$\rangle\rangle\rangle$

Energy Bursts from Fe8 Molecular Magnet in the Quantum Tunneling Of Magnetization Process

Tom Leviant^[1] Amit Keren^[1] Shaul Hanany^[2] Eli Zeldov^[3]

[1] Magnetism Group, Physics Department
[2] School of Physics and Astronomy, University of Minnesota/Twin Cities
[3] Department of Condensed Matter Physics, The Weizmann Institute of Science

Molecular Magnets

Fe8 Molecule – Single Molecule Magnet $[Fe_8O_2(OH)_{12}(C_6H_{15}N_3)_6]^{8+}$

The antiferromagnetic interactions between the spins of the ions are between 20 to 170K. Below that the spins are locked

¹K. Wieghardt, K. Pohl, I. Jibril and G. Huttner, Angew. Chem. Int. Ed. Engl. 23 (1984), 77. ²C. Delfs³, D. Gatteschi, L. Pardi, R. Sessoli, K. Wieghardt and D. Hanke, Inorg. Chem. 32, 3099 (1993).

Fe8 Molecule – Single Molecule Magnet

- 8 Fe³⁺ ions (S = 5/2):
 - 2 ions with spin down: S = 5
 - 6 ions with spin up: S = 15
 - Total $\mathbf{S} = \mathbf{10}$
- Magnetic interactions between the molecules are small (~0.05K).
- Single crystals of Fe_8 are grown from a solvent.
- Orientation is made by a microscope.

M. Ueda & S. Maegawa, J. Phys. Soc. Jpn. 70 (2001)

The Crystal field Hamiltonian

$$\mathcal{H} = DS_z^2 + E(S_x^2 - S_y^2) - g\mu_B S_z H_z$$

D ~0.29 K E ~0.045 K

The Experiment

Wernsdorfer et al. (J. Appl. Phys. 87 (2000), 5481)

6

Relaxation processes Magnetic field relaxation at high temperature for a single molecule

Relaxation processes Magnetic field relaxation at low temperature for a single molecule

Relaxation processes Magnetic field relaxation at low temperature for a single molecule

Relaxation processes

Crystal of Molecular Magnets

At low-temperature magnetic relaxation of whole crystal can occur via two mechanisms:

- **A. Staircase magnetization curve** Slow mechanism involves quantum transitions at unrelated spatial points.
- B. Magnetic Avalanche Abrupt reversal of the magnetization.

10

Suzuki Y, Sarachik MP, Chudnovsky EM, McHugh S, Gonzalez-Rubio R, et al. 2005. Phys. Rev. Lett. 95:147201

Radiation Spectrum

- The expected energy release after the tunneling is twice $\simeq 5K$ $\simeq 109.5Ghz$ with photon wavelength of about 2.7mm.
 - Cosmic Background radiation is at 160.2 GHz.
 - At frequencies within this range, useful power generation and receiver technologies are inefficient and impractical.

• Our sample size is also about 3x3x1mm which is the elementary condition for **Dicke Superradiance**.

Plan A : Is There Radiation emanating from Fe8 ?

VOLUME 89, NUMBER 15

PHYSICAL REVIEW LETTERS

7 OCTOBER 2002

Superradiance from Crystals of Molecular Nanomagnets

E. M. Chudnovsky¹ and D. A. Garanin²

APPLIED PHYSICS LETTERS

VOLUME 84, NUMBER 13

Electromagnetic radiation produced by avalanches in the magnetization reversal of Mn₁₂-acetate

J. Tejada^{a)} Department de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, 08024 Barcelona, Spain

PHYSICAL REVIEW B 79, 180404(R) (2009)

Electromagnetic radiation emanating from the molecular nanomagnet Fe₈

Oren Shafir and Amit Keren

Coherence in Spontaneous Radiation Processes

R. H. DICKE Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received August 25, 1953)

(Enhanced spontaneous emission)

- S&S-radiance arises from spontaneous organization and phaselocking between initially independent systems.
- The effect occurs when the molecules are confined to a volume smaller than radiation wavelength cubed.
- The spontaneous emission is enhanced when the molecules' dipole moments are in phase (super-radiance) and inhibited when they are out of phase (sub-radiance).
- Both effect are universal and fundamental, allowing SR phenomena to occur in a variety of physical systems.

$$\Gamma \simeq \frac{N^2}{4} \Gamma_0$$

Plan B: Are there Avalanches in Fe8?

Avalanche in Mn₁₂

PRL 95, 147201 (2005)

PHYSICAL REVIEW LETTERS

Propagation of Avalanches in Mn_{12} -Acetate: Magnetic Deflagration

Yoko Suzuki,¹ M. P. Sarachik,¹ E. M. Chudnovsky,² S. McHugh,¹ R. Gonzalez-Rubio,¹ Nurit Avraham,³ Y. Myasoedov,³ E. Zeldov,³ H. Shtrikman,³ N. E. Chakov,⁴ and G. Christou⁴

- The Hysteresis loop is temperature depended down to 60 mK
- Avalanches occur in a stochastic way both at resonant magnetic fields (where energy levels on opposite side of the barrier match), and away from resonance.
- The avalanche propagates through the crystal at a constant velocity that is roughly two orders of magnitude smaller than the speed of sound ≈10 (m/s).

Suzuki Y, Sarachik MP, Chudnovsky EM, McHugh S, Gonzalez-Rubio R, et al. 2005. Phys. Rev. Lett. 95:147201 J. A. A. J. Perenboom, J. S. Brooks, S. Hill, T. Hathaway, N. S. Dalal, Phys. Rev. B 58, 330 (1998).

week ending 30 SEPTEMBER 2005

Experimental Motivation

Questions:

- 1. Is there an EM radiation? What is it frequency?
- 2. How does the magnetization depends on location on the sample? Is there Avalanche in Fe_8 ?

Experimental Setup.

The Experiment conducted in Dilution Refrigerator at 100mK

16

Experimental Setup.

Hall Sensors - Form Eli Zeldov ,Weitzman institute.

• Two-dimensional electron gas (2DEG) formed at the interface of GaAs/AlGaAs heterostructures.

Experimental Setup. Filters Used for cosmic background radiation measurement.

From Shaul Hanany – University of Minnesota

ΜΑΧΙΜΑ

Millimeter Anisotropy eXperiment IMaging Array

Experimental Setup.

Filters

- In an inductive grid the metal is continuous, so at low frequency it must reflect all the incident wave (high pass).
- Because the grids are complements of each other, a capacitive mesh acts as a low pass filter.

Max Born¹and Emil Wolf (1999). Principles of Optics 7th Edition

Results – Plan A

- Two types of relaxation are detected.
- Avalanche is new, Staircase is similar to previous work.
- Magnetic sweep rate dependence is seen.

Radiation Test Experiment

Setup was tested by replacing the sample with 2 LEDs and a heater.

Bolometer which sees the Diode rises earlier and higher.

• Question: Why the second transition lasts longer than the first after tunneling have finished?

 Question: Where energy in avalanche? Same voltage change, much shorter time.

Plan A conclusions

- \checkmark We found no evidence for release of electromagnetic radiation.
- \checkmark Why the second transition lasts after the magnetization stops?
- \checkmark Where is the energy in avalanche case?

Introduction to Magnetic Deflagration

Magneto: The master of magnetism

- Subsonic combustion propagating through heat transfer.
- Burning material heats the next layer of cold material and ignites it.
- In magnetic deflagration Zeeman energy playing the role of the chemical energy.
- Magnetic deflagration is nondestructive and reversible.

 \succ When a molecule makes a transition from the metastable state

 $S_z = \pm 9$ to the absolute energy minimum $S_z = \mp 10$,

 ΔE energy is released.

> This leads to local temperature change $\Delta T = \frac{\Delta E}{C_{ph}}$, where is C_{ph} the phonon heat capacity per magnetic molecule.

> Heat flows according to heat equation:

$$\frac{dT}{dt} = \nabla \kappa(T) \nabla T - \frac{\Delta E}{C_{ph}} \frac{dn}{dt}$$
$$\frac{dn}{dt} = -\Gamma(n - n^{eq})$$

 \succ There are two possible scenarios:

A. The heat defuses away – **No Ignition**. (Slowly moving match.)

B. The heat cumulates, this rises the transition rates and causesDeflagration. (Match moves fast, heat creation is larger)

When the transition rate of a single molecule $\Gamma(H_0, T_0)$ (Heat creation) exceeds a critical value:

$$\Gamma_{\rm C} = \frac{8\kappa(T_0)k_{\rm B}T_0^2}{U(H_0)\Delta E(H_0)n_{\rm i}l^2}$$

Notice no sweep rate dependence

- $U(H_0)$ is the energy barrier.
- $\Delta E(H_0)$ it the energy released decaying to the ground state.
- n_i the initial population of the exited state.
- l caratiristic length of the sample.
- T₀ the ignition temperature.

D. A. Garanin and E.M. Chudnovsky, Phys. Rev. B76, 054410 (2007)

There are two characteristic timescales:

- 1. Thermal diffusion timescale: $\tau_d \simeq \frac{\delta^2}{\kappa}$
- 2. Burning timescale which is the chemical reaction timescale given by: $\tau_b = \tau_0 \exp\left(\frac{U(H)}{k_B T_f}\right)$

The width of the front δ , can be approximated by equalization the two timescales $\tau_d \simeq \tau_b$ leading to: $\delta = \sqrt{\kappa \tau_b}$

The front propagates at a characteristic speed which equals to the width over the burning rate:

$$v \simeq \sqrt{\frac{\kappa}{\tau_b}} = \sqrt{\frac{\kappa}{\tau_0}} \exp\left(-\frac{U(H)}{2k_B T_f}\right)$$

D. A. Garanin and E.M. Chudnovsky, Phys. Rev. B76, 054410 (2007)

Hall Signal Calculation

Can we calculate the deflagration front width from our data?

Magnetic diploe:
$$\vec{B} = \frac{\mu_0}{4\pi} \left(\frac{3\vec{r}(\vec{\mu}\cdot\vec{r})}{r^5} - \frac{\vec{\mu}}{r^3} \right)$$

Assuming the sample is on XY plane with the magnetization pointing in \hat{x} direction: $\vec{\mu} = m \, dx \, dy dz \, \hat{x}$, m is dipole density.

-L < z	x <	x′	(t)
--------	-----	----	-----

$$-w < y < w$$
$$d_1 < z < d_2$$

The Field in z direction can be calculated analytically:

$$B_{z} = \left[Arc \tan\left(\frac{\sqrt{w^{2} + x^{2} + d_{2}^{2}}}{w}\right) - Arc \tan\left(\frac{\sqrt{w^{2} + x^{2} + d_{1}^{2}}}{w}\right) \right]_{x=-L}^{x=x'(t)}$$

x

32

Hall Signal Calculation

Integration over the Hall Sensor for parameters similar to the experiment:

Things that can split the peak:

- A. Deflagration front bigger than $\sim 700 \mu m$.
- B. The deflagration runs through a strip smaller than the sample.

33

Results – Plan B

Results with Deflagration

Above the critical sweep rate:

35

- The Deflagration ignites each time at first resonant field.
- The evolution of the peaks and cusps provide the avalanche propagation velocity.

Results

Deflagration velocity as a function of magnetic field sweep rate No theoretical treatment

Avalanche velocity as a function of magnetic field sweep rate at zero gradient. The field is swept from positive to negative and vice versa.

Result without Deflagration

- If the symmetry point, we might have a front of resonant area.
- In this case, pausing the field sweep will stop the magnetization evolution.
- For a typical sweep rate this speed is $V_m \sim 1.5 \times 10^{-4}$

Results

Different Gradients – No theoretical treatment

- The velocity not caused by inhomogeneity of the field.
- The velocity changes its size and direction as a function field gradient.
- Field Gradient can change the ignition
 point, the critical values and the
 propagation velocity, by changing the
 amount of molecules at resonance.

Deflagration Velocity Calculation

The velocity is given by: $v = \sqrt{\frac{\kappa}{\tau_0} \exp\left(-\frac{U(H)}{2k_B T_f}\right)}$ Known: Not Know (yet): $\tau_0 = 3.4 \cdot 10^{-8} sec$ $\kappa = ?$ U(H) = 24.5 Kelvin $T_{f} = ?$ v = 0.5 - 1 m/sec

C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, Phys. Rev. Lett. 78, 4645–1997

Thermal Diffusivity Measurements

Experimental Setup

Thermal diffusivity is 2. Heater defined via the heat 3. Copper Plate 4. RuO₂ Thermistor equation: 5. Fe₈ Sample $\frac{\partial T}{\partial t} = k\nabla^2 T$ 6. RuO₂ Thermistor 7. Teflon Holder 8. RuO₂ Thermistor Solution for 1D long rod: $\Delta T_{cs}(t) = c \int_{-\infty}^{\infty} \frac{x \exp\left(-\frac{x^2}{4\kappa(t-s)}\right)}{(4\pi\kappa)^{1/2}(t-s)^{3/2}} \Delta T_{hs}(s) ds$

Thermal diffusivity measurements

1

Calculation of Flame Temperature

$$T_f = \frac{U}{k_B \ln\left(\frac{\kappa}{\nu^2 \tau_0}\right)} = \frac{24.5}{\ln\left(\frac{2 \cdot 10^{-6}}{0.6^2 \cdot 3.4 \cdot 10^{-8}}\right)} = 4.8K$$

- ✓ Seems a bit high for a sample at 180-300 mK.
- \checkmark But still is lower than the barrier.

Measuring T_f will be Maayan's Project

Results Summary

- ✓ We found no evidence for release of electromagnetic radiation.
- ✓ We found deflagration in Fe₈ crystals.
- ✓ The deflagration front velocity is of the order of 1 m/sec and is sensitive to field gradients and sweep rates.
- ✓ We also measured the thermal diffusivity of Fe_8 and predicted The flame temperature.

Open Questions

- The heat released during avalanche is smaller than during staircase magnetization change, while it should be otherwise. Where did this energy go?
- ✤ Why is there critical sweep rate for deflagration?
- ✤ Why deflagration Velocity increases with sweep-rate?
- ✤ What is the field gradient dependence?
- Estimated flame temperature is around 5K which is pretty high and still lower that the barrier.

I would like to thank to

Amit Keren

Shaul Hanany

Eli Zeldov

Emil Polturak

Misha Reznikoiv

Gil Drachuck and Tal Kirzhner

Asher Space Research Institute for funding

Thank You For Listening

