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Interplay between evanescence and disorder in
deep subwavelength photonic structures
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Deep subwavelength features are expected to have minimal impact on wave transport. Here

we show that in contrast to this common understanding, disorder can have a dramatic effect

in a one-dimensional disordered optical system with spatial features a thousand times smaller

than the wavelength. We examine a unique regime of Anderson localization where the

localization length is shown to scale linearly with the wavelength instead of diverging,

because of the role of evanescent waves. In addition, we demonstrate an unusual order of

magnitude enhancement of transmission induced due to localization. These results are

described for electromagnetic waves, but are directly relevant to other wave systems such as

electrons in multi-quantum-well structures.
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L
ocalization due to disorder was originally proposed by
Anderson1 in 1958 in the context of the metal insulator
transition in solid-state physics. Over the years, it has been

shown that localization phenomena are fundamental and
ubiquitous2,3, manifested in diverse realms of physics—from
photonics4–12 and cold atoms13,14 to sound waves15, surface
plasmons16 and various mesoscopic systems17. Anderson
localization occurs as a result of constructive interference of
scattered waves returning to their origin point in the medium
along time-reversed paths. Being an interference effect,
localization relies on phase accumulated between scattering
events. Its impact is therefore expected to decrease when the
distance between the scatterers becomes much smaller than the
wavelength, l, since the accumulated phase is then much smaller
than 2p. Indeed, when dool, the typical length scale of
localization, x, diverges rapidly18–20. Accordingly, a sub-
wavelength disorder with dol=50 is expected to induce very
weak localization, which is usually physically negligible.
Localization in this case is characterized by very long x, which
diverges rapidly as l2, and disorder only plays a role if the
disordered structure is exceedingly large. This insensitivity to
extreme subwavelength detail is, of course, not unique to
Anderson localization or disordered structures; rather, any
potential with such extreme subwavelength features is, generally
and intuitively, expected to have little to no influence on wave
transport.

Importantly, propagating waves are not the only type of waves
scattered by disorder. Evanescent (exponentially decaying) waves
are also scattered, and while evanescent waves naturally do not
accumulate phase through propagation, they can accumulate a
phase as they scatter via the Goos–Hanchen phase shift. Notably,
evanescent waves acquire this phase shift ‘immediately’ upon
reflection from an interface (or transmission through it), as
opposed to a phase shift proportional to the propagation distance.
This raises a fundamental question: can localization be induced
by multiple scattering of evanescent waves? And if so, can this
type of localization overcome the diffraction limit and persist in
the deeply subwavelength (dBl/50) and extreme subwavelength
(dBl/1,000) regimes?

Perhaps, the simplest setting in which localization can occur is
the specific case of electromagnetic (EM) waves in multilayer
structures. Localization in disordered multilayers was proposed
as early as 1985 (refs 19,21,22) and later observed
experimentally23,24, but almost all of the current literature deals
exclusively with the localization of propagating waves, with no
mention to evanescent waves. An important exception was found
in refs 21,22, which examined a multilayer stack with thick
(wavelength-scale) layers and permittivities that are distributed
randomly with a perturbatively small variance. When light is
incident on the multilayer exactly at the (mean) critical angle for
total internal reflection, it was shown21,22 that transmission
decays exponentially with the number of layers. However,
the origin of this decay—whether it was Anderson localization
or simple evanescent decay—was not determined. In fact, an
important later work25 showed that if the waves are evanescent in
a large number of layers, the reduction in transmission has
‘nothing to do with localization’ (as quoted from ref. 25). In all,
before our work, the possibility of Anderson localization in a
structure composed entirely of deep subwavelength layers has not
been considered.

In the following, we demonstrate that Anderson localization
can be induced by extreme subwavelength disorder and driven by
evanescent waves. We show that multiple Goos–Hanchen phase
shifts of scattered evanescent waves can induce a potent
Anderson localization regime, despite the subwavelength scale
of the structural disorder. As a concrete example, we study the

transport of EM waves through a stack of subwavelength
dielectric layers, which alternatingly support propagating and
evanescent waves. In the presence of disorder, transmission
through the stack is reduced and exponentially localized modes
appear. We show that the transport regime which ensues can
indeed be characterized as Anderson localization, even for
dBl/1,000 and that the localization length is as short as a
few wavelengths. Moreover, we prove, analytically, that the
localization length scales linearly with the optical wavelength
instead of diverging parabolically. In addition, we demonstