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Introduction

• High Spin Molecules (HSM)
consist of coupled magnetic
ions.

• At low temperatures HSM
behave like giant spins.

• They crystallize in a lattice
where they are magnetically
separated.

• HSM can become the small-
est magnetic writing unit.

Harris, Physics World (1999)
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Most Studied HSM

• Fe8 with ground spin state
S = 10.

• 6 Fe (S = 5/2) ions coupled
anti-ferromagneticly to 2 Fe
ions.

• Mn12 with ground spin state
S = 10.

• 4 Mn4+ (S = 3/2) ions cou-
pled anti-ferromagneticly to
8 Mn3+ (S = 2) ions.

Fe8

Mn12
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Quantum Tunneling of the Magnetization (QTM)

• QTM was first observed
in Mn12 and then in Fe8,
through steps at regular in-
tervals of magnetic field in
the hysteresis loop.

• QTM provides a signature
quantum mechanical behav-
ior in macroscopic systems.

Wernsdorfer, QMAG (1999)
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More QTM Experiments

Fominaya, PRL 79, 1126 (1997)

• The heat capacity of Mn12

single crystal shows peaks at
regular intervals of magnetic
field.

Tejada, Europhys. Lett. 35, 301 (1996)

• The relaxation rate of the
magnetization decreases
drastically at regular inter-
vals of magnetic field.
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A Simple Model for QTM

• At low T the Hamiltonian for a
single molecule is

H = −DS2
z − gµBHzSz

• Transition is due to quantum tun-
neling only.

• Tunneling occurs when two states
on both sides have the same energy.

• Matching of energy levels is
achieved when Hz = nD

gµB
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µSR in Fe8

• All measurements were per-
formed at 40 mK.

• We apply H = 2 T for 30
minutes.

• We sweep the field H →
Hi → −50 Gauss.

• All measurements are per-
formed at H = −50 Gauss.

• The asymmetry is different
only if different matching
fields Hmatch = 0, 2.1, 4.2, · · ·
kG are crossed.
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Problem

• The Hamiltonian of HSM is

H = −DS2
z − gµBHzSz

• H commutes with Sz

[H, Sz] = 0

therefore Sz should be conserved.

What induces tunneling ??
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Theory of QTM

• In order to have tunneling additional terms H⊥ should be
added to the spin Hamiltonian.

• Possibilities are:

1. High order spin terms and crystal field.

2. Transverse field.

3. Spin-phonon interaction.

4. Dynamic nuclear spins and dipolar interaction.

• We are interested in the dependence of tunneling on the spin
value S.
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Proposed Mechanisms

• Crystal Field: H⊥ = − gµB2
∑N
n=1 hn

(

Sn+ + Sn−
)

τ−1 = DSh̄
π

(

gµBhN (Sh̄)N−2

2D

)2S/N

van Hemmen, Europhys. Lett. 1, 481 (1986).

• Transverse Field: H⊥ = −gµBHxSx

τ−1 = 2D
π[(2m−1)!]2h̄

(S+m)!
(S−m)!

(

gµBHx
2D

)2m

Chudnovsky, PRL 79, 4469 (1997).

• Spin-Phonon: H⊥ ∝ (SkSl + SlSk)

τ−1 = 12
π2h̄4c5ρ

| < S|H⊥| − S > |2(HzS)3

Hartmann Boutron, PRL 75, 537 (1995).
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Dynamic Nuclear Spins and Dipolar Interaction

• Dipolar fields bring the spin
states of the molecules out of
resonance.

• Rapidly fluctuating hyper-
fine fields bring molecules
initially to resonance.

• Tunneling changes the dipo-
lar fields and brings more
molecules to resonance.

• The tunneling rate in this
case is

τ−1 ∝ ∆2
0T2|ES−E−S |

ED
Prokofév, PRL 80,5794 (1998).
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Strategy

• The Hamiltonian of anisotropic HSM is

H = −DS2
z − gµBHzSz +H⊥

• For isotropic HSM D −→ 0

H = −gµBHzSz +H⊥

We can probe H⊥ directly!
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Isotropic High Spin Molecules

CrCu6

S = 9/2
JCr−Cu = 77K
SCu = 1/2

CrNi6
S = 15/2

JCr−Ni = 24K
SNi = 1

CrMn6

S = 27/2
JCr−Mn = −11K
SMn = 5/2

SCr = 3/2
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Magnetic Properties

• At high H and T = 2 K the magne-
tization per molecule saturates giv-
ing the value of S.

