9). Each prism

was chopped at one edge, and the two chopped faces were held parallel and opposite

each other at a distance of 1.5 mm. A glass capillary containing the powder sample

was placed between these pole pieces in a 1.5 T field. In order to dismiss any grain

orientation with the field, the powder was glued upon insertion to the capillary using

cyanoacrylic glue (merz+benteli, Cementit CA 10) which is amorphi and doesn’t give

x-ray reflections.

The sample holder was placed inside a Janis cryostat in such a way that the field

was perpendicular to the fixed incoming beam (see §2.4). In this configuration, the

field direction could not be changed. The magnets could, of course, be removed for a

ZF measurement. With the pole pieces in place the 2θ range was limited to 2θ = 32◦

giving us access up to a q = 4.18 Å−1, revealing clearly the (222), (440), (400) and

(622) Bragg peaks. Other peaks allowed in this q-range have a small structure factor,

and although measured they will not be discussed here.
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Figure 2.8: A drawing of the sample
holder used in the SLS X04 Material

Science Beamline.

Figure 2.9: A sketch of the NdBFe
permanent magnets, the arrows indicate

the direction of the magnetic field
produced.



Chapter 3

Results

In this chapter we review the experiments conducted. We characterize the S = 1/2

Kagomé ZnCu3(OH)6Cl2 (§3.1.1 and §3.1.2) using local probes and susceptibility.

We investigated the nature of the spin glass-like phase transition in the spin glass py-

rochlore Y2Mo2O7 (§3.2.1). Finally, in §3.2.2 we describe our study on the possibility

of temperature-dependent lattice distortions in the pyrochlore compound Tb2Ti2O7

by measuring the internal magnetic field distribution.

3.1 Kagome

In section §3.1.1 we characterize the ground state and excitation spectrum of the

Herbertsmithite using the following measurements: SQUID magnetization, muon spin

rotation frequency shift and transverse relaxation time T ∗
2 , and Cl nuclear spin-lattice

relaxation T1. We find no sign of a singlet formation, no long-range order or spin freez-

ing, and no sign of a spin-Peierls transition even at 60mK (4 orders of magnitude lower

than expected from Curie-Weiss). We find that the excited states are not gapped. In

62
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section §3.1.2 we show measured data on oriented powder of Herbertsmithite which

indicate a dramatic difference in magnetization measurements between in-plane and

out-of-plane measurements. This difference is biggest at low applied fields or high-

temperature. We believe that this difference emerges from super-exchange anisotropy

and that Herbertsmithite is in fact an Ising-like system.

3.1.1 Herbertsmithite

Here, we present a comprehensive study of ZnCu3(OH)6Cl2 using local probes. In

our study, we address four questions which are at the heart of the investigation of the

quantum kagomé system: Do S = 1/2 spins on kagomé lattice freeze? Is the ground

state magnetic? Is there a gap in the spin energy spectra? Finally, does the lattice

distort in order to accommodate spin-Peierls state? We address these questions in

the present work using nuclear magnetic resonance (NMR) and muon spin resonance

(µSR) local probes. We also use magnetization measurements to calibrate the local

probes.

The ZnCu3(OH)6Cl2 samples were prepared by hydrothermal reaction by the No-

cera group at MIT, where it was first synthesized. Magnetic and pXRD data were

consistent with those previously reported for herbertsmithite [27].

Magnetization measurements, m, were performed as described in §2.3.1. In Fig.

3.1 we present mT/H versus T . The data collapse onto a single line, especially at low

T , meaning that the susceptibility is field-independent in our range of temperatures

and fields. Also, no peak in the susceptibility is observed, indicating the absence of

magnetic ordering. The only indication of interactions between spin in these measure-

ments is the fact that mT/H decreases upon cooling whereas in an ideal paramagnetic
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Figure 3.1: Normalized magnetization versus temperature

system this quantity should be constant; a paramagnetic system follows a Curie law,

m = C · H
T

thus, mT/H = C where C is the material Curie constant. In Fig.3.2 we demonstrate

the linear fit to the high temperature χ−1 which reveals ΘCW . The frustration pa-

rameter TF /|ΘCW | ≈ 0.22, where TF ∼ 70 K is the temperature at which χ−1 is no

longer a linear function of T , indicates strong geometric frustration.

Muon spin rotation and relaxation (µSR) measurements were performed at the

Paul Scherrer Institute, Switzerland (PSI) in the GPS spectrometer with an He cryo-

stat, and in the LTF spectrometer with a dilution refrigerator. Data were collected

at temperatures ranging from 60 mK to 200 K with a constant field of 2 kG. In Fig.

3.3 we show real and imaginary transverse field [TF] data taken at H = 2 kG and

T = 100 K. The data are presented in a rotating reference frame (RRF). This frame
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Figure 3.2: The inverse susceptibility, measured at 6 kG, of Herbertsmithite shows a
Curie-Weiss constant of |ΘCW | ∼ 300 K.

is always at a field of 100 G less than the applied field (2 kG). The TF asymmetry is

best described by ATF = A0 exp (−t2/(2T ∗2
2 )) cos(ωt + φ) where T ∗

2 is the transverse

relaxation time, and ω is the frequency of the muon at the RRF. The quality of the

fit is represented by the solid line.

In Fig. 3.4 we depict the frequency shift, K = (ω0 − ω)/ω0 where ω0 is the free

muon rotation frequency in a field of 2 kG. The difference in frequency between free

and implanted muons is a consequence of the sample magnetization; therefore, K is

expected to be proportional to the susceptibility and field independent (See §2.1.1).

Indeed, as shown in Fig. 3.4, for a fixed H there is a linear relation between K and

the susceptibility χ = m/H, with the temperature as an implicit parameter; some

representative temperatures are shown on the upper axis. In Fig. 3.5 we present
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Figure 3.3: A plot of the real and imaginary transverse field asymmetry for
T = 100 K.

the field dependence of K at T = 100 K. Surprisingly, K is field dependent. This

anomalous field dependence of K is not clear at the moment.

In Fig. 3.6, we depict K as a function of temperature down to 60 mK. An addi-

tional axis is presented where K has been converted to χ as discussed above. We find

that K (and hence χ) increases with decreasing temperatures and saturates below

T ∼ 200 mK at a value of χ = 15.7(5) × 10−3 cm3/mol Cu; the error is from the

calibration. It should also be pointed out that the energy scale associated with spin

1/2 in a field of 2 kG is 200 mK, and the saturation could be a consequence of the

external field. This behavior could also be a consequence of an ising-like kagomé

system, which is explained in §3.1.2. The saturation of χ is a strong evidence for the

lack of impurities in our sample. More importantly, it indicates the lack of singlet
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Figure 3.4: The muon shift K against susceptibility.

formation or spin freezing. The last conclusion is also in agreement with neutron

scattering measurements [37] and zero field µSR [49].

The muon transverse relaxation rate 1/T ∗
2 is also presented in Fig. 3.6. Roughly

speaking, it has the same temperature behavior as the shift (and as the susceptibility).

T ∗
2 relaxation is a result of defects in the sample causing a distribution of muons to

electronic spin coupling constants or a distribution of susceptibilities. It has been

shown that when the muon relaxation rate behaves similarly to the shift [50](see

§2.1.1) (or susceptibility [5][46]) upon cooling, it indicates quenched distribution of

either the coupling constants or susceptibilities. In this case the relaxation increases

simply because the average moment size increases. Since the coupling constants and

susceptibility are functions of distances between muon and electronic spin or between

two electronic spins, our results are consistent with a lack of lattice deformation in
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Figure 3.5: The muon shift K versus external field H at T = 100 K.

ZnCu3(OH)6Cl2.

We also performed 37Cl and 35Cl NMR experiments on the same sample. Using

the two isotopes, we are able to determine the origin of T1. The first step in such

a measurement is to find the line shape and to identify the isotopes and transitions.

This measurement was done at a constant applied frequency of νapp = 28.28 MHz

and a varying external field H. A standard spin-echo pulse sequence, π/2 − τ − π,

was applied, and the echo signal was integrated for each H. In Fig. 3.7 we show a

field sweep for both Cl isotopes obtained at T = 100 K. A rich spectrum is found

and is emphasized using five x-axis and one y-axis breakers. This rich spectrum is

a consequence of the Cl having spin 3/2 for both isotopes. In the case where the

nuclei reside in a site with non cubic local environment and experience an electric
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Figure 3.6: A plot of the muon shift K and transverse relaxation time σ, versus
temperature.

field gradient, their spin Hamiltonian could be written as

H = −hνlI · (1 + K) · Ĥ + (hνQ)/6
[
3I2

z − I2 + η
(
I2
x − I2

y

)]

where νQ is the quadrupole frequency, 0 ≤ η ≤ 1 is the anisotropy parameter, K is

the shift tensor, and νl = γH/(2π). The powder spectrum of such nuclei has two

satellite peaks corresponding to the 3/2 ←→ 1/2 and −3/2 ←→ −1/2 transitions,

and a central line from the 1/2 ←→ −1/2 transition, which is split due to the powder

average. The transition names are presented in the figure. The satellite peaks at

T = 100 K of 35Cl are at 6.52 and 7.07 T, and for 37Cl at 7.91 and 8.41 T. The lack of

singularity in the satellite spectrum indicates that the Cl resides in a site with η > 0,

namely, with no xy symmetry.

In contrast to the two satellites, the splitting of the central lines at T = 100 K
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is clear, and appear for the 35Cl at 6.778 and 6.801 T and for the 37Cl at 8.148

and 8.161 T. Under some assumptions these values could be used to determine the

parameter of the nuclear spin Hamiltonian [51]; assuming that the nuclear spin op-

erators, Ix, Iy and Iz are collinear with the principal axes of the shift tensor, and

that the in-plane shift is isotropic with K⊥ = (Kx + Ky)/2, we find for both iso-

topes, K⊥ ' −0.0017(5), Kz ' 0.035(9) and η = 0.4, and 35νQ = 3.75 MHz and

37νQ = 2.55 MHz. The ratio of νQ is as expected from the ratio of the quadrupole

moments. Due to the assumptions, the value of Kz should only be considered as an

order of magnitude. Nevertheless, it is interesting to compare it to the muon shift.

Assuming that Krrf can be extrapolated to 6 T, we expect the muon shift at this

field to be Klab ∼ 10−5 which is much smaller than the Cl shift. This means that

Cl experiences a much stronger field generated by the Cu spins, which for muons is

usually a dipolar field.

Temperature dependence field sweeps of the 35Cl central line are shown in Fig. 3.8.

The intensities are in arbitrary units for clarity. The ±1/2 ←→ ∓1/2 transitions are

easily observed at T = 300 and 100 K (indicated by the arrows in the figure) but are

smeared out at lower T . In fact, the lines become so broad that the NMR shift cannot

be followed to low temperature; hence the importance of the µSR results. In fact, the

lack of Cl and H shift on one hand, and the observation of oxygen [52] and muon shift

on the other hand are very intriguing and not at all clear. Nevertheless, the ability to

detect the Cl signal even at 5 K is a strong indication for the absence of spin freezing

at this temperature. For comparison, in the kagomé system SrCr8Ga4O19, where spin

freezing is taking place at 4 K, the NMR signal nearly completely disappears at 10 K

[53]. Therefore, the increasing line width with decreasing temperature is a result of

a distribution of hyperfine fields and an increasing susceptibility, but without a full
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Figure 3.7: A field sweep of 35Cl and 37Cl.

phase transition. Finally, we cannot detect a shift of the Cl line upon cooling in

contrast to Ref.[2].

Finally, we measured the 37Cl spin-lattice relaxation rate T−1
1 to determine spin

gap and excitation spectrum. The data were taken at a field of 8.15 T which corre-

sponds to the low field peak of the central line. We use a saturation recovery pulse

sequence. In Fig. 3.9 we depict T−1
1 normalized by γ2 where 37γ = 3.476 MHz/T

on a semi-log scale. T−1
1 increases upon cooling down to 50 K and then sharply

decreases. We also present 35Cl (T1γ
2)−1 where 35γ = 4.172 MHz/T below 50 K

in order to determine the origin of the dynamic fluctuations. These measurements

were done under the same conditions as 37Cl. When considering all temperatures we

find that T 35
1 /T 37

1 = 0.75(10). From a magnetic relaxation mechanism we expect this
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Figure 3.8: 35Cl field sweep (ν = 28.28MHz) at different temperatures. The arrows
indicate the central line singularities observed at high-T but smeared out at low T .

ratio to equal (37γ/35γ)2 = 0.69. From a quadrupole based mechanism we anticipate

(37Q/35Q)2 = 0.62 where Q is the nuclear quadrupole moment. Our finding is in fa-

vor of relaxation mediated by a magnetic mechanism as indicated by the overlapping

(T1γ
2)−1 data points in Fig. 3.9.

The most noticeable feature in this figure is that 1/T1 decreases with decreasing

temperature much more slowly than Arrhenius law (k = A exp(−E/(kT ))) expected

when a gap opens. A remanent relaxation at zero temperature 1/T n
1 could be due

to magnetic fluctuations from other nuclear moments such as the protons or copper,

since they continue to fluctuate even when the electronic moments stop. A standard

approach to T1 interpretation is in terms of magnon Raman scattering where

1

T1

(T ) =
1

T n
1

+ γ2A2

∫ ∞

∆

ρ2(E) · n(E) · [n(E) + 1] dE (3.1)
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Figure 3.9: A semi-log plot of the Cl inverse spin-lattice relaxation, (γ2T1)
−1, versus

temperature.

with ρ being the density of states, ∆ the gap, A is a constant derived from the hy-

perfine coupling, and n(E) the Bose-Einstein occupation factor [54]. This expression

is constructed from the population of magnons before and after the scattering, with

the associated density of states and the assumption that they exchanged negligible

amount of energy with the nuclei since its Zeeman splitting is much less than a typical

magnon energy. However, in frustrated magnets the magnon might not be the proper

description of the excitations [51, 53]. Nevertheless, with no other available theory

we use Eq. 3.1. We assume ρ(E) ∼ Eα, with α and ∆ as fit parameters. The fit of

Eq. 3.1 to the data is presented as the solid line in Fig. 3.10. We find α = 0.23(1) and

∆ = 0.5(2) K. We also present a linear fit, which is the case for a fermionic excitation

spectrum, where T1 ∝ T−1. In Fig. 3.11 we show similar data presented recently by
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Imai et al. [2] using oriented powder and stronger magnetic field, and the same fit. In

this case we find α = 0.59(3) and ∆ = 0.002(3) K. A linear function can be ruled out

easily with this data set, thus excluding the fermonic excitation picture. Comparing

to J ∼ 200 K [37], the gap is negligibly small and indicates that, in fact, there is no

gap in the spin energy spectra, in agreement with Ref. [37]. Both data sets further

suggest that the density of states at low energy diminishes.
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Figure 3.10: The inverse spin-lattice relaxation T−1
1 . The solid line is a fit to

Eq. 3.1, the dashed is a linear fit.

To conclude, susceptibility measurements down to 60 mK suggest that there is

no freezing and only a saturation of susceptibility, namely, no singlet formation. The

data also do not support the presence of lattice deformation. Finally, in our Cl NMR

T1 measurements no sign of a spin gap was detected. Thus, ZnCu3(OH)6Cl2 is an

exotic magnet with no broken continuous symmetry but gapless excitations. It might

be an example of algebraic spin liquid [55].
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Figure 3.11: The inverse spin-lattice relaxation T−1
1 taken from Ref. [2]. The solid

line is a fit to Eq. 3.1.

3.1.2 Oriented Herbertsmithite

Unfortunately, Hertbertsmithite is only available as a powder, thus the symmetries

of its spin Hamiltonian are not clear despite various experimental studies[1, 30, 33,

35, 36, 49]. To clarify these symmetries we present magnetization measurements on

oriented powder of ZnCu3(OH)6Cl2 along (ẑ) and perpendicular to (⊥) the orienting

field. The symmetry of the interactions are probed at high temperatures where im-

purities are not expected to contribute to the susceptibility and all probes roughly

agree.

In Fig. 3.12 we plot the x-ray diffraction from the powder and oriented samples.

The x-ray momentum transfer is parallel to the orientation field. The Bragg peak

intensities are shown in the figure. In the oriented case the (002) and (006) peaks
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increased dramatically, while many of the other peaks did not. This x-ray picture

shows a high degree of orientation such that the c direction is parallel to the field.

The level of orientation will be discussed further below.
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Figure 3.12: X-ray diffraction of powder (black) and oriented powder (red) with the
transferred momentum parallel to the orientation field.

DC magnetization measurements, M , were performed as described in §2.3.1. In

Fig. 3.13 we present χT (χ ≡ M/H) of the two samples, powder and oriented balls.

These measurements were taken at H = 400 G. They are conducted as follows: we first

measured the powder sample and then the oriented sample in both configurations.

Finally, we repeated the powder measurements for a second time, but rotated the

powder ball as if it was oriented. All powder measurements collapse into a single curve,

as expected, demonstrating the reproducibility of the measurement. The Stycast
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sample showed a very small diamagnetic signal also depicted in Fig. 3.13. The core

diamagnetic susceptibility of ZnCu3(OH)6Cl2 is −16.7 × 10−5 cm3/mole [56]. The

Van-Vleck contribution is expected to be of the same order of magnitude, but with a

positive sign [57]. Both are much smaller than the measured susceptibility at room

temperature of 1× 10−3 cm3/mole.
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Figure 3.13: Susceptibility times the temperature versus temperature at external
field of 400 G for oriented sample in two directions, powder sample in two directions

as if it was oriented, and Stycast sample.

In Fig. 3.13 no special energy scale is found in either one of the measurements.

In fact, this measurement is similar to the previously observed powder high field

measurements (see §3.1.1)[38]. Again, the only indication of an interaction between

spins is the fact that χT for both direction and the powder decreases with decreasing

T . However, χT of the powder is smaller than χzT and larger than χ⊥T of the oriented
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sample. A comparison of the absolute value of the susceptibility of the powder and

the oriented sample is not accurate. We did try to have an equal amount of sample in

both balls but there is no telling how successful we were. A more relevant comparison

is between the susceptibilities in the different directions of the oriented sample; χzT

increases faster than χ⊥T , and at room temperature χz = 1.6χ⊥. Thus the ratio

between the z and ⊥ directions increases as the temperature increases.
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Figure 3.14: Inverse susceptibility versus temperature at H = 1 kG (a) and at
H = 100 G (b). The solid lines are linear fits to the high temperature (> 150 K)
data. (a) In inset of (b) we plot the low-temperature behavior of χ−1 at 100 G.

In Fig. 3.14 we plot the inverse susceptibility versus temperature for two fields,
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1000 and 100 G and for the two orientations. In the inset of Fig. 3.14(b) we plot

the inverse susceptibility at low temperatures (T < 50 K); clearly, χz linearizes at

T ∼ 30 K whereas χ⊥ linearizes at a much higher temperature (T ∼ 100 K). θ

, and C in arbitrary units are extracted from a linear fit of the high-temperature

(150 < T < 280 K) data to χ−1
⊥,z = (T + θ⊥,z)/C⊥,z. The fits are shown by the solid

line.

In Fig. 3.15 we plot θ⊥,z, and
√

C⊥,z which is proportional to the g⊥,z factor (if the

sample was fully oriented) versus the applied field. θ⊥ increases slowly with decreasing

applied field and saturates below 400 G. On the other hand, θz increases rapidly below

2 kG. The Curie constant has a similar behavior. The powder average of θ⊥,z at low

fields does not reconcile with θ ∼ 300 K measured in a powder and there must be

some extrinsic contribution to the susceptibility in the partially aligned samples at

low fields. In contrast, at high fields, H > 2 kG, θ of the two directions is hardly

distinguishable and on the order of the powder value. In addition, useful information

can be extracted from the CW temperature only if it is obtained by measurements

at T & θ. Therefore, we concentrate on the results obtained by H ≥ 2 kG, as shown

in the inset of Fig. 3.15.

In order to convert, the measured susceptibility χ presented above to the intrinsic

susceptibility χi in different directions, it is important to estimate the level of orien-

tation. This can be done using the x-ray data. The ratio (R) of the x-ray intensity

(I) from two different planes is,

R =
I(00h)

I(kk0)
. (3.2)

We now assume that there are N grains composed of two sets and α is the probability

that a grain orients. Thus αN are grains that orient perfectly with the field, and
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Figure 3.15: The Curie-Wiess temperatures and square root of the Curie constant of
the oriented sample perpendicular to and in the kagomé plane. The inset show a

zoom on the high field data.

(1 − α)N that are not effected by the field at all since they are made of a few

crystalline, for example. We further define β as the probability that a particular

plane will contribute to the scattering intensity in a powder. Therefore Eq. 3.2 can

be written as,

R =
Nβa(h)

Nβb(k)
=

a(h)

b(k)
(3.3)

where a(h) and b(k) are the intensities from (00h) and (kk0) plane. After orientation

we have Nα grains that are fully polarized with the field, and are perpendicular to

q. We also have N(1 − α) grains that did not change their orientation, out of these

N(1−α)β planes are perpendicular to q. The x-ray intensity ratio between the same
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planes would be,

R′ =
I ′(00h)

I ′(kk0)
=

Nαa(h) + Nβ(1− α)a(h)

Nβ(1− α)b(k)
(3.4)

=

(
α + β(1− α)

β(1− α)

)
a(h)

b(k)
=

(
1 +

α

β(1− α)

)
R (3.5)

Looking at the extremes, if all grains orient and α = 1 R′ →∞. If there are no grains

that orient and α = 0 then R′ = R. From Eq. 3.5 we find,

β

(
R′

R
− 1

)
=

α

1− α
(3.6)

We now can estimate β from the width of the peaks which is 0.2◦ out of 180◦, thus

β ∼ 0.001 (see Fig. 3.16). For the intensity calculation we need to subtract the
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Figure 3.16: A gaussian fit to (006) bragg peak reveals the width of the peak to be
β = 0.225(1)◦
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background,

(006) :




I

I ′


 =




385− 314(2)

9190− 484(20)


 =




71(2)

8706(20)


 (3.7)

(220) :




I

I ′


 =




502− 294(2)

414− 325(3)


 =




208(2)

89(3)


 (3.8)

thus,

R =
71(2)

208(2)
= 0.34(1) (3.9)

R′ =
8706(2)

89(3)
= 97(3) (3.10)

R′

R
= 285(8) (3.11)

thus, using Eq. 3.6 we find α = 0.26(2). This level of orientation is in agreement with

Imai et al.[2].

In an oriented sample we expect

χz,⊥ = (1− α)

(
1

3
χi

z +
2

3
χi
⊥

)
+ αχi

z,⊥. (3.12)

This relation could be inverted to produce χi
z,⊥. In Fig. 3.17 we present both 1/χz,⊥

and 1/χi
z,⊥ for the susceptibility data taken at H = 1000 G. New intrinsic CW

temperatures θi
z,⊥ could be obtained from 1/χi

z,⊥ as demonstrated by the dashed lines.

θi
z,⊥ represent the CW temperature as if the sample was fully oriented. Although α

is just an estimate of the level of orientation, the important point is that θi
z > θz and

θi
⊥ < θ⊥.

We now turn to discuss the possible origin of the susceptibility anisotropy in terms

of superexchange anisotropy and DMI (see §1.2). Since the sum of Dij around each

spin cancels[22]§1.3.1, DM does not contribute to the CW law. If the sample was



CHAPTER 3. RESULTS 83

-200 0 200

1/ i
z

1/ i

 1/ i

 1/ i
z

 1/ z

 1/

1/
,z

1/ i

-1
 [a

.u
.]

 

 T[K]

 

Figure 3.17: inset displays the inverse measured susceptibility 1/χz and 1/χ⊥, and
the inverse intrinsic susceptibility 1/χi

z and 1/χi
⊥ obtained from Eq. 3.12. The

dashed lines demonstrate that θZ < θi
Z and θ⊥ > θi

⊥.

perfectly oriented we would have θi
z,⊥ = Jz,⊥/kB . Since our sample is not perfectly

oriented, our high-temperature high field linear fits of χ−1
⊥,z measures a lower bound

on Jz and an upper bound on J⊥.

The lower bound on Jz is larger than the upper bound on J⊥. Despite the fact

that measurement of χz and χ⊥ are contaminated with χi
⊥ and χi

z respectively, as

indicated by Eq. 3.12, the conclusion Jz > J⊥ is unavoidable. It is robust even

against possible core and Van-Vleck corrections. Thus herbertsmithite has an Ising-

like exchange anisotropy. This, however, is not the end of the story. If Jz > J⊥, we

would expect χz < χ⊥, in contrast to observation. Therefore, to explain the high

susceptibility in the z direction we must invoke an anisotropic g factor as well.
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The classical ground state of an antiferromagnet kaogme with exchange anisotropy

has a net ferromagnetic order with finite total magnetization (§1.3.1). We believe that

this ferromagnetic order contributes to the observed χ at T → 0 by transverse field

(TF) muon spin rotation (µSR) experiment [38] (see §3.1.1). In µSR impurities are

expected to contribute to the muon line width while most of the sample contributes to

the line shift. In what follows we examine what part of the µSR data can be explained

by exchange anisotropy only. A complete understanding will of course require taking

DMI interaction into account as well.

The µSR data are reproduced in Fig. 3.18. χ increases sharply with decreasing

temperatures between ∼ 10 K and ∼ 1 K and saturates below T ∼ 200 mK at a value

of χ = 15.7(5)×10−3 cm3/mol Cu. This susceptibility mounts to an average moment

of 0.006µB per Cu, in the direction of the applied 2 kG field. Eq.1.15 indicates a

small ferromagnetic moment in an anisotropic kagome. A small field will stabilize

this moment and a powder average of its projection on the field direction will be

given by,
〈
M · Ĥ

〉
=

µB

2
(1 + cos ϕ) (3.13)

Solving Eq. 3.13 for the anisotropies gives Jz/J⊥ = 1.06. In Fig. 3.3 we show

simulations described in Ref. [58], for Jz/J⊥ = 1.04 and Jz/J⊥ = 1.08 showing sim-

ilar behavior as the experiment. For this type of exchange anisotropy the expected

Tc/J⊥ = 0.03 as shown in the inset of Fig. 3.3 also taken from Ref. [58]. For

J⊥ ' 200 K we expect Tc = 6 K. This temperature is at the center of the sharp

rise of χ. Thus we see that both the very low T and the very high T susceptibility

detected by µSR can qualitatively be explained by exchange anisotropy. However,

the intermediate T are smoother in the real data, and the sudden increase in the

magnetization, predicted in the simulated case, is missing.
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Figure 3.18: A plot of the magnetization detected by muon spin rotation versus
temperature, and simulation data for antiferromagnetic kagomé lattice with Ising

like exchange anisotropy as in Ref. [4]. In the inset the normalized critical
temperature versus the exchange anisotropy is shown.
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To summarize, our measurements in ZnCu3(OH)6Cl2 reveal an anisotropic intrin-

sic spin susceptibility with χi
z > χi

⊥ possibly due to anisotropic g factor. At fields

above 2 kG a CW temperature can be consistently determined in two different direc-

tions. By mean-field approximations we were able to show that this phenomenon can

be explained only by an anisotropic super-exchange constants where Jz > J⊥. This

anisotropy can explain the main features of the susceptibility determined by µSR.

3.1.3 Conclusions

Experimental data has been reviewed on powder and oriented powder samples of

Herbertsmithite. µSR, NMR and susceptibility all show different behaviors which

could not be fully explained.

Using oriented powder samples reveal an appearance of an Ising-like exchange

anisotropy which in turn explains the µSR data. However, it is still an open question

regarding the various shifts measured by NMR. Additionally, µSR does not detected

any lattice distortions. Cl NMR T1 measurements indicate zero gap to excitations.

3.2 Pyrochlores

While J anisotropy is found in herbertsmithite, distortion is not observed in this case

(§3.1.1). As mentioned earlier (§1.4.2), a magneto-elastic coupling and distortion

possibly affects the pyrochlore Y2Mo2O7.
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3.2.1 Y2Mo2O7

However, The smoking gun proof that the distortion in Y2Mo2O7 is driven by the

magnetic interaction is still lacking. Such evidence could be provided by the experi-

mental observation of lattice distortions upon the application of an externally applied

magnetic field. Here we extend previous 89Y NMR measurements[19], which were lim-

ited to nitrogen temperature, to the helium range. We also performed field-dependent

high-resolution x-ray powder diffraction.

In Fig. 3.19 we plot the cubic (222) (main panel) and (440) (inset) peaks without

at zero-field (ZF) at three temperatures (above Tg at 55 K, near Tg, at 28 K, and

below Tg at 16 K). The peak intensities are temperature-independent both in shape

and intensity, they are progressively shifted up by 10 counts/min for clarity. Addi-

tionally, all reflections measured are consistent with the face centered cubic structure;

however, they are significantly broader than the instrumental resolution even at room

temperature.

In Fig. 3.20 we plot the (440) Bragg peak at three temperatures (above Tg at 220 K,

near and below Tg) taken with the application of the field. The only experimental

finding, is a narrowing of the (440) peak at T = 28 K upon the application of the

field. This narrowing occurs only just above Tg, and is absent at higher or lower T s.

The effect of a magnetic field on the lattice properties clearly indicates the presence

of magneto-elastic coupling. The fact that Tg is close to the temperature when the

distortion is optimized indicates that magnetic interactions drive the distortion and

not vice versa. This is not a strong enough proof of the frustration-driven-distortion

for which we were looking.

Another interesting experimental finding is that at T < Tg, with no field applied,

there is a clear indication of multiple discrete peaks with a width comparable to the
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Figure 3.19: ZF x-ray scattering from
Y2Mo2O7. The (222) Bragg scattering at
T = 55 K, T = 28 K and T = 16 K. In
the inset, the (440) Bragg reflection.
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Figure 3.20: X-ray scattering from
Y2Mo2O7 with H = 1.5 T applied. The
(440) Bragg scattering at T = 220 K,

T = 28 K and T = 16 K.

instrumental resolution. A closer look at the ZF (222) peak at 16 K is plotted in

Fig. 3.21. We index the vector, qmax, at which the local maxima are found by n.

We found that qmax(n) is a linear function of n as demonstrated in the right inset of

Fig. 3.12b. Interesting similar phenomena were found in real space at much higher

temperatures by NMR [19]. At present we do not offer any interpretation for this

effect, but we ruled out instrument-related effects.

Similar experiments were performed using neutrons. These experiments were per-

formed on the BT1 powder diffractometer at NIST, Gaithersburg, USA with a field

up to 6 T applied perpendicular to the scattering plane. Data were collected at 3

temperatures, 60, 25, and 4.2 K, and at an energy of E = 34.5 meV. In Fig. 3.22 we

plot the significant part of the diffraction pattern taken. At first glance, no apparent

difference is revealed between the measurements with and without the field, and no

magnetic order was detected. However, a closer look at the (222), and (440) peaks
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Figure 3.21: The center of the (222) Bragg peak taken at T = 16 K. Multiple peaks
are observed and are indexed. In the inset, qmax versus the index n (see text).

does reveal a field dependence similar to that seen by x-rays. These field-dependent

changes are qualitatively the same as seen in the x-ray experiment, but the poorer

resolution of the neutron experiment are unable to demonstrate the peak changes.

The strongest effect is on the (440), which has the larger structure factor in neutron

diffraction. The (222) and (440) Bragg peaks are plotted in Fig. 3.24 and Fig. 3.23

respectively. At T = 25 K the (440) Bragg reflection grows slightly when the field is

applied. We also plot in Fig .3.23 the (440) peak taken at T = 60 K with a baseline

shift to demonstrate that the effect is strongest close to Tg and is absent at T > Tg.

