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We investigate the propagation dynamics of accelerating beams that are shape-preserving solutions of the Maxwell
equations, and explore the contribution of their evanescent field components in detail. Both apodized and non-
apodized Bessel beam configurations are considered. We show that, in spite of the fact that their evanescent tails
do not propagate, these nonparaxial beams can still accelerate along circular trajectories and can exhibit large
deflections. Subsequently, our formulation is extended in other two-dimensional vectorial arrangements. The
reported results can be useful in plasmonic and other subwavelength and near-field settings. © 2016 Optical

Society of America
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1. INTRODUCTION

In 2007, the concept of accelerating beams was first introduced
in optics through a new class of diffraction-free waves, the
so-called Airy beams [1,2]. First conceived within the context
of quantum mechanics [3], these self-similar Airy wave packets
are known to exhibit some very remarkable properties. Perhaps
the most intriguing of them is their very ability to freely accel-
erate. Interestingly, in optics, this latter property takes on a
whole new meaning. It implies that the intensity features of
an Airy beam can self-bend even in an entirely homogeneous
media-like vacuum, etc. In this case, an Airy beam can accel-
erate along a parabolic trajectory, very much like a projectile
moving under the action of gravity. Over the last few years,
optical Airy beams have found applications in many and diverse
settings. These range from inducing curved plasma filaments in
air and autofocusing collapse [4–7], to extending the supercon-
tinuum generation in photonic crystal fibers [8] and producing
spatiotemporal light bullets that are impervious to both
dispersion and diffraction effects [9,10]. Airy wave packets re-
present the only nondiffracting solution in 1D, and as such,
they could be potentially useful in realizing self-bending surfa-
ces and interfaces, such as plasmons [11–13]. In addition to
their aforementioned characteristics, these wavefronts also hap-
pen to be self-healing—an advantageous property in adverse
environments where scattering is an issue [14]. Along these
lines, Airy beams have been successfully used in manipulating

microparticles [15] and quite recently in STORMmicroscopies
[16]. Strategies for micromachining surfaces have been intro-
duced [17], and the use of similar schemes in producing
electron Airy packets has been pursued. Finally, the prospect
of using nonlinearities in conjunction with such accelerating
waves has been studied [18–21].

As previously indicated, the Airy wave function represents
the only accelerating solution (in 1D) to the paraxial equation
of diffraction. Clearly of interest would be to extend these con-
cepts into the nonparaxial domain, associated with near-field
applications. Lately, a new family of nonparaxial accelerating
wave packets was presented by considering the vectorial
Bessel solutions of the Helmholtz equation in cylindrical
coordinates [22]. Shortly after, nonparaxial accelerating beams
were experimentally observed [23], and within a few months,
accelerating nonparaxial beams were also found in the nonlin-
ear domain [24,25]. In general, Bessel accelerating waves can
move on a circular trajectory with a radius of only a few wave-
lengths. Subsequently, other classes of nonparaxial accelerating
wave packets have been suggested and observed [26–29]. These
include, for example, Mathieu and Weber beams that follow
elliptic and parabolic trajectories, respectively, as well as
3D fully vectorial wave packets in the form of spherical
Bessel and oblate/prolate spheroidal functions [26,29–31].
Very recently, these 3D nonparaxial accelerating wave packets
were observed in a series of experiments [32]. In addition,
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self-accelerating Bessel-like beams were generated experimen-
tally from multimode fiber arrangements [33], and generalized
radially self-accelerating Helicon waves were produced using
spatial light modulators and theoretically investigated [34].
Finally, the dynamics of nonparaxial accelerating Bessel beams
shifting laterally along fairly arbitrary trajectories were consid-
ered based on stationary phase methods and the underlying ray
dynamics [35].

It is important to emphasize that the aforementioned
accelerating wavefronts are solutions to the full-vector Maxwell
equations in coordinate systems where the vectorial Helmholtz
problem can be successfully separated. In fact, they correspond
to modes in cavity configurations, when the enclosing
“perfect metallic boundary” is eventually pushed to infinity. For
instance, the Bessel waves (TE or TM) happen to be the cir-
culating modes in a cylindrical cavity, of infinite extent. As a
result, when this solution is launched from a single input plane
in free space, it tends to self-bend along a circular trajectory, as
in a cavity, until the open boundary conditions take a toll.
Given that these are highly nonparaxial solutions, it will be
of importance to understand the role of evanescent contribu-
tions on their propagation. In addition, at this point, it is not
very clear how these beams will dynamically evolve even if they
are not truncated. In other words, how will they propagate if
the entire waveform (that in principle extends to infinity) is
provided? These questions can only be answered through an
exact analytical approach, since any numerical attempt has
to rely on apodized versions of such beams.