• M vs. H follows the Brillouin func-
tion of the corresponding S.

• At low H and low T the sus-
ceptibility saturates and shows no
anisotropy.

• The susceptibility follows that ex-
pected from the Hamiltonian

H = −J
6
∑

i=1

~S0 · ~Si − gµB ~H ·
6
∑

i=0

~Si

0 1 2 3 4 5
0

3

6

9

12

15

18

21

24

27

30

CrCu6

CrNi6

CrMn6

 

 

M
 [ 

µ B
 ]

H [Tesla]

10 100
1

10

CrCu6

CrNi6

CrMn6

 

 

χ χχχT
 [a

.u
.]

T [K]

QTM in HSM Slide 14



'

&

$

%

Calculation of the Susceptibility

• We diagonalize the Hamilto-
nian H

• We find the eigenstates
|S,m > and eigenvalues
ES,m.

• The susceptibility is

χ =
∑

|S,m>

me−
ES,m
T

ZH
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Spin Lattice Relaxation Time

• It is the time that takes a probing spin to reach equilibrium

H
0

H
0

System and probe in 
Equilibrium.

P0

Probe Spin of
Polarization

t 0 ft

1 f 0T = t −t

• In µSR P0 = 1 and Pf = 0 while in NMR P0 = 0 and Pf = 1.

• Only fluctuating fields ~B(t) contribute.

• Only transverse fluctuations B⊥ contribute.

QTM in HSM Slide 16



'

&

$

%

T Dependence of the µ+ Polarization

• At H = 0 the muon polar-
ization relaxation increases
with decreasing temperature
down to 5 K and then satu-
rates.

• At H = 2 T and tempera-
tures lower than ∼ 17 K the
relaxation decreases with de-
creasing T .
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µSR and NMR Results
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1. No T dependence

at H → 0, T → 0.

2. Scale of T varies.

3. H dependence

varies.

4. Different behavior

in different H.

• The spin lattice relaxation rate measured by µSR and NMR at
the same external field can be scaled.
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The Spin Lattice Relaxation

• In spin lattice relaxation theory one assumes a fluctuating local
field ~B(t) experienced by a local probe (muon or nucleus) of
spin ~I.

• The spin lattice relaxation time T1 in this case follows

1
T1

=
γ2

2

∫ ∞

−∞
dt 〈B⊥(0)B⊥(t)〉 exp(iγHt).

• The correlation time τ and mean square of the transverse field
distribution at the probe site in frequency units ∆2 are defined
by

γ2 〈B⊥(t)B⊥(0)〉 = ∆2 exp (−t/τ) .
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Field-Field Correlation Time

• The spin lattice relaxation
rate is

1
T1

=
∆τ

ω2τ2 + 1

where in our system ω =
gµBH.

T1 =
ω2τ2 + 1

∆τ

• The value of T1(T → 0) de-
pend linearly on H2.
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Field-Field Correlation Time

• From the linear fit of
T1(T → 0) vs. H2 we have

τint [nsec] ∆ [MHz]

CrCu6 0.034(4) 4.9(9)

CrNi6 0.053(4) 26(2)

CrMn6 0.044(4) 38(2)

• The correlation time at all
temperatures follows

τ(T ) =
(gµB)2

3kB
S(S + 1)

T1(T )Tχ(T )∆2
.
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• The correlation time depends weekly on S at T → 0.
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Calculation of T1

• Assuming a coupling A~I · ~S between the probe ~I and the
molecular spin ~S, the spin lattice relaxation rate is

1
T1

=
A2

2

∫ ∞

−∞
〈S−(t)S+(0)〉 eiωtdt

• For the spin states of H we obtain

1
T1

=
A2

2Z
∑

|S,m>

(S(S + 1)−m(m+ 1))

(

τS,me
−
ES,m
T

1 + ω′2τ2
S,m

)

where τS,m is the lifetime of the level |S,m > and
ω′ = (γ − gµB/h̄)H ' −gµBH/h̄.
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1/T1 Due to Spin-Phonon Interaction

• Assuming that the finite life-
time of the levels is due to spin-
phonon interaction

τ−1
sp =

C(ES,m − ES′,m′ )
3

exp
[

(ES,m − ES′,m′ )/T
]

− 1

• The behavior is similar to the
experimental data at high T but
differs at T → 0.
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Additional Constant Fluctuations

• To reproduce 1/T1 at low temperatures and low fields we
assume 1

τS,m
= 1

τsp
+ 1

τint
where τint is constant.