The (222) peak is plotted in Fig. 3.24. This peak only slightly broadens as a result

of the field (∆w = 1(2) × 10−4Å−1). This neutron experiment also proves that the

effects seen are not instrumental and are related to Tg.
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Figure 3.22: Neutron scattering from Y2Mo2O7 with and without applied field.

Finally, the nature of the field induced distortion is further explored by NMR.

We performed 89Y measurements at temperatures from 300 K to 25 K. We were

able to extend the temperature range of previous measurements by constructing a

high pressure cell, where the sample and the NMR tank circuit are placed in an He

environment pressurized to 2 Atmospheres. In such a configuration higher RF power

can be delivered to the sample and the signal is stronger and can be followed to lower

temperatures. At each temperature, we obtained the complete NMR spectrum by

sweeping the external field, Hext, at a constant applied RF frequency f = 16.44 MHz.

In each field we used the spin-echo sequence (π/2− π pulses) and recorded the echo

signal. In Fig. 3.25 and Fig.3.26 we present the NMR spectrum taken at 85 K and

25 K respectively. The width of the 85 K spectrum extends over 0.4 T whereas
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Figure 3.24: The (222) Bragg scattering
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T = 25 K. The lines are fits to gaussian
function.

the width of the 25 K spectrum extends over 1 T. This broadening results in low

intensities at each applied field upon cooling. Due to this broad line at low T we gave

up on high resolution NMR, as in Ref. [19], and concentrated on the gross features

of the spectrum. The most noticeable feature in the T = 25 K spectrum is the clear

appearance of two peaks, with a hint of a third one.

In order to study the temperature dependence of the shift, we use the powder

spectrum (see §2.1.1) convoluted with Lorentzians to fit the NMR spectra. At high

temperatures (T > 250 K) there is hardly any shift. At intermediate temperatures,

50 ≤ T ≤ 200 K, two different sites were needed to fit the data (see Fig. 3.25). Finally,

at low enough temperatures, T < 50 K, three sites were assumed (see Fig. 3.26). In

Fig. 3.27 we demonstrate the contribution of each of the powder-average site to the

NMR spectra. In Fig. 3.28 we plot the shift K i
y, i for each site, versus the magne-

tization, which was extrapolated to H = 7.8 T from SQUID measurements of up to
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Figure 3.25: NMR spectrum at 85 K.
The line is a fit to a spin 1/2 powder
average convoluted with lorentzian.
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Figure 3.26: NMR spectrum at 25 K.
The line is a fit to a spin 1/2 powder
average convoluted with lorentzian.

6 T. The temperature in this figure is an implicit parameter. As the susceptibility

increases the shift for each site also increases. However, the dependence between shift

and susceptibility is not linear, indicating that the lattice contributes to the shift as

discussed in Ref. [5].

Further information could be educed by comparing the shift ratios. If the three

domains or phase maintain the cubic Fd3̄m symmetry of the pyrochlore and only the

unit cell size changes, we expect the ratio Ky/Kx to be identical to all domains. In

Fig. 3.29 we plot the shift Ky versus the shift Kx for the three sites extracted from

our fits. The K’s from two sites seem to be on a straight line, thus having the same

Ky versus Kx ratio. The original domain or cubic phase has a different ratio. This

suggests that Fd3̄m is not maintained in the field-enhanced domains or phases.

To conclude, we found field-dependent lattice properties in Y2M2O7. The effect is

strongest close to Tg. Had the distortion in Y2M2O7 been a consequence of electro-

static (chemical) interactions, the magnetic field should not have had an effect on it.
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Figure 3.27: The contribution of the 2 sites to the NMR spectra

The x-ray data leave two possible scenarios for the effect of the field; (I) it is strongest

when it points in the 〈111〉 direction and in this direction enhances the probability

of three special domains, or, it generates a phase transition in part of the sample, of

yet unknown nature, regardless of the field direction. The new domains or phases do

not conserve the Fd3̄m symmetry. Regardless of the field induced structure, it seems

that magnetoelastic coupling controls the freezing properties of the system.

3.2.2 Tb2Ti2O7

The Tb2Ti2O7 compound has received the term cooperative paramagnet due to its

lack of a phase transition at all measured temperatures (T > 50 mK). Here we probe

the possible existence of a magneto-elastic coupling (§1.3.1) in this compound using
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µSR (§2.1.1).

Transverse [TF] and longitudinal field [LF] µSR measurements were performed

with powder samples. In Fig. 3.30 we show the LF [top] and the TF [bottom] data

at two temperatures and applied field of 2kG. The TF data are shown in a reference

frame rotating at a field of 1.5kG. Several aspects can be seen in the raw data: From

the time scale it is clear that the transverse relaxation is by far greater than the

longitudinal one. The longitudinal relaxation increases as the temperature decreases,

as was observed previously [59]. Finally, the transverse relaxation increases and the

muon rotation frequency decreases upon cooling.
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Figure 3.29: The shift Ky versus the shift Kx for the three different Y sites.

The µSR LF polarization is best described by the root exponential

PLF (t) = ALF exp(−(t/T1)
1
2 ) + BLF (3.14)

where the parameter ALF is set by taking into account the tilt of the muon spin

relative to the longitudinal magnetic field, T1 is the longitudinal relaxation time, BLF

is the background, and t is time. Similarly, the TF polarization is best fitted by a

root exponential superimposed on a cosine oscillation

PTF (t) = ATF exp(−(t/T2)
1
2 ) cos(ωt + φ) + BTF . (3.15)

Here T2 is the transverse relaxation time. The other parameters have the same mean-

ing as in Eq. 3.14. The quality of the fits is presented by the solid lines in Fig. 3.30.

Data were collected in the temperature range 60 mK to 100 K and three fields of

2, 4, and 6 kG. The frequency ω as a function of temperature for the three different
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Figure 3.30: The time dependence of the muon polarization at an applied field of
2 kG and at two temperatures. In the top figure the longitudinal polarization and in
the bottom, the transverse. The time scale is different between the two directions.

The solid lines are fits to Eqs. 3.14 and 3.15.

fields is depicted in the inset of Fig. 3.31. The frequency shift,

K = (ω0 − ω)/ω0 (3.16)

is shown in the main panel for the same temperatures and fields. We define ω0 as the

frequency of the free muon in the rotating reference frame. Similarly, we present T−1
2

in Fig. 3.32, and in the inset T−1
1 . The most important aspect of the data is that all

quantities saturate as the temperature decreases below ∼2K.

Since T−1
1 , the LF relaxation, is an order of magnitude lower than T−1

2 , the TF re-

laxation, the contribution to the TF relaxation from dynamic fluctuations is negligible

(§2.1.1). Thus, T−1
2 could be analyzed in terms of field inhomogeneities only.
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In Fig. 3.33 we show (T2γµH)−1 versus K with the temperature as an implicit

parameter. The two quantities are linearly dependent at all fields. Allowing for a base

line shift, which does not originate in localized spins will lead to a proportionality

relation between these quantities. This stands in strong contrast to Y2Mo2O7 where

the muon transverse relaxation grows as a function of χ faster than exponentially.

This is demonstrated in the inset of Fig. 3.33 using data from Ref. [5] on a semi

log scale. We conclude that in Tb2Ti2O7 the muon transverse relaxation has the

same temperature dependence as the shift. In fact, by calculating the width of the

distributions, δA for each data point using Eq. 2.7 we find that ∆(δA)/δA is 15% for

Tb2Ti2O7 and 115% for Y2Mo2O7 where δA and ∆(δA) are the average and standard
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deviation of δA respectively. ∆(δA)/δA is a measure of the relative change in the

distances variations due to temperature changes.

To summarize, we compare the transverse relaxation rate resulting from inter-

nal field distribution to susceptibility measured by the shift in the muon rotation

frequency and DC susceptibility. We find that the relaxation rate has the same

temperature dependence as the susceptibility. This indicates that the only reason

for increasing relaxation upon cooling is an increase in the electronic moment size.

Therefore, there is no evidence for lattice deformation in Tb2Ti2O7 that is static on

the time scale of 0.1 µsec.



