The origin of pseudogap in HTSC

Yuval Lubashevsky

Prof. Amit Keren

The superconductor energy gap

The BCS superconductor

ARPES measurements

Theory Normal state

dSC

Experiment PG state

Main question

What are the interactions that affect the T*?

The CLBLCO system $(Ca_x La_{1-x})(Ba_{1.75-x} La_{0.25+x})Cu_3O_y$

- Similar structure as the well known YBCO
- 1:2:3 atomic ratio
- The main structure doesn't change with the families
- Controllable doping level (y parameter)
- Controllable magnetic coupling (x parameter)

CLBLCO phase diagram

- Similar phase diagrams
- The family with the highest T_c have the highest T_N on the lowest doping.
- Big difference at T_c^{max} between the families

Ofer PRB 73 220508 2006

Transformation of the entire doping range.

The scaling works in the entire doping range apart for x=0.1?

Ofer PRB 73 220508 2006

The role of anisotropies

- T_N is determined by the in-plane J and out of plane J_{\perp} coupling.
- We extracted J out of T_N .

 ΔP_{m}

The in-plane J is extracted from T_{N} . Ofer PRB 73 220508 2006

Scaling Conclusion

• We found that T_c scale like the in-plane J therefore is a consequence of a 2D magnetic interaction.

$$T_c \propto J$$

• Question: Does T* scales with J as T_c does, or with some other magnetic parameter?

The experimental methods

- The SQUID

 (Superconducting
 QUantum Interference
 Device)
- The temperature range is 1.2K to 310K
- The field range is up to 6.5T.

Susceptibility
$$\chi_0 = \lim_{H \to 0} \frac{\partial M}{\partial H}$$

• Practice $M = \chi_{dc} H$

• Where D is known as the demagnetizing factor, and it get different values for different geometries.

$$\chi_{dc} = \frac{\chi_0}{1 + D\chi_0}$$

• For needle like sample D=0, then:

$$\chi_{dc} \approx \chi_0$$

Measurement condition

Raw data

• The value of χ is increasing with the doping (Pauli susceptibility).

Susceptibility types

• Isolated spin: Langevin paramagnetism, Curie law

$$\chi_0 = \frac{N\mu_B^2}{3k_BT} = \frac{C}{T}$$

• Weakly coupled spins: Curie-Weiss

$$\chi_0 = \frac{C}{T+\theta}$$

• Pauli spin (Landau):

$$\chi_0(T) = const = \mu_B^2 \mathbf{D}(\varepsilon_f)$$

• Core: Van Vleck and Langevin

$$\chi_0(T) = const$$

There is no traditional theory about increasing susceptibility with T

Strongly coupled spins

• Two coupled spins according to Heisenberg model.

$$\chi_0 = \beta \left[e^{\frac{\beta J}{2}} \cosh\left(\frac{\beta J}{2}\right) \right]^{-2}$$

• shrinking arcs phenomena.

$$\chi_0 = A(T) \left(\frac{2T}{T^*} - \left[\frac{T}{T^*} \right]^2 \right)$$

• The fitting term.

$$\chi_0 = \frac{const}{\cosh\left(\frac{T^*}{T}\right)}$$

The fitting function

Curie-Weiss temperature

 $\theta = \left[\frac{2S(S+1)}{3K_{R}}\right] \sum_{i} Z_{i}J_{i}$

Antiferromagnetic susceptibility

Conclusions

Acknowledgment

I'm grateful to Prof. Amit Keren

Thanks to:

Dr. Arkady Knizhnik, Avi Post, Dr.Michael Reisner, Dr. Leonid Iomin

And the lab's fellow-students:

Orenstein, Oren, Eran, Meni, Oshri, Daniel, Maniv, Gil, Yoash, Ana **Specially to Rinat Ofer for her help**