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“How wonderful that we have met with a paradox. Now we have some hope 
of making progress.”  ~Niels Bohr



Basic concepts in SC

• Pseudogap
• Meissner effect
• Homes’ Law – Uemura Relations
• Coherence Length 
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The Cuprates
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from the Data of Resistance Measurements” Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26 , 
St. Petersburg, 194021 Russia
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The London Eq.
To explain the Meissner Effect, F. and H. London (brothers) 

came
up with the relations 

Along with Maxwell’s Eq.

We get magnetic field exclusion that is 
governed by  
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Penetration Depth Measurement LE-
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SRμ
• The Muon ray 

arrives to the target 
material nearly 
100% spin 
polarized. 

• The Muon decays 
inside the target 
and emits a 
positron favorably 
in it’s spin 
direction. 

• The anisotropy of 
the positron 
distribution around 
the sample tells 
the story of the 
Muon spin 
interaction with the 
bulk’s local field, 
hence     is 
deduced once 
external classical 
field is applied. 
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Penetration Depth Measurement LE-
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SRμ

Kiefl, R. F. and Hossain, M. D. and Wojek, B. M. and Dunsiger, S. R. and Morris, G. D. and Prokscha, T. and Salman, Z. and Baglo, J. and 
Bonn, D. A. and Liang, R. and Hardy, W. N. and Suter, A. and Morenzoni, E., "Direct measurement of the London penetration depth in 
YBa_{2}Cu_{3}O_{6.92} using low-energy ÎŒSR", Physical Review B 81, 18 (2010), pp. 180502.
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Homes’ Law

• From Reflectance amplitude measurements over a wide range of 
frequencies (                         ), the Kramers–Kronig relation is used 
to obtain the phase (see:Kramers-Kronig constrained variational analysis of optical 

spectra), therefore, dielectric function and optical conductivity are 
achieved.

• The Superconducting state plasma frequency was obtained using 
the dielectric function assuming all the carriers collapse into a delta 
function under the transition                                  where                           
Homes 1 Homes 2

• The D.C. conductivity was extrapolated from the real conductivity 
(Hagen-Rubens)
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Homes raw data
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C.C Homes Effect of Ni impurities on the optical properties of YBa2Cu3O61y Phys. Rev. B 60, 9782–9792
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Uemura

9

LSCO 0.08,0.10,0.15,0.20,0.21

YBCO 6.67,6.76,6.87

( )0.5 0.5 2 2 3 10Ti Pb Sr Ca Cu O

Phys. Rev. Lett. 62, 2317–2320 (1989), YJ Uemura-
Universal Correlations between Tc and ns /m* (Carrier Density over Effective Mass) in High-Tc Cuprate Superconductors
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Uemura relations  - Homes’ Law 
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[2]Homes, C. C. and Dordevic, S. V. and Valla, T. and Strongin, M., "Scaling of the superfluid density in high-temperature 
superconductors", Physical Review B 72, 13 (2005), pp. 134517.
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If both statements are true for Underdoped cuprates, 
the D.C. conductivity must be universal at     !  cT

Uemura relations  - Homes’ Law 
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The G-L Coherence Length
Ginzburg-Landau (GL) in the framework of their theory for 2nd order 
phase transitions, have introduced a complex order parameter

from the GL Eq. a characteristic length scale arose, any variation/ 
disturbance of the value of          from the value it takes deep in the 
bulk, will typically decay according to

Where         is the applied field that 
destroys the superconductivity, 
and            is the Flux quanta.

Distance within a Cooper pair
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Why HCB?
• Impurity/disorder based models cannot explain cuprates s.a. YBCO in the 

dirty limit of the BCS theory – the resistivity at optimal doping extrapolates 
to zero.

• Recent measurements have shown short coherence length in Cuprates in 
comparison to the classical Type I - SC (i.e. Tables for YBCO, LSCO)

• the spatial separation of paired electrons/holes (Cooper pair) in HTS  is 
within a few lattice-constant scale (if one would like to keep the microscopic 
image of the mechanism)

• There is an effective attractive interaction between 2 charge carriers of 
similar polarity.

Intuitive picture : 
the average distance within a cooper pair bound state is much smaller 
than the average distance between cooper pairs. Effectively a boson 
(between       and       )
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Yang, H.-B. and Rameau, J. D. and Johnson, P. D. and Valla, T. and Tsvelik, A. and Gu, G. D., "Emergence of preformed 
Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+ÎŽ", Nature 456, 7218 (2008), pp. 77--80.
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Hard Core Bosons, as a model 
for cuprates superconductivity
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The Bose-Hubbard lattice model Hamiltonian
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Lindner, Netanel H. and Auerbach, Assa, "Conductivity of hard core bosons: A paradigm of a bad metal", Physical Review B 81, 
5 (2010), pp. 054512.