CHAPTER 3. RESULTS 99

0.50 0.55 0.60 0.65 0.70
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.008 0.010 0.012
1E-3

0.01

0.1

  

 

 

(T
2

 H
)-1

K

TF=
 2kG
 4kG
 6kG

Y
2
Mo

2
O

7

  (cm3/mole)

 (T
2

 H
)-1

T
g
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same type of measurement on a semi log scale in the pyrochlore compound

Y2Mo2O7 taken from Ref. [5].

3.2.3 Conclusions

Experimental evidence has been reviewed on two pyrochlore samples, Y2Mo2O7 and

Tb2Ti2O7.
89Y NMR performed on the Y nuclei, hints to a distortion of the lattice.

This finding did not receive confirmation from x-rays or neutron scattering techniques.

This discrepancy is not clear to us at present.

µSR on Tb2Ti2O7 did not detect any lattice distortion. It might be that since

Tb2Ti2O7 does not undergo any phase transition, it doesn’t deforms, and vice versa.
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3.3 Discussion

To summarize, we seen that geometrically frustrated magnets are ideal to explore

perturbations beyond the Heisenberg model.

We demonstrated that exchange anisotropies is a relevant perturbation in the

kagome herbertsmithite and contributes to its ground-state properties. Others have

argued that DMI is also important especially at low T . Most likely for full under-

standing of the herbertsmithite low-T behavior both perturbation should be taken

into account. In the pyrochlore Y2Mo2O7 the lattice distortion observed by resonance

techniques can be attributed to a magneto-elastic coupling. Tb2Ti2O7, seems to be

a pure Heisenberg antiferromagnet without magnetoelastic coupling.



Appendix A

Powder Average

In this appendix we derive the powder average NMR spectrum. We start with the

Hamiltonian of a spin-1/2 system, with a Knight-Shift tensor K,

H = −~γHlI · (1̄ + K̄) · Ĥl. (A.1)

Our aim is to find the energy (or the resonance frequency), e = hν. This frequency

should be a function of the external field, H = H(θ, ϕ) and K, thus ν = ν(H, θ, ϕ,K).

For a polycrystalline samples the sites are oriented randomly with respect to the field

therefore we would like to integrate over all possible orientations.

We use Eq. A.1 and write explicitly,

H =

[
Ix Iy Iz

]
·




1 + Kx 0 0

0 1 + Ky 0

0 0 1 + Kz



·Hl




sin θ cos ϕ

sin θ sin ϕ

cos θ




= −~γHl [Ix(1 + Kx) sin θ cos ϕ + Iy(1 + Ky) sin θ sin ϕ + Iz(1 + Kz) cos θ] (A.2)

101



APPENDIX A. POWDER AVERAGE 102

by using the pauli matrices for I,

H = −~γHl

·




(1 + Kz) cos θ (1 + Kx) sin θ cos ϕ− i(1 + Ky) sin θ sin ϕ

(1 + Kx) sin θ cos ϕ + i(1 + Ky) sin θ sin ϕ −(1 + Kz) cos θ


 .

(A.3)

The eigenvalues for Eq. A.3,

e1

~γHl

= (1 + 2Ky sin2 ϕ sin2 θ + K2
y sin2 ϕ sin2 θ

−K2
x sin2 ϕ sin2 θ − 2Kx sin2 ϕ sin2 θ + 2Kx sin2 θ (A.4)

+ K2
x sin2 θ + K2

z − 2Kz sin2 θ + 2Kz −K2
z sin2 θ)1/2

e2 = −e1 (A.5)

Small Knighshift

We assume small Ki (K2
x,y,z → 0), and use

√
1 + α ' 1 + α

2
, thus Eq .A.4,

e1

~γHl

= 1 + Kx sin2 θ cos2 ϕ + Ky sin2 θ sin2 ϕ + Kz cos2 θ . (A.6)

The energy difference between the two states is therefore, hν = 2e1. Using trigono-

metric identities

hν

~γHl

= Kz cos2 θ +
1

2
Kx sin2 θ (1− cos 2ϕ) +

1

2
Ky sin2 θ (cos 2ϕ + 1)

=
1

3
(Kx + Ky + Kz) +

1

6
(2Kz −Kx −Ky)

(
3 cos2 θ − 1

)
+ (A.7)

+
1

2
(Ky −Kx)

(
1− cos2 θ

)
cos 2ϕ

or,

νper(K, Hl, µ, ϕ) = νl

[
Kiso + Kax(3µ

2 − 1) + Kaniso(1− µ2) cos 2ϕ
]
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where νl = Hlγ/(2π), and

Kiso = (Kx + Ky + Kz)/3 (A.8)

Kax = (2Kz −Kx −Ky)/6

Kaniso = (Ky −Kx)/2 .

Axially symmetry

We begin with the eigenvalues for the Hamiltonian A.1, found earlier as Eq. A.4. We

assume axially symmetry only, Kx = Ky, and gain,

e1

~γHl

= (1 + 2Ky sin2 θ + K2
y sin2 θ + K2

z − 2Kz sin2 θ + 2Kz −K2
z sin2 θ)1/2 (A.9)

with µ = cosθ, now the energy difference,

~γHl =
hν√

1 + K2
y (1− µ2) + 2Ky (1− µ2) + 2Kzµ2 + K2

zµ
2

(A.10)

such that the resonance field obeys,

Hl =
hν

β

1√
1 + 2K⊥ + K2

⊥ − µ2K2
⊥ + 2µ2K‖ − 2µ2K⊥ + µ2K2

‖
(A.11)

=
hν

β

1√
g2
⊥ − µ2

(
g2
⊥ − g2

‖

) =
hν

gβ
(A.12)

where we define,

β = −~γ (A.13)

K⊥ = Kx = Ky (A.14)

Kz = K‖ (A.15)

g = 1 + K (A.16)

g =
√

g2
⊥ − (g2

⊥ − g2
‖)µ

2 . (A.17)
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The powder pattern, S (H),

S (H) =
1

2

(
dH

dµ

)−1

. (A.18)

Using H = Hl (µ) of Eq.A.12,

dHl

dµ
=

hν

2β

2µ
(
g2
⊥ − g2

‖
)

[
g2
⊥ − µ2

(
g2
⊥ − g2

‖

)]3/2
(A.19)

thus,

S (H) =
1

2

β

hν

[
g2
⊥ − µ2

(
g2
⊥ − g2

‖
)]3/2

µ
(
g2
⊥ − g2

‖

) (A.20)

recalling, µ2
(
g2
⊥ − g2

‖
)

= g2
⊥ −

(
hν
Hβ

)2

, we get,

S =
1

2

β

hν

[
g2
⊥ − µ2

(
g2
⊥ − g2

‖
)]3/2

√
g2
⊥−( hν

βH )
2

g2
⊥−g2

‖

(
g2
⊥ − g2

‖

) (A.21)

=
1

2

β

hν

[
g2
⊥ − µ2

(
g2
⊥ − g2

‖
)]3/2

g⊥
√

g2
⊥ − g2

‖

√
1− 1

H2

(
hν

g⊥β

)2
(A.22)

we’ve seen that, g = hν
βH

(Eq. A.12), hence,

S =
1

2

β

hν

(
hν

βH

)3
1

g⊥
√

g2
⊥ − g2

‖

√
1− 1

H2

(
hν

g⊥β

)2

=
1

2

(hν)2

β2g⊥
√

g2
⊥ − g2

‖H
2

√
H2 −

(
hν

g⊥β

)2
(A.23)

for

hν

g⊥β
≤ H ≤ hν

g‖β

and S (H) = 0 elsewhere. In Fig. A.1 we plot the expected NMR spectra for a sample

with axial symmetry.
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Figure A.1: The theoretical axial symmetric NMR spectrum.