In this paper, we present close-form analytic results describing
the evolution of accelerating solutions of the full Maxwell
equations. We analyze the specific case of such beams that
accelerate along circular trajectories, for which the analytic
solutions correspond to the Bessel functions—when the beams
are not truncated [24]. The contribution of the evanescent field
components on the propagation of these vectorial wave packets is
investigated in detail. We show that, in spite of evanescent com-
ponents, these nonparaxial beams can still accelerate up to a
point, along circular trajectories, and in doing so they can exhibit
large deflections. Both apodized and nonapodized Bessel beam
configurations are considered. This formulation is then extended
in other two-dimensional vectorial arrangements.

2. PROPAGATION DYNAMICS OF
SEMI-INFINITE BESSEL BEAMS

We begin our analysis by considering the Helmholtz equation
in two dimensions �∇2 � k2�fE⃗ ; H⃗g � 0, where k � ωn∕c
represents the wavenumber. Without any loss of generality,
we here assume a transverse-electric mode, i.e., E⃗ � Ey�x; z�ŷ.
When this problem is treated in cylindrical coordinates, the
following circulating mode can be directly obtained in terms
of Bessel functions:

E⃗ � Jν�kr�eiνϕŷ; (1)

where r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � z2

p
and ϕ � tan−1�z∕x�. From Maxwell’s

equations one can then deduce the magnetic field components,
i.e., Hx ��μ0ω�−1eiνϕfiJ 0ν�kr�kz∕r − Jν�kr�νx∕r2g and Hz �
−�μ0ω�−1eiνϕfiJ 0ν�kr�kx∕r � Jν�kr�νz∕r2g, where derivatives
are given with respect to the argument of the Bessel function.

The diffraction behavior of this nonparaxial Bessel beam is then
investigated in the vectorial Helmholtz regime by means of a
Fourier integral, i.e.,

Ey�x; z� �
1

2π

Z
∞

−∞
dωF �ω�eiωxeiz

ffiffiffiffiffiffiffiffiffi
k2−ω2

p
; (2)

where z is the propagation direction and F �ω� �R
∞
−∞ Ey�x; 0�e−iωxdx, represents the Fourier spectrum of the
electric field at z � 0. In Eq. (2) ω stands for the transverse
wave vector kx.

In what follows, we examine the dynamical evolution of a
half-branch Bessel wave packet—typically used in experimental
arrangements. In this case, Ey�x; 0� � H �x�Jν�kx�, where
H �x� represents a Heaviside step function. As we will see, this
abrupt step-apodization will introduce evanescent contribu-
tions that play an important role in the ensuing diffraction dy-
namics. For a semi-infinite Bessel function of the form Jν�kx�,
associated with an angular number ν, F�ω� can be obtained
from the respective sine and cosine Fourier transforms (defined
in the interval �0;∞�) which are given by [36],

Fc�ω� � �k2 − ω2�−12 cos
�
ν sin−1

�
ω

k

��
; ω < k (3a)

F c�ω�� −kν sin
�
νπ

2

�
�ω2 − k2�−12

n
ω��ω2 − k2�12

o
−ν
; ω>k

(3b)

F s�ω� � �k2 − ω2�−12 sin
�
ν sin−1

�
ω

k

��
; ω < k (3c)

F s�ω�� kν cos
�
νπ

2

�
�ω2 −k2�−12

n
ω��ω2 − k2�12

o
−ν
; ω>k:

(3d)

Here F c�ω� �
R
∞
0 Jν�kx� cos�ωx�dx and F s�ω� �

R
∞
0 Jν�kx�

sin�ωx�dx. By writing the Fourier transform in Eq. (2), in
terms of a sine (odd) and a cosine (even) Fourier component,
i.e., F �ω� � e�ω� − io�ω�, and by rewriting the oscillating
exponential as eiωx � cos�ωx� � i sin�ωx�, the integral in
Eq. (2) assumes the form

Ey�x; z� �
1

2π

Z
∞

−∞
dω�e�ω� cos�ω� � o�ω� sin�ωx��eiz

ffiffiffiffiffiffiffiffiffi
k2−ω2

p
:

(4)
Because of the symmetry properties of Eq. (3), it is more
convenient to study the cases of even and odd Bessel orders
separately.

