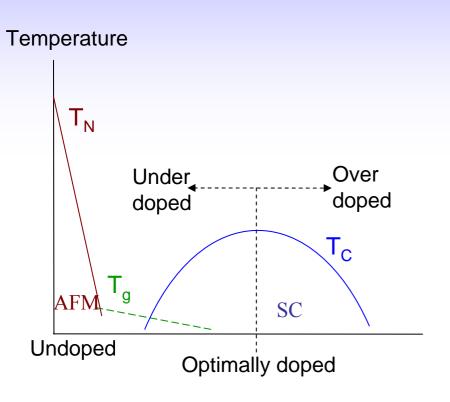
Correlation Between the Critical Temperatures of **Cuprates Superconductors** and their Magnetic Interactions

Rinat Assa

Amit Keren

High Temperature Superconductors



Schematic phase diagram

The cuprates high T_C superconductors are ceramic compounds all having CuO_2 planes.

• At low doping levels the origin of the magnetism lies in the CuO₂ planes.

Superconductivity also occurs in the planes.

Previous work

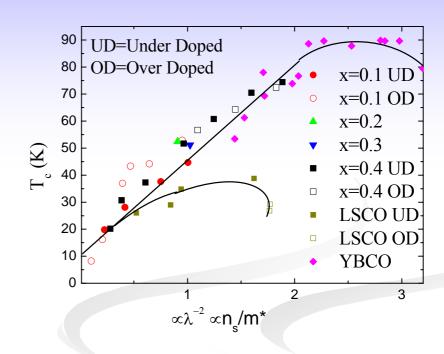
For all underdoped cuprates:

Uemura:

$$T_C \propto \frac{1}{\lambda^2} \propto \frac{n_S}{m^*}$$

Kanigel et al:

$$T_C = J_f^s \cdot n_S$$



 J_f^s is a magnetic energy scale per family in the SC state.

A. Kanigel et al, Phys. Rev. Lett 88,137003 (2002).

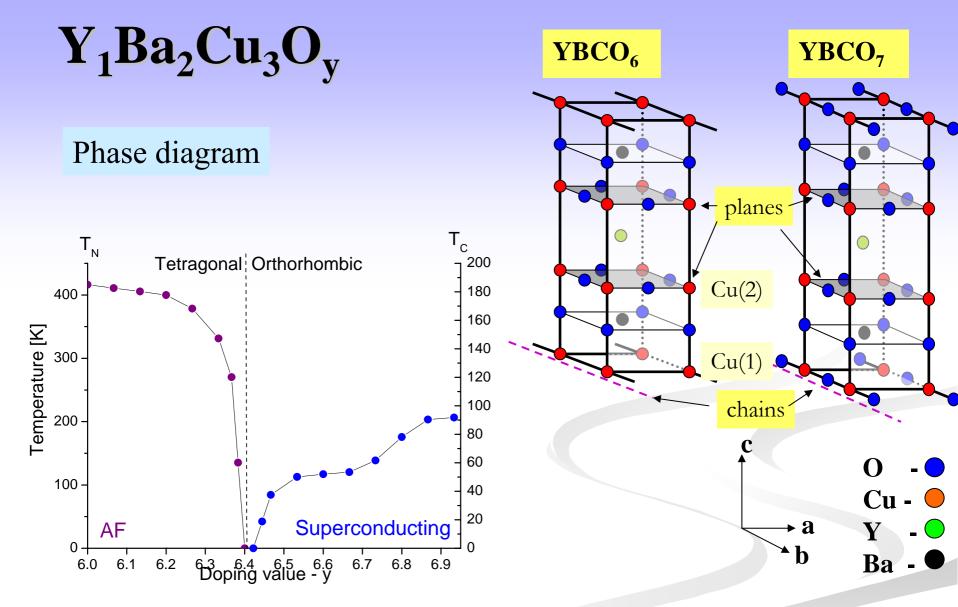
Motivation

■ Is J_f^s unique for each family?

Showing $T_C \propto n_S$, namely, m^* or $J_f^s = \text{const}$, by performing NQR measurements on YBCO.

■ Is T_C^{max} correlated with the Néel temperature T_N of the parent antiferromagnetic compound?

μSR measurements on the CLBLCO family.

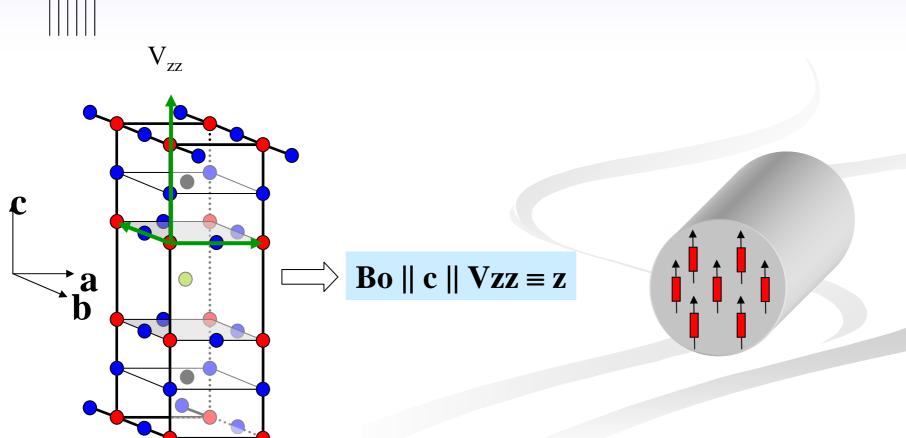


These samples are unique in that they contain a single Cu⁶³ isotope and not two.

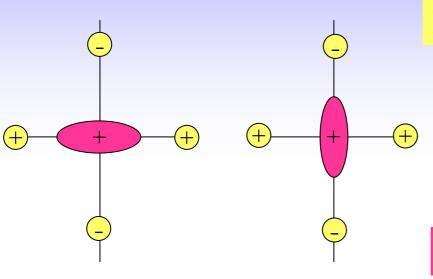
Unit cell

Orientation of the YBCO powder

• For better signal intensities the YBCO powder was oriented.



Nuclear Quadruple Resonance (NQR)



From the environment:

The EFG (Electric Field Gradient):

$$V(r) \implies \frac{\partial V}{\partial x_i \partial x_j} \equiv V_{ij} \qquad i, j = x, y, z$$

From the nucleus:

 I_x, I_y, I_z - The spin of the nucleus

- To obtain the NQR Hamiltonian we must couple V(r) and I.
- Every spin Hamiltonian contains even powers of I.
- The simplest coupling to write is

$$H \propto I_i \frac{\partial V}{\partial x_i \partial x_i} I_s$$

The NQR Hamiltonian

Choosing directions wisely leaves: V_{xx} , V_{yy} , and V_{zz} .

Since $V_{xx}+V_{yy}+V_{zz}=0$ (Laplace) only two parameters remain:

$$u_q \propto V_{zz} \qquad \eta = \frac{V_{xx} - V_{yy}}{V_{zz}}$$

$$\hat{H}_{q} = \frac{\hbar v_{q}}{6} \left[3\hat{I}_{z}^{2} - \hat{I}^{2} + \eta (\hat{I}_{x}^{2} - \hat{I}_{y}^{2}) \right]$$

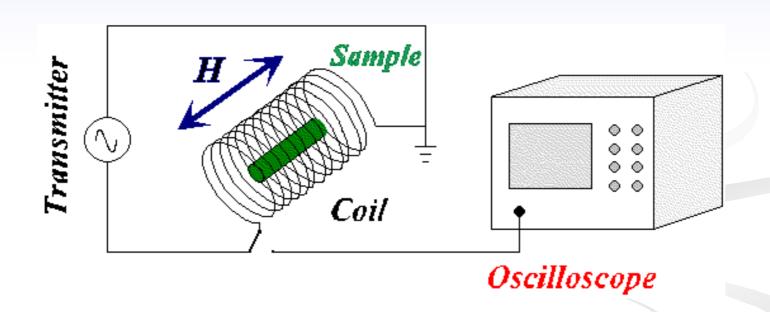
For a spin 3/2 nucleus:

$$f_{NQR} = \hbar v_q \sqrt{1 + \frac{\eta^2}{3}}$$

 f_{NQR} is determined by the EFG.