Complete Anisotropy

Here we develop the NMR spectra for a completely anisotropic sample, Kx 6= Ky 6=
Kz. We once again use the eigenvalue we found in the general case, Eq. A.4,

(
e1

βH

)2

= 1 + sin2 ϕ
(
1− µ2

) (
2Ky + K2

y −K2
x − 2Kx

)
+

+
(
1− µ2

) (
2Kx + K2

x − 2Kz −K2
z

)
+ K2

z + 2Kz (A.24)

= g2
2 − cos2 ϕ

(
1− µ2

) (
g2
2 − g2

1

)− µ2
(
g2
1 − g2

3

)
. (A.25)

This leads the resonance field to be,

H =
hν

β

1√
g2
2 − cos2 ϕ (1− µ2) (g2

2 − g2
1)− µ2 (g2

1 − g2
3)

(A.26)

thus,

dH

dµ
=

hν

β

µ [(g2
1 − g2

3)− cos2 ϕ (g2
2 − g2

1)]

[g2
2 − cos2 ϕ (1− µ2) (g2

2 − g2
1)− µ2 (g2

1 − g2
3)]

3/2
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from the resonance field equation, Eq.A.25 we find µ = µ (H),

(
hν

βH

)2

= g2
2 − cos2 ϕ

(
g2
2 − g2

1

)
+ µ2

(
cos2 ϕ

(
g2
2 − g2

1

)− g2
1 + g2

3

)

⇓

µ2 =

(
hν
βH

)2

− g2
2 + cos2 ϕ (g2

2 − g2
1)

cos2 ϕ (g2
2 − g2

1)− g2
1 + g2

3

(A.27)

therefore,

dH

dµ
=

hν

β

√
g2
2 − cos2 ϕ (g2

2 − g2
1)−

(
hν
βH

)2√
g2
1 − g2

3 − cos2 ϕ (g2
2 − g2

1)

[
g2
2 − cos2 ϕ (g2

2 − g2
1) +

(
hν
βH

)2

− g2
2 + cos2 ϕ (g2

2 − g2
1)

]3/2

= H3

√
H2 −H2

2

H2H2
2

− cos2 ϕ
H2

1 −H2
2

H2
1H

2
2

√
H2

3 −H2
1

H2
3H

2
1

− cos2 ϕ
H2

1 −H2
2

H2
1H

2
2

(A.28)

where we define,

Hi ≡ hν

giβ
, i = 1, 2, 3

The powder pattern should be (S(H) = ρ(H) mentioned above),

S(H) =

∫ ∫
δ (νapp − ν (H, µ, ϕ)) dµdϕ

=

∫
dϕ

∫
dµδ (νapp − ν (H, µ, ϕ)) (A.29)

where, ν (H,µ, ϕ) is derived from A.26. Since ν = ν (H,µ, ϕ) we can change inte-

grands, to simplify our equation,

dν =
dν

dµ
dµ (A.30)

and get,

S(H) =

∫
dϕ

∫
dν
dν
dµ

δ (νapp − ν (H, µ, ϕ))

=

∫
dϕ

∫
dν

(
dµ

dν

)
δ (νapp − ν (H, µ, ϕ)) (A.31)
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because of the δ-function this reduces to,

S(H) =

∫
dϕ

(
dµ

dν

)

ν=νapp

(A.32)

hence, the powder pattern in this case (after some work) evaluates to,

S(H) =
1

2

(
dH

dµ

)−1

=
1

2H2

H1H2H3√
(H2 −H2

1 )
√

(H2
3 −H2

2 )

1√
1− (H2

2−H2
1)H2

H2
2(H2−H2

1)
sin2 ϕ

√
1− (H2

2−H2
1)H2

3

H2
1(H2

3−H2
2)

sin2 ϕ

(A.33)

using the definition for elliptic integrals of the first kind,

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

(A.34)

with 0 ≤ k ≤ 1, being the elliptic modulus, a.k.a. m = k2 the parameter. The

integral is symmetric,
∫ π

0
= 2

∫ π
2

0
, hence we get a multiplicity of 2.

By defining, t = sin θ, thus, dt = cos θdθ =
√

1− t2dθ we get,

K(k) =

∫
dt√

1− t2
√

1− k2t2
(A.35)

After tedious work, it is possible to show that Eq.A.33 has indeed a Legendre elliptic

integral form[60]. A theoretical powder averaged NMR line, for a single site, is de-

picted in Fig. A.2. Each divergence in the spectrum is related to a different K. The

field with the lowest divergence is related to Kx, the middle is related to Ky and the

highest field is related to Kz. This theoretical spectrum demonstrates that a single

site, with a single set of Kx, Ky, Kz, could give rise to only one NMR line peak even

under powder averaging.
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Figure A.2: A theoretical powder-averaged NMR for a spin-1/2, γ = 2.11MHz/T,
ν = 16.44MHz.



Appendix B

DMI

Taking into account a weak spin-orbit coupling (λL · S) and expanding in powers of

λ, Moriya showed that the effective magnetic hamiltonian between neighboring spins

can represented in the Hamiltonian as,

HDM =
∑
<i,j>

Dij · (Si × Sj) (B.1)

where Dij ¿ Jij is the DM vector which defines the interaction (J ∝ λ0 whereas

D ∝ λ). The interaction changes sign if we permute spins j and i (the interaction

is antisymmetric), that is, Dij = −Dji. The interaction described in Eq. B.1 is such

that D is perpendicular to the plane created by Si and Sj. In Fig. B.1 and Fig. B.2 we

demonstrate the type of order induced by DMI alone (Fig. B.1) and in a more realistic

case with a perturbation to the Heisenberg Antiferromagnetic coupling (Fig. B.2).

D was shown, by Moriya, to be proportional to λtij/(∆U), where ∆ is the crystal

field splitting and λ is the spin-orbit coupling. [The exchange Jij = 4tij/U where U

is the coulomb repulsion, tij the intersite hopping]. DMI stems from the spin-orbit

couplings. The DM term in the Hamiltonian causes the susceptibility to change by

inducing a moment by canting the spins slightly out of the plane, and may give each
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D12

S1S1 S2S1

Figure B.1: A typical DMI,
D12 · (S1 × S2).

D12

S2S1

Figure B.2: The type of disorder from
DMI in Heisenberg AF coupling, J 6= 0.
The DMI causes a canting of the spins

from an ideal anti-parallel state.

kagomé plane a net ferromagnetic moment. As a consequence of the Hamiltonian

being invariant under the symmetry operations which leave the lattice invariant, the

direction of Dij is geometrically constrained and follows rules set by Moriya. The

rules are for any general crystal, we observe two ions in the system, 1 and 2, which

are located at A and B, respectively. The point bisecting the line AB is defined as C.

1. When a center of inversion is located at C, D = 0.

2. When a mirror plane perpendicular to AB passes through C, D ‖ mirror plane

or D ⊥AB.

3. When there is a mirror plane including A and B, D ⊥mirror plane.

4. When a two-fold rotation axis perpendicular to AB passes through C, D ⊥two-

fold axis.

5. When there is an n-fold axis (n ≥ 2) along AB, D ‖AB.
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Figure B.3: Examples of DMI rules. Numbers indicate rule number as explained in
the text. Sites are shown in circles connected by red lines, mirror planes are

indicated in hollow boxes connected by black line.

In Fig. B.3 we demonstrate the rules graphically, the numbers indicate the rule number

which the figure is relevant to (in Fig. B.3.5 a four-fold rotation, n = 4, is shown).

For the kagomé plane, two of the Moriya’s rules give useful information about

Dij. Since the middle point between two sites in the triangle of the kagomé is not a

center of inversion, D 6= 0 is possible. In a perfect kagomé lattice, Dij can only be

perpendicular to the kagomé plane since this plane is a mirror plane. Most materials

however are not perfect kagomé lattices or the surrounding ions affects the crystal

field and are involved in the superexchange mechanism between the magnetic sites.

Since the pyrochlore lattice does not have an inversion center at the middle point

between sites, D 6= 0, and a DMI can occur on the pyrochlore. Considering a single
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tetrahedron, the plane which connects two sites and the middle point of the opposite

bond in the tetrahedron is a mirror plane. Thus D can only be perpendicular to this

plane. There are thus two possible DMI’s between two sites which correspond to the

directions for the D vector.

By taking a mean field approach, we write the heisenberg hamiltonian with DMI

as,

H = −
∑

i

Si ·
(

J
∑

j 6=i

Sj + Dij × Sj + gµBH

)
(B.2)

we’ve used the vector relation, A · (B×C) = B · (C×A). this hamiltonian can be

written as H = −gµB

∑
i Si ·Heff , where the effective field,

Heff =
1

gµB

∑
j

(JSj + Dij × Sj) + H (B.3)

we apply Sj → M/gµB thus gain,

Heff =
Z

(gµB)2
(JM + D×M) + H (B.4)

thus the magnetization,

M =
C

T

(
Z

(gµB)2
(JM + D×M) + H

)
. (B.5)

where C = (gµB)2S(S + 1)/(3kB) is the currie constant. Eq. B.5 can be written as,

M =

(
T

Z
(gµB)2 − CA

)−1
C(gµB)2

Z
H (B.6)

where A = A(J,D) is given by,

A =
Z

(gµB)2




J −Dz Dy

Dz J −Dx

−Dy Dx J




. (B.7)
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The inverse susceptibility, χ−1
z = Hz/M3,3 and χ−1

⊥ = H⊥/M1,1,

χ−1
z =

(T + θCW )3 +
(

θCW

J

)2
(T + θCW ) |D|2

C
(
(T + θCW )2 +

(
θCW

J

)2
D2

z

) (B.8)

χ−1
⊥ =

(T + θCW )3 +
(

θCW

J

)2
(T + θCW ) |D|2

C
(
(T + θCW )2 +

(
θCW

J

)2
D2
⊥
) . (B.9)

The asymptotic expansion of Eq. B.8 in D (with x = T + θCW ) reveals,

χ−1
z ≈ x

C
+

1

C

(
θCW

J

)2 (|D|2 −D2
z

) 1

x
− 1

C

(
θCW

J

)4

D2
z

(
D2

x + D2
y

) 1

x3

+
1

C

(
θCW

J

)6

D4
z

(
D2

x + D2
y

) 1

x5
+ O

(
1

x7

)
(B.10)

i.e., in a mean-field macroscopic approximation the DMI does not change the Currie-

Wiess constant, θCW .
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-iwqpiyel'fc zivw`xhpi` zxfra zeihpbn zertez xiaqdl ozip ik mbced xara

dnebw ibixy ly zihpbnd zebdpzdd z` zizernyn zepyl dleki ef divw`xhpi` .dixen

dxeva azkp ix`pil-ecd (.n.c ,oldl) dixen-iwqpiyel'fc zivw`xhpi` xai` .xelkexite

HDM =
∑
<i,j>

Dij · (Si × Sj)

zgz ik ze`xdl ozip .divw`xhpi`d z` x`znd .n.c xehwe `ed Dij ¿ Jij xy`k
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iepiyl mxez epi` okl
∑

i6=j Dij = 0 ,xelkexite dnebw ibixy xear ,rvenn dcy aexiw

.qiie-ixiw zxehxtnh

jeza divw`xhpi`dy ote`a iehia icil d`a seligd xai` ly ditexhefi`p` ,seqal

dxeva zx`ezn ef dcaer .oznvra zedf opi` z xeyinl uegn divw`xhpi`de x−y xeyin

d`ad

H = −
∑
<i,j>

JzS
z
i S

z
j + J⊥S⊥i S⊥j − gµB

∑
i

Si ·H

dpey mipey mipeeika zccnpd divfihpbnd ik lawzn rvenn dcy aexiw zgz xy`k

dnebwd bixy lr dfk dxwna .mipey mipeeika zepey qiie-ixiw zexehxtnhl d`iane

mipitqd oeeik z` dxicbnd zg` zief dpyi okl cg` xeyin lr mi`vnp mipitqd lk

iteq didi ẑ xiv jxe`l oitql ihpbnd hpnend jk awr .cos ϕ = −Jz/(Jz +Jx) zniiwnd

zihpbnext dnexzl d`ian dnebwd bixy lr seligd xai` ly ditexhefi`p` jkitl ,iaeige

.ceqid avna

-nqhxaxd - dnebw bixy lra cg` ,mipey mixneg dyely mixweg ep` ef dceara

Tb2Ti2O7-e ovng mepcailen meixhi`) Y2Mo2O7 - xelkexit bixy ilra miipye ,hiih

oey`xd ,hinq hxaxd ly eny lr `xwp ,hiihnqhxaxdd .(ovnge meip`hih meiaxh)

zelra zeaekxzd ly yecwd riabl aygp `ed .07-d zepy zligza dli'va dxkna ezelbl

mr (minbt `ll) mlyen dnebw bixy ly oey`xd yenind `ed oky dnebwd zixhniq

wlg epide .ZnCu3(OH)6Cl2 zinikd dxevd lra `ed hiihinqhxaxdd .ihpeew oitq

zelawzn dgtynd ly zeihpbnd zepekzd .ZnxCu3−x(OH)6Cl2 hiinwhxtd zgtynn

zecicn zealeyn ef dceara .1
2

oitq xen`k `yepd Cu2+ zyegpd oei oexhwl` jezn

dcedz zecear .µSR zecicne divfihpbn zecicn ,xelkd oirxb lr zipirxb zihpbn dcedz

zniiw dl` zecicn jezn .mixg` mipirxb lr mlera zepey zeveawa ervea zihpbn

ze`ce xqeg miiw ,z`f znerl .xexrl dibxp` yxtd oi` ik mixwegd axwa dnkqd

`id µSRd zwipkh ixeg`n oeirxd .dnebwd ixeyin ly divfihpbnd ly `vend iabl

zeihpbnd z` z` x`znd xac ,xnega ipe`eind oitqd ly onfa zegztzdd z` cecnl
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dxehxtnhl cr zegtl) `tew epi` hiihnqhxaxd ik dlbzd µSR zecicnn .xnegd ly

.miibixy mizeeir elbzd `l sqepae (60mK ly

df xneg .zpiiprn zilwiqit dira deedn A2B2O7d zgtynn Y2Mo2O7 xelkexitd

dxehxtnha zipitq zikekfl df`t xarn rvan xy` ,1 oitq lra lkqezn hpbn epid

df xcq i` .reci epi` exewny xcq i` ly beq lr fnexy dn , −22Kk ly zihixw

,`nbecl zencew zeipeiqip zei`x jkl zeniiw .bixyd ly zeeir ici lr mxbidl ieyr

µSR ieqipe mepcailend ipexcdxhh ly rlvd jxe`a xcq i` lr d`xnd XAFS ieqip

epkynd ef dceara .xnega miinipt zecy ly ce`n dagx zebltzd zniiw ik mibcnd

ik dlbzd .df`td xarn zxehxtnhl daexwd dxehxtnhl zihpbn dcedz ly ieqip

divelefxa X ipxw ly zecicn .midf `l Y ixz` (dyely s` okzii) ipyl zegztzd zniiw

.miipan miiepiy zirnyn cg dxeva elib `l ddeab

-xnl ;ipitq lfep deedn `edy jka mixelkexitd zgtyna icegii Tb2Ti2O7 xelkexitd

x`yp Tb2Ti2O7 ,100K n dkenpd dxehxtnha zegztznd zeihpbnextihp` zeivlxew ze

-ehpbn beqn oepbpn ik rved xara .70mK ly dxehxtnhl zegtl cr ihpbnx`t avna

epynzyd df xneg lr xwgna .itexhefi`p` ugl zgz mxbpd geeh jex` xcql mxeb ihql`

`ed ihql`-ehpbn oepbpn ly eneiw xqeg ik okzii m`d wecal zpn lr µSRd zwipkha

ly onfd zlwqa bixya mizeeirl zecr oi` ik xxazd .`tew epi` xnegdy jkl mxebd

.dipyexwin 1.0 `idy µSRd

mibixyd ipyl miihxe`iz mixaqd mi`ian ep` 1 wxta .onwlck zpbxe`n dceard

.ef dcear zqqazn mdilry zeaekxzd lr zivnz mr xelkexitde dnebwd ,milkqeznd

zewiecne zepey zecicn ervia exyti`y zepeyd dcicnd zewipkhae mirvn`a oc 2 wxt

.dcicnd ze`vez z` migzpne mibivn ep` 3 wxta seqal .zeaekxzd ly