We first consider the propagating component [where −k ≤
ω ≤ k in Eq. (4)] from even-order Bessel functions (ν � 2m).
By using ω � k sin θ, the integral related to the cosine
contribution Ec

y takes the form

Ec
y�x; z� �

1

2π

Z π
2

−π2

dθ cos�2mθ�eikx sin θeizk cos θ: (5)

For convenience, we define a new variable as ϕ � sin−1�z∕r�,
so the integral in Eq. (5) becomes

Ec
y�x; z� �

1

2π

Z π
2

−π2

dθ cos�2mθ�eikr sin�θ�ϕ�: (6)
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By expanding the exponential component in terms of Bessel
functions, eix sin θ � P∞

n�−∞ einθJn�x� [37], and by changing
the order of integration with the summation, one can get an
exact closed form solution to the integral in Eq. (6),

Ec
y�x; z� �

1

2
cos�2mϕ�J2m�kr�;

� i
π
�−1�m

X∞
n�0

�−1�nJ2n�1�kr� sin��2n� 1�ϕ�

×
4n� 2

�2n� 1�2 − 4m2 : (7)

A similar procedure can be followed to obtain the propagating
field component (jωj ≤ k) from the sine part, Es

y in Eq. (4)
which is given by

Es
y�x; z� �

−1

2
sin�2mϕ�J2m�kr�;

� i
π
�−1�m

X∞
n�0

�−1�nJ2n�1�kr� cos��2n� 1�ϕ�

×
4m

�2n� 1�2 − 4m2 : (8)

For and even-order semi-infinite Bessel accelerating beam, it is
clear from Eq. (3) that the evanescent contribution comes only
from the odd part [Eq. (3d)] in the integral of Eq. (4). In this
case (ν � 2m) after substituting Eq. (3d) in Eq. (4) and after
writing ω � k cosh θ, the integral for the evanescent part reads
as follows:

Ey�x;z��
�−1�m
π

Im

�Z
∞

0

dθeikx cosh θe−zk sinh θe−2mθ
�

�ω>k�:

(9)
The dominant contribution to the integral comes mainly
from the region θ ≈ 0, since the integrant oscillates very fast
outside the aforementioned range and hence cancels out. In
this case, one can use the approximation sinh θ ∼ θ and cosh
θ ∼ 1� θ2∕2. As a result, the evanescent integral can be
obtained; hence,

Ey�x;z��
�−1�m
π

Im

×
�
eikx

ffiffiffiffiffiffiffi
iπ
2kx

r
e

i
2kx�zk�2m�2

�
1−erf

�
zk�2mffiffiffiffiffiffiffiffiffiffiffi
−2ikx

p
���

�ω>k�:

(10)

By combining the above results, one finds that the propagation
dynamics of a half-even Bessel function (ν � 2m) is given by

Ey�x; z� �
1

2
J2m�kr�e2imϕ �

i
π
�−1�m

X∞
n�0

�−1�nJ2n�1�kr�

×
�
sin��2n� 1�ϕ� 4n� 2

�2n� 1�2 − 4m2

−i cos��2n� 1�ϕ� 4m
�2n� 1�2 − 4m2

�
� �−1�m

π
Im

×
�
eikx

ffiffiffiffiffiffiffi
iπ
2kx

r
e

i
2kx�zk�2m�2

�
1 − erf

�
zk � 2mffiffiffiffiffiffiffiffiffiffiffi

−2ikx
p

���
:

(11)

A similar theoretical analysis can be carried out for an odd-order
Bessel function when Ey�x; 0� � H �x�J2m�1�kx�. In this case,
the odd part of the Fourier transform is proportional to sin�mπ�
in the range (ω > k) and is therefore zero. As a result, any
evanescent contribution arises from the even component
[Eq. (3b)]. From here, one obtains an expression for the dif-
fraction dynamics of an odd-order semi-infinite accelerating
Bessel beam:

Ey�x; z� �
1

2
J2m�1�kr�ei�2m�1�ϕ � �−1�m

π

X∞
n�1

�−1�nJ2n�kr�

×
�
cos�2nϕ� 4m� 2

�2m� 1�2 − 4n2

�i sin�2nϕ� 4n
�2m� 1�2 − 4n2

�

� �−1�m�1

π
Re

�
eikx

ffiffiffiffiffiffiffi
iπ
2kx

r
e

i
2kx�zk�2m�1�2

×
�
1 − erf

�
zk � 2m� 1ffiffiffiffiffiffiffiffiffiffiffi

−2ikx
p

���
; (12)

where again the last part of Eq. (12) describes evanescent
contributions during propagation. Figures 1(a) and 1(b) show
two-dimensional intensity patterns for the case of accelerating
half-even Bessel wave packets, as obtained from Eq. (11), when
2m � 10 and 2m � 50, respectively. The validity of the ap-
proximations used to obtain the evanescent components was
also checked numerically. It is clear from Eqs. (11) and (12)
and from Figs. 1(a) and 1(b) that, in spite of the fact that
the semi-infinite Bessel beam is by no means apodized (i.e.,
all the lobes have been provided in the initial field distribution
on the semi-infinite x-axis), the beam eventually diffracts after a
certain propagation distance. This is caused by all the higher-
order terms (including the evanescent) in Eqs. (11) and (12).
Clearly the beam accelerates or self-bends to a great extent
before diffraction effects take a toll. For example, if
2m � 10, the beam reaches a deflection of 25° while for
2m � 50, the self-bending is approximately 50°. Figures 1(c)
and 1(d) show the intensity variation of the main lobe as a func-
tion of the angle of propagation for 2m � 10 and 2m � 50,
respectively. Evidently, the higher-order Bessel beams tend to

Fig. 1. Intensity profile of a propagating even-order half-Bessel
wave packet when launched from the x-axis, for (a) 2m � 10, and
(b) 2m � 50. (c, d) Normalized intensity variation of the main lobe
as a function of the propagation angle, corresponding to the propaga-
tion dynamics shown in (a, b), respectively. In plotting these results the
first 30 terms in Eq. (11) were used.

Research Article Vol. 33, No. 10 / October 2016 / Journal of the Optical Society of America A 2049



experience more oscillations during propagation, as the evan-
escent field contribution fades out faster. To some extent, this is
because the Bessel beam realized is no longer a circulating mode
in perfect cylindrical metallic cavity and hence gradually tends
to disintegrate. In other words, the half-Bessel beam is not a
natural mode of the free-space Helmholtz problem. In addi-
tion, one can show that for higher-order Bessel functions,
the bending radius increases asymptotically according to the
relation r∼ λ∕2π�ν�0.808ν1∕3�0.072ν−1∕3�, where ν stands
for the order of the Bessel function. As a result, the beam-
envelope will follow a longer path for higher-orders and the
evanescent part plays little role during propagation. This effect
can be seen in Eqs. (10) and (12), where the argument of
the error function increases with ν. Moreover, for large orders,
the width of the first lobe can be approximated by
Δ ∼ λ∕2π�2.094ν1∕3 � 1.921ν−1∕3�. Similar results can be
obtained for nonparaxial odd-order half-Bessel beams.

3. PROPAGATION DYNAMICS OF HALF-
BRANCH APODIZED BESSEL BEAMS

As was mentioned before, all the optical diffraction-free ar-
rangements possess an infinite norm. Hence, it is often neces-
sary to apodize them in order to observe them experimentally.
As one could expect, this apodization can effectively influence
their propagation. To investigate these effects, we consider the
diffraction behavior of an apodized version of such accelerating
Bessel beams. Here we choose the apodization function to be
1∕x, ensuring that the wave packet has a finite energy. As we
will see, this particular apodization leads to closed form solu-
tions for both propagating and evanescent contributions. In
this case, the launched field follows Ey�x; 0� � Jν�kx�∕x, as
defined in the interval x ≥ 0 (apodized half-branch Bessel
beam). By using the equation Jν�kx�∕x � 1∕2ν�Jν−1�kx� �
Jν�1�kx�� and the results from the previous section, the propa-
gation dynamics of such apodized even-order Bessel beams
(ν � 2m), can be expressed as follows:

Ey�x; z� �
1

8m
�J2m�1�kr�ei�2m�1�ϕ � J2m−1�kr�ei�2m−1�ϕ�

� �−1�m
4mπ

X∞
n�1

�−1�nJ2n�kr�

×
�
cos�2nϕ�

�
4m� 2

�2m� 1�2 − 4n2 �
−4m� 2

�2m − 1�2 − 4n2
�

�i sin�2nϕ�
�

4n
�2m� 1�2 − 4n2 �

−4n
�2m − 1�2 − 4n2

��

��−1�m�1

4mπ
Re

�
eikx

ffiffiffiffiffiffiffi
iπ
2kx

r
e

i
2kx�zk�2m�1�2

×
�
1 − erf

�
zk� 2m� 1ffiffiffiffiffiffiffiffiffiffiffi

−2ikx
p

���

��−1�m
4mπ

Re

�
eikx

ffiffiffiffiffiffiffi
iπ
2kx

r
e

i
2kx�zk�2m−1�2

×
�
1 − erf

�
zk� 2m − 1ffiffiffiffiffiffiffiffiffiffiffi

−2ikx
p

���
: (13)

Again, all the terms associated with the complex error functions
describe evanescent field contributions. Figure 2 depicts plots
of these analytical results as obtained from Eq. (13) for two
different orders, ν � 10 and ν � 50. In all cases, the nonpar-
axial acceleration behavior is evident in spite of the apodization.
The validity of the approximations used to obtain the evanes-
cent components was also checked numerically. Note that in
this case, the intensity of the main lobe is oscillation-free
due to the apodization. Similar results can be obtained for
1∕x apodized odd-order half-Bessel beams.

4. DYNAMICAL EVOLUTION OF FULLY
SYMMETRIC ACCELERATING BESSEL BEAMS

Interestingly, Bessel wave packets taken on the entire x-axis
(full Bessel beams) lack evanescent contributions irrespective
of whether they are even or odd. This is a direct result of
symmetry in conjunction with Eq. (3). As an example, for
an even-order Bessel function with initial distribution
Ey�x; 0� � Jν�kx�, where ν � 2m with m being an integer,
the sine contributions to the Fourier transform cancel out
due to spatial symmetry. Moreover, as it is clear in Eq. (3b),
the evanescent part (ω > k) would be proportional to
sin�mπ�, which is absent. Hence by substituting the only
remaining term from Eq. (3a), the integral in Eq. (2) (after
a change of variable ω � k sin θ) assumes the form

Ey�x; z� �
1

π

Z π
2

−π2

dθ cos�2mθ�eikx sin θeizk cos θ: (14)

To evaluate the integral in Eq. (14), a similar approach to the
one described before is followed. However, it is important to
stress that this time, only the cosine part of the Fourier trans-
form contributes to the propagation. One can get an exact
closed form solution to the integral in Eq. (14):

Ey�x; z� � cos�2mϕ�J2m�kr�;

� 2i
π
�−1�m

X∞
n�0

�−1�nJ2n�1�kr�

× sin��2n� 1�ϕ� 4n� 2

�2n� 1�2 − 4m2 : (15)

Equation (15) describes the acceleration pattern of an even-
Bessel function in free space. The first term in this equation

Fig. 2. Intensity distribution of a propagating even-order half-
Bessel apodized wave packet when launched from the x-axis for
(a) 2m � 10, and (b) 2m � 50. (c, d) Normalized intensity variation
of the first lobe with respect to the angle of propagation, corresponding
to the patterns shown in (a, b), respectively.