• With this we improve the agreement.
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Discussion

• The correlation time τint depends weekly on S, ruling out
crystal field and dipolar interactions.

• We have seen that spin-phonon interaction cannot account for
the finite 1/T1 at low T .

• We are left with fluctuating hyperfine interaction
~Bmol = a~i(t) · ~S.

Consider the Bloch equation

d~S

dt
= gµB

[

a~i(t)× ~S
]

which is independent of S.
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Conclusion

• The spin lattice relaxation in HSM is temperature independent
at low temperatures.

• The spin-spin correlation time at low temperatures depends
weekly on the molecular spin S.

• The molecular spin dynamics at high temperature is driven by
spin phonon interaction, while dynamically fluctuating
hyperfine fields induce the molecular spin dynamics at very low
temperatures.

H⊥ ∝~i · ~S
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Landau-Zenner Tunneling

• Landau Zenner model is
used for experiments with
swept external magnetic
field.
• The tunneling probability is

P = 1−exp

[

−
π∆

4h̄gµBS(dH/dT )

]

where ∆ is the gap at the
level crossing (tunnel split-
ting).
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The µSR Technique

• The muons are 100%
polarized.

• The positrons are
emitted parallel to
the muons polariza-
tion.

• Histograms of
positron counts
vs. time are collected
in the F/B counters.
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• The Asymmetry = F−B
F+B is proportional to the polarization.

• Zero field, Longitudinal or transverse field can be applied.
Back
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µSR in Fe8

• We fit the asymmetry to

A(t) = A10 sin(ω10t)e−λ10t +A±10 sin(ω±10t)e−λ±10t

• A10, ω10 and λ10 represents
the fraction of µ+ near m =
+10 state.

• A±10, ω±10 and λ±10 repre-
sent the fraction of µ+ near
m = ±10 state.
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• Steps in the value of ω±10, A10 and A±10 coincide with the
matching field values.
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Muon Spin Relaxation in a Static Field

Time scale Recovery in Decoupling in high

of relaxation zero field longitudinal field

t−1 ' γ
√

< B2
loc >

Bloc

Pµ

Bloc

Pµ
Bloc

Pµ

H

Btot

P

Bloc

µ

limt→∞ Pz(t) = 1
3 limH→∞ Pz(t) = 1
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H Dependence of the µ+ Polarization

• The µSR results in CrNi6 at
T = 50 mK show that

1. There is no recovery, un-
like the static local field
case.

2. The relaxation time scale
is 1 µsec, and therefore
√

B2
loc should be ∼ 10 G.

3. Decoupling should occur
at H ∼ 100 G, but even
at 5 kG there is no decou-
pling.
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We conclude that even at 50 mK

the CrNi6 spins are dynamically

fluctuating.
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Principle of NMR

I

H
0

I I

H1

Ballerina watch-
ing spin rotating.

Ballerina and
spin are rotating.
From her point
of view the spin
is fixed so there
is no field.

A rotating field
H1 is applied.
Ballerina sees a
fixed field so the
spin is rotating
around it.

Back
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Principles of NMR
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The Polarization in Isotropic HSM

• In these HSM the muon could occupy many different sites in
the sample as a result one must average over ∆.

• The polarization of a local probe, in the fast fluctuation
τ∆� 1, is given by

P (H, t) = (P0 − P∞) e[−t/T1]β + P∞
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The Spin Dependence of the Tunneling Rate

Interaction Spin dependence of the

tunneling rate τ−1

High order spin terms S2 or higher

Spin-phonon S3

Static transverse field higher than S2

Dynamic hyperfine and dipolar 1/S
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