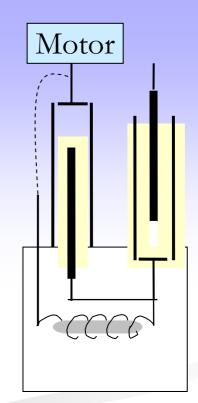
A change in f_{NQR} indicates a change in the surrounding charges.

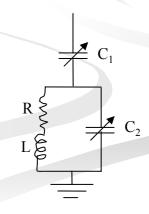
Technical aspects of NQR



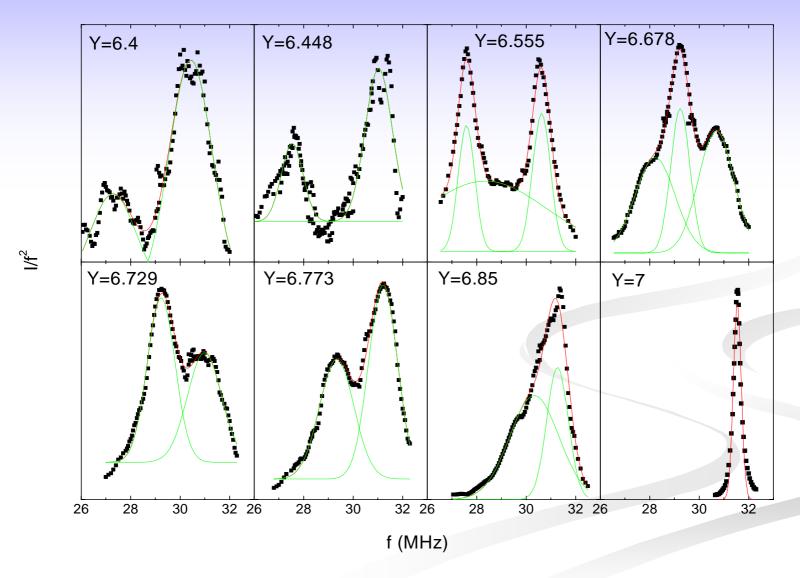
- The impedance and the resonance frequency of the circuit can be changed by the capacitors.
- One of the capacitors is automatically controlled by a motor.

Our NQR system does an automatic frequency sweep in a wide range of frequencies (~3MHz), while delivering 1KW of power.

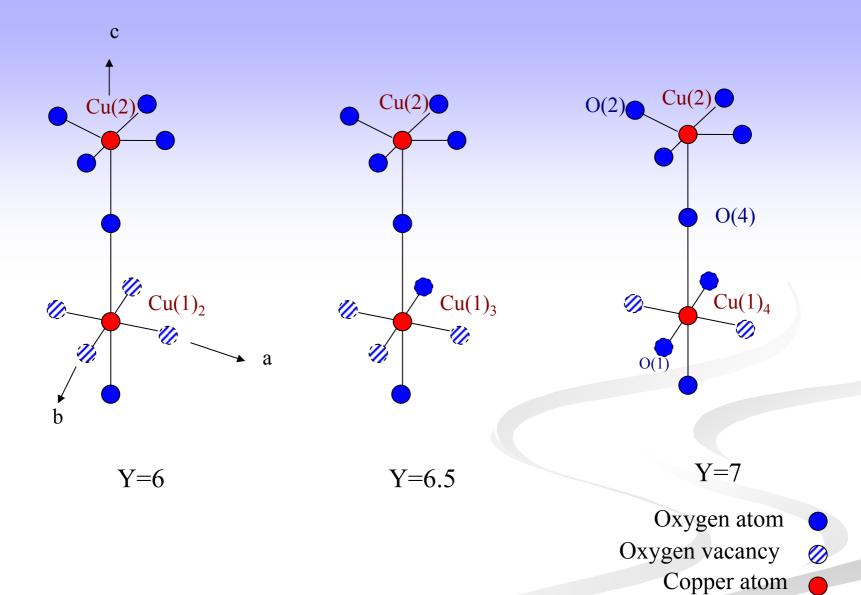




NQR Raw data

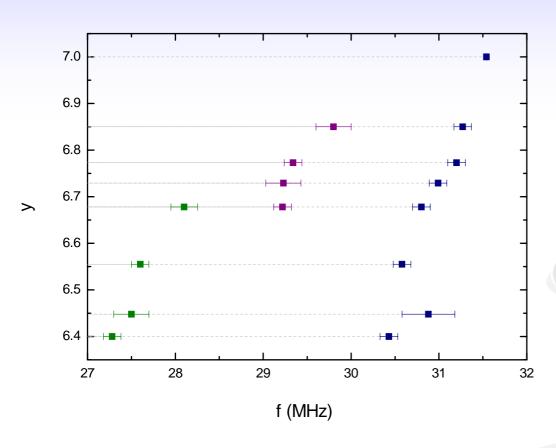


One can see the importance of enrichment, without it lines would overlap.



Schematic illustration of the Cu site with locally different oxygen coordinations

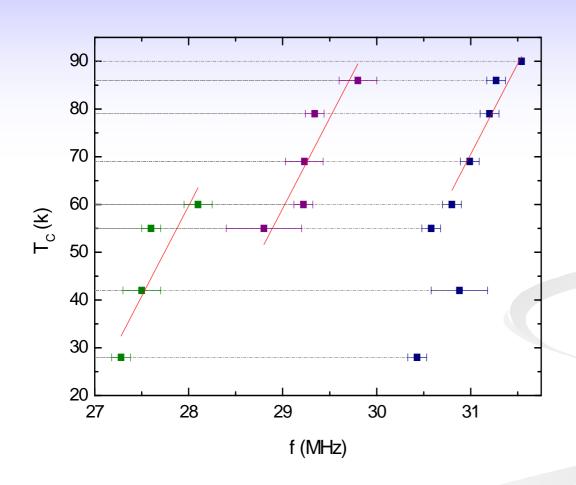
NQR Results



3 different Cu(2) lines, for the 3 different ionic environments:

- 31MHz: Cu(2) with full chain.
- 29MHz: Cu(2) with chain half full, Cu(1) with corrdination 3.
- 27.5MHz: conducting
 Cu(2) with empty chains.

NQR Results



When plotting T_C vs. the NQR frequency \rightarrow three lines with a common slope $dT_C/df=38\pm6$ (K/MHz)

This is the first Uemura plot obtained not through penetration depth measurements. It allows the separation of $J(m^*)$ from n_s .

- **3** main contributions to the EFG of the Cu(2) nucleus:
- I. The 3d hole concentration on the copper ion.
- There is a virtual hopping of electrons from neighboring oxygen ions to unoccupied 4d orbitals of Cu.
- III. The electric field of distant ions.
- $\rightarrow \text{NQR frequency} \qquad f \propto A \cdot n_d B \cdot \beta^2 (8 4n_p) + C$

 n_d - is the number of Cu holes

 $(8-4n_p)$ - is the number of electrons in the neighboring oxygen

 β^2 - is the probability to jump to the Cu 4d orbital

C - is related to the contribution of distant ions.

It is widely accepted that doping increases the hole content only for the oxygen in the planes (n_d) is a constant)

Conclusions of the first part

According to Haase et al: $\Delta f \propto \text{number of holes in the plane} \propto n_s$

From our results, for each ionic

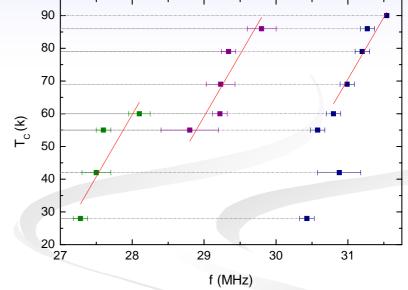
environment:

$$\Delta f \propto T_C$$

Therefore:

$$T_{c} \propto n_{s}$$

From the Uemura relation:



$$T_C = J_f \cdot n_S$$

Our data for the YBCO family is consistent with a J_f independent of the oxygen doping.

Motivation

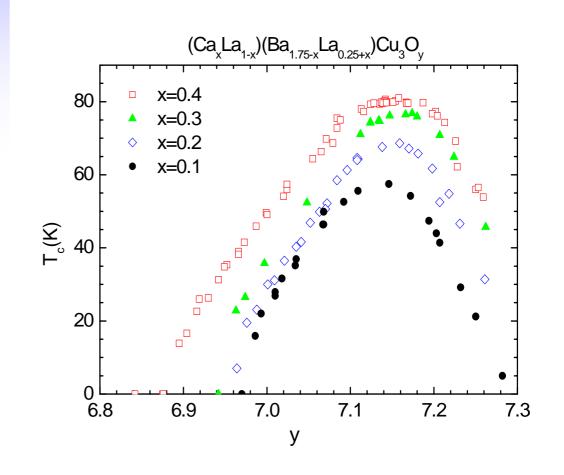
Is T_C^{max} correlated with the Néel temperature T_N of the parent antiferromagnetic compound?

μSR measurements on the CLBLCO family

The CLBLCO family

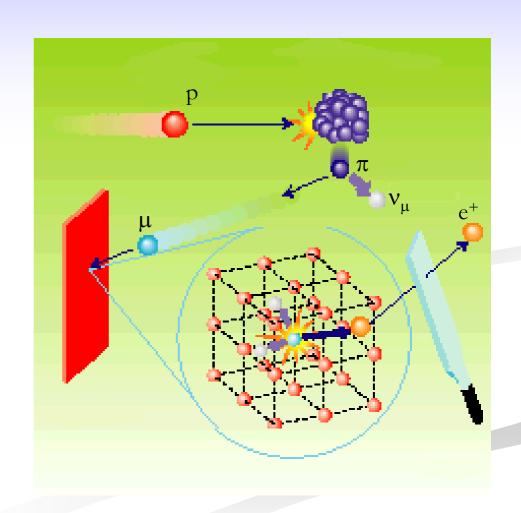
 Tetragonal - no ordered Cu-O chains.

- Stable throughout all parabolic T_C curves.
- allows T_C to be kept constant and other parameters to be varied, with minimal structural changes.



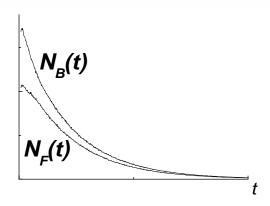
μSR

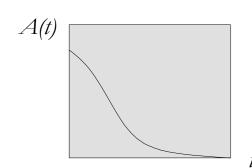
- 100% spin polarized muons
- Muon life time :2.2μsec
- Positron emitted preferentially in the muon spin direction

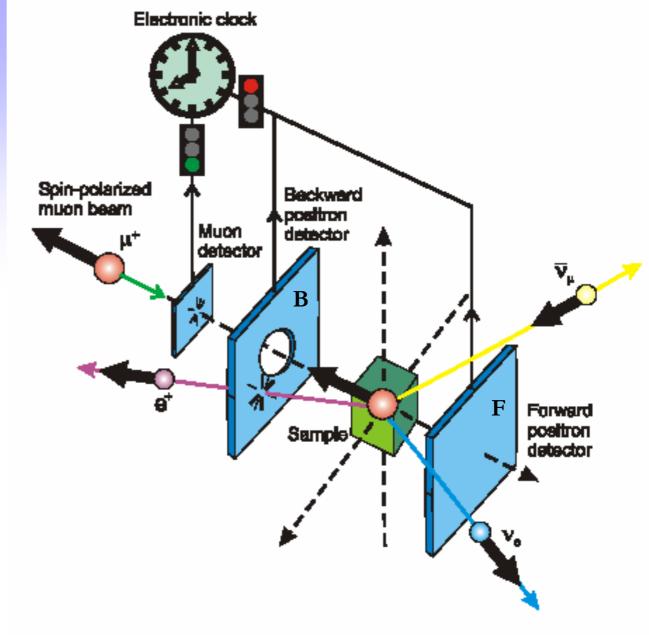


μSR

$$A(t) = \frac{N_B(t) - N_F(t)}{N_B(t) + N_F(t)}$$







Schematic of a zero field (ZF) μSR setup.

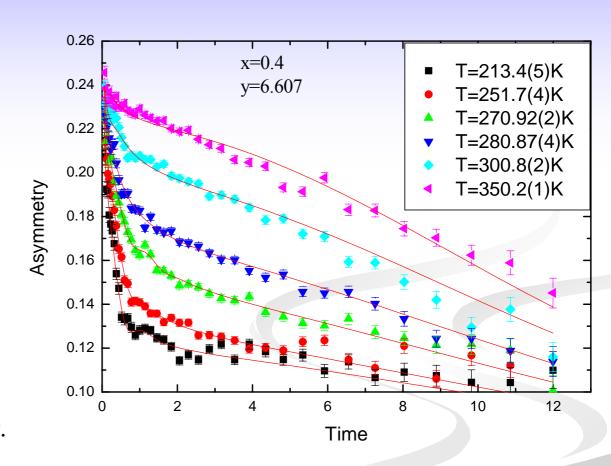
μSR raw data for CLBLCO

There are 2 contributions to *Az*:

 A_n – the amplitude of the nuclear frozen moments.

 A_m – the amplitude of the magnetic phase.

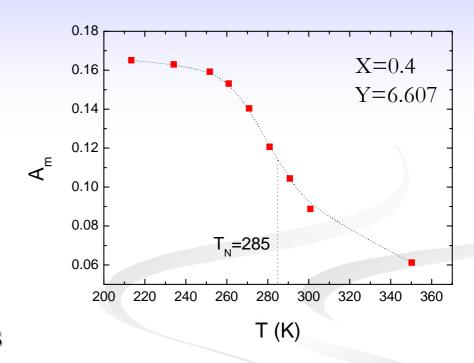
 A_{LR} – the amplitude of long range magnetic order.



$$A_{Z} = A_{n} \exp\left(\frac{-\Delta^{2} t^{2}}{2}\right) + A_{m} \exp\left(-\sqrt{\lambda t}\right) + A_{LR} \exp\left(\frac{-t}{T_{1}}\right) \cos(\omega t)$$

Measuring T_g/T_N

As the temperature decreases, A_m the electronic magnetic part increases, at the expense of A_n .

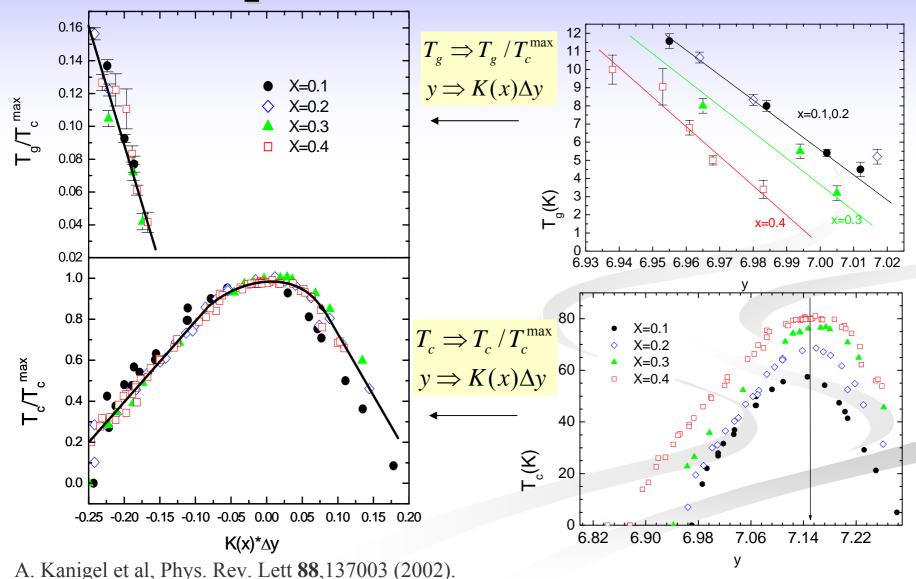


the transition temperature is the temperature at which:

$$A_m = A_m^{max}/2$$

$$A_{Z} = A_{n} \exp\left(\frac{-\Delta^{2} t^{2}}{2}\right) + A_{m} \exp\left(-\sqrt{\lambda t}\right) + A_{LR} \exp\left(\frac{-t}{T_{1}}\right) \cos(\omega t)$$

Scaling relation in the superconducting phase for CLBLCO



Interpretation

$$T_c = J_f^s n_s(\Delta p_m)$$

$$T_g = J_f^s f(\Delta p_m)$$

where

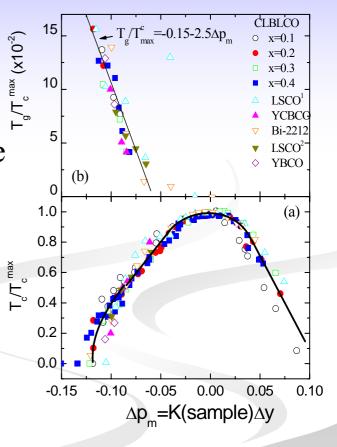
• J_f^s is a family dependent magnetic energy scale

• f is a function of doping only

$$T_c / T_c^{\text{max}} = n_s (\Delta p_m) / n_s (0)$$

$$T_g / T_c^{\text{max}} = f(\Delta p_m) / n_s(0)$$

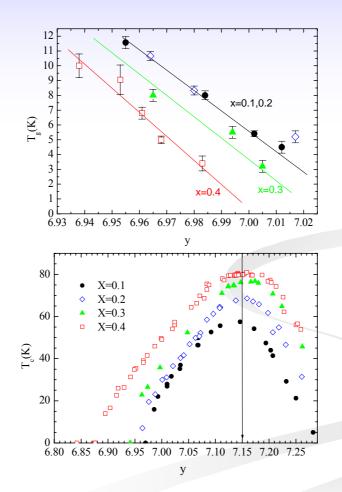
with no family index.



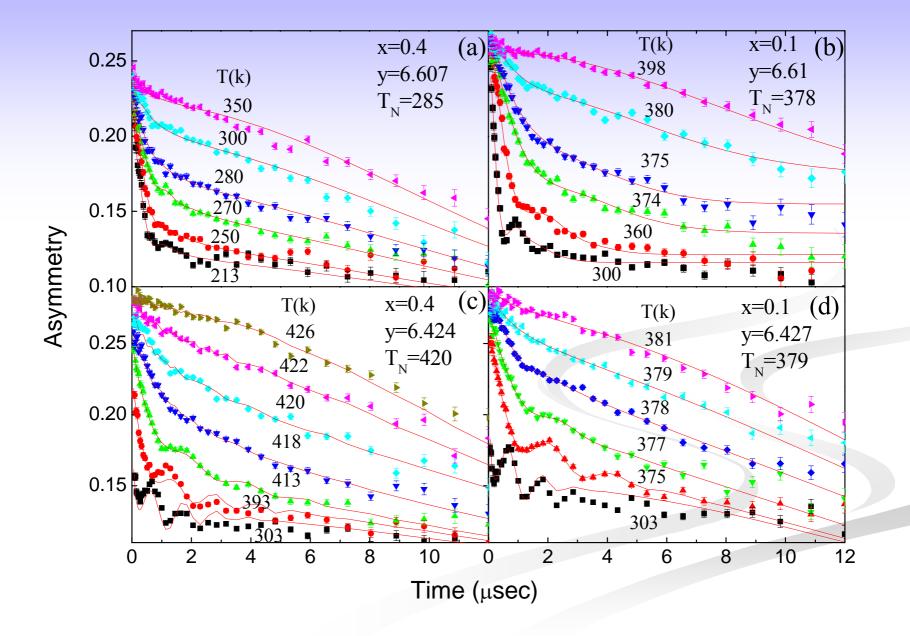
There is a common energy scale for magnetism and superconductivity

Problem

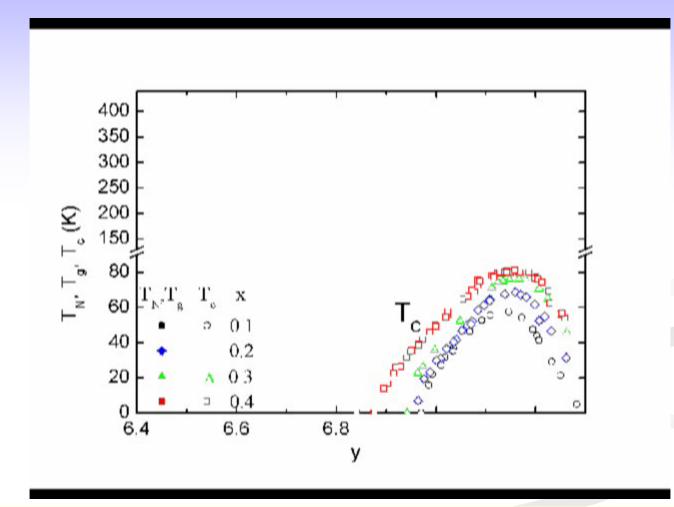
 T_g of high T_c^{max} family is lower than T_g of low T_c^{max} family.



Without the y scaling one might reach the opposite conclusion.



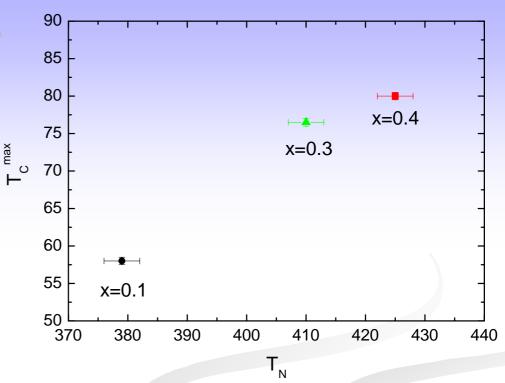
μSR results: Phase diagram of CLBLCO



The family with higher T_C^{max} has a higher T_N at very low doping

Problem solved

 T_C^{max} is a monotonic function of T_N in a system with minimal structural changes.



- However, while T_c^{max} changes by 30%, T_N changes by 10%.
- The scaling relation no longer holds in the non superconducting samples.

Theory

The spin Hamiltonian for a weakly anisotropic, nearly 2D Heisenberg antiferromagnet:

$$H = J \left(\sum_{i,\delta \parallel} S_i \cdot S_{i+\delta \parallel} + \alpha_{xy} \sum_{i,\delta \parallel} S_i^z \cdot S_{i+\delta \parallel}^z + \sum_{i,\delta_{\perp j}} \alpha_{\perp j} S \cdot_i S_{i+\delta_{\perp j}} \right)$$

 $\alpha_{xy}, \alpha_{\perp} << 1$ δ , $\delta_{\perp j}$ - the nearest neighbor spacings

$$T_N \approx 2J \frac{M_0 \pi}{\ln \left\{ \frac{4\alpha_{eff}}{M_0 \pi^2 \ln \left(4\alpha_{eff} / \pi \right) \right\}}$$

$$\alpha_{eff} = z \| \alpha_{xy} + z_{\perp} \alpha_{\perp}$$

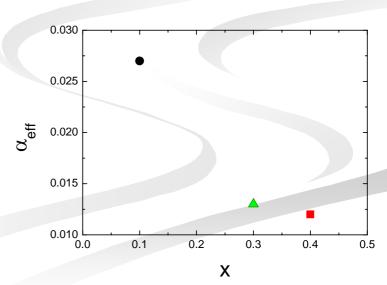
z – coordination number M_0 - sublattice magnetization

 T_N is determined by J while various anisotropies (α 's) enter logarithmically.

In order for the energy scale J_f^s , which is common to T_g and T_c in the superconducting region, to be exactly J_f of the AFM, one needs the alpha's to changes between different families.

We can predict how these alphas must change.

- We write: $J_f^s = CJ_f$ so that $T_c^{\text{max}} = CJ_f n_s$
- Calibrate C using YBCO $(n_s(0)=0.08, T_C^{max}=90, J=100meV) \longrightarrow C=0.8$.
- Assume $J_f = \frac{T_c^{\text{max}}}{Cn(0)}$ for all CLBLCO families.
- Use the Eq. for T_N to obtain the α 's.
- We obtain: →



This is a prediction for future experiments (muon rotation frequency vs. T)

Conclusions of the second part

- \blacksquare T_c^{max} is a monotonic function of T_N .
- However, the magnetic energy scale J_f^s that enters in

$$T_c = J_f^s n_s$$

is not necessarily the AFM J. The anisotropies α 's might be important for Tc.

 J_f^s could still be the AFM J if the α 's change.

Summary

- For the YBCO family we confirmed that J_f^s is a constant for all doping values in the superconducting dome.
- T_C^{max} is a monotonic function of T_N . However, T_N a priori has a magnetic energy scale of its own.
- T_N , T_g , and T_c could all be proportional to the AFM J if the α's varied between families.

Acknowledgments

Galina Bazalitsky

Leonid Iomin

Larisa Patalgen

Arkadi Knizhnik

Oren Shafir, Eva Sagi, Oshri Peleg, Meni Shay, Ariel Maniv, Lior Shkedy, **Shahar Levy, Amit Kanigel**