2050 Vol. 33, No. 10 / October 2016 / Journal of the Optical Society of America A Research Article



ensures that the initial Bessel function is present in the intensity
pattern during evolution. However, the rest of the terms intro-
duce variations in the initial distribution. A similar result can be
obtained when, ν � 2m� 1, for odd-order Bessel functions.
Following the same procedure described before, one can get
a similar result to Eq. (15) for the propagation pattern of an
entire odd-order Bessel function:

Ey�x; z� � cos��2m� 1�ϕ�J2m�1�kr�;

� 2i
π
�−1�m

X∞
n�1

�−1�nJ2n�kr� sin��2n�ϕ�

×
4n

�2m� 1�2 − 4n2 : (16)

As in the previous case, the initial field configuration persists
during propagation and asymptotically follows a semicircular
path. Figures 3(a) and 3(b) show two-dimensional plots
corresponding to the intensity profile of an even/odd order
Bessel distribution as described by Eqs. (15) and (16), when
m � 25. As is clear from Fig. 3, interference effects take place
in both the left and right branches, even after a short distance of
propagation—even before the two branches collide. Note that
this change affects the lobes, while the intensity profile of the
semicircle remains unchanged, and as a result, the acceleration
trajectory remains circular. As Fig. 3 shows, this interference
pattern can lead to a constructive focusing of these two
branches; thus a maximum is attained on the z-axis for an
even-order Bessel function. Conversely, the intensity is zero
on the z-axis for the odd case due to destructive interference.

5. VECTORIAL BESSEL WAVE PACKETS

In principle, we can extend this treatment in three dimensions.
To establish such beams, one should treat Maxwell’s equations

in the vectorial domain. Here we assume that at the excitation
plane z � 0, the field distribution has a separable form in terms
of two functions, f and g :

E�x; y; 0� � x̂f �x�G�y� � ŷF�x�g�y�; (17)

where G�y� � dg�y�∕dy and F �x� � −df �x�∕dx�. Starting
from the Helmholtz equation, one can then show that the
electric field evolves with z, as follows:

E�x; y; z� � 1

�2π�2
ZZ

∞

−∞
dkxdkyF �kx�

× G�ky��ikyx̂ − ikx ŷ�ei�kxx�kyy�eiz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−k2x−k2y

p
; (18)

where F �kx� and G�ky� represent the Fourier transforms of
f �x� and g�y�, respectively. Note that everywhere Eq. (18) sat-
isfies ∇ · E⃗ � 0. From here, the magnetic field corresponding
to Eq. (18) can be obtained. In order to establish an accelerating
Bessel beam in 2D, here we assume semi-infinite Bessel func-
tions, f �x� � Jm�αx� and g�y� � Jn�βy�, where α and β are
real numbers. Since in general the two Bessel functions have
different orders and different arguments, such a solution has
the flexibility of accelerating along the x and y directions at
different rates. The propagation dynamics of this double-
Bessel solution is illustrated in Fig. 4, where the evolution
of the beam cross sections in the x–y plane is depicted for differ-
ent values of z. In this figure, we have used Bessel functions
with orders m � n � 25 and α � β � 1. As Fig. 4 clearly
indicates, the double-Bessel beam accelerates along both x
and y axes, asymptotically reaching the center of the coordinate
system after a certain distance of propagation. To better visu-
alize these dynamics, we have also mapped the propagation of
the main lobe of this Bessel–Bessel accelerating beam on the
surface of a sphere [Fig. 4(g)].

6. DISCUSSION AND CONCLUSIONS

We have investigated the dynamics of accelerating Bessel wave
packets following circular trajectories in free space. We have
presented analytical results for the evolution of Bessel-beams
in 2D, and we showed that the acceleration behavior can persist
even in the presence of evanescent components. Our results

Fig. 3. Intensity profile of a full-Bessel beam when propagating
toward the z-axis for (a) an even-order symmetric Bessel field distri-
bution when 2m � 50, and (b) an odd-order antisymmetric Bessel
distribution with 2m� 1 � 51. The corresponding interference
patterns resulting from these initial conditions are highlighted in
the insets.

Fig. 4. Two-dimensional cross section of the intensity profile asso-
ciated with a 3D vectorial Bessel accelerating beam propagating in free
space with α � β � 1 and m � n � 25, when (a) z � 0, (b) z � 4
(c) z � 8, (d) z � 12, (e) z � 16, (f ) z � 24 μm. (g) To demonstrate
the acceleration effect, the propagation of the main lobe is mapped on
a spherical surface.
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could be of relevance in microparticle manipulation [38,39]
and other subwavelength settings.
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