The Holstein-Primakoff transformation to a spin model 
is possible under the assumption of low temperatures, 
thus low probability for high excitations/occupancies to 
exist.



The Holstein-Primakoff mapping

Hence, the Kinetic  term manifests Quantum  XY 
model
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Lindner-Auerbach conductivity 
The Current in HCB

• Using the HCB current operator

• From Fluctuation-Dissipation relations

Where 

The conductivity is calculated in the HCB model 
framework
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Lindner-Auerbach conductivity

In the framework of HCB, LA have calculated the 
high temperature 2d resistivity between      and 

When     is the boson charge, equals exactly 2 in 
the original model. 
We define:     The Mean Effective Charge
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Lindner-Auerbach conductivity

Therefore, rearranging  our main term

From transitivity and magnetic field 
exclusion measurements, a mean effective 
charge for the conductance carriers may 
be realized!   
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Experimental Method
• Sample preparation – PLD*
• Every geometrical shape was made using photo 

lithography*.  
• Residuals riddance – Wet etching procedure* 
• The probe, with the sample was 

placed in a Mu metal** covered chamber for magnetic 
background minimization.

• 4 point probe

19

*  Done in prof. Gad Koren’s lab
**Mu metal - 77% nickel, 16% iron, 5% copper and 2% chromium or molybdenum



Four Point Probe Measurement 
Method 

• Minimizes contact resistance bias

20

Bridge

Contacts



Bridge resistivity Measurements

• In a bridge measurement, the resistivity is simple for 
extraction,                  

• 4 point probe technique is used 
• The geometrical correction factor reduces to length to 

cross-section area ratio.  
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Film AFM Imaging

22

The sample’s Height is measured via AFM in Prof. Gad Koren’s laboratory. 

Height homogeneity throughout  the sample



Bridge AFM Imaging
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Bridges 
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*The presented bridges measurement is courteously contributed by Prof. Gad Koren
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Resistivity Measurement 
Rectangular Films

Resistance for “Ohmic” materials is defined as 
the ratio between the voltage applied and the 
response current.

the geometrical factor is dependent on the 
sample geometry, but also on the measurement 
setup.

To avoid contact resistance, Four Point Probe 
technique is applied.(especially for relatively low resistance samples)
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Four Point Probe sheet resistivity 
Measurement Method 

To eliminate the geometric dependency of the resistance and 
measure the material dependent property – resistivity, an infinite 
system of images is considered as previously done by Smits

The perpendicular electric field and
current cancel completely in the 
rectangular boundaries, thus 
the resistance measured has  
only  physical boundaries 
contribution.
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Four Point Probe sheet resistivity 
Measurement Method 

To calculate        , we consider first the contribution due 
to a single dipole current source on a 2D infinite plane

Sum, using the sources coordinates

All contributions to the potential difference         ends in
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Four Point Probe sheet resistivity 
Measurement Method 
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I-V Measurements
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Normal state YBCO measurements



YBCO Films of various Geometries 
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Resistivity slope Bridges Vs. Films
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T-Dependent Resistivity Vs. Magnetization
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Transition width ~4K and resistivity line extrapolated to 0. 
Exclusive  features in YBCO samples.



Resistivity Measurements
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Penetration Depth sources
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The penetration depth is an input parameter taken from

Material Source
YBCO 146 1. Journal of Applied Physics, 73(10):58655867, May 1993.

2. Physical Review B, 81(18):180502, May 2010

LSCO 250 Phys. Rev. B 47, 2854–2860 (1993)

BSCCO 270 Applied Physics Letters, 77(25):4202 4204, December 
2000

CLBLCO 250 A.Keren, A.Kanigel ,Solid State Communications 126, 
1â��2 (2003), pp. 39--46.
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LA Prediction close to the transition temperature
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Mean Effective Charge 
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Summary & Conclusions
• The resistivity under       and above       is a linear 

function of the temperature for YBCO, curves for the 
other materials examined.

• The LA version of the Homes' law                           is also 
verified on linear scale and compared with Homes’ 
results.

• If the model would have describe the materials perfectly, 
we should have found             , our research concludes 
The proximity to the HCB initial assumption points to self 
consistency.
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Summary & Conclusions

• This conclusion supports the growing belief and other 
experimental data in the existence of preformed pairs 
(cooper pairs) at  temperatures above       and under  
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Possible modifications to the HCB 
model

• It is a disorder free model – What would disorder 
change?

• does not take into account possible fermionic excitations 
above

• Anisotropy, which is common among  the examined 
cuprates is not considered

• doping variations

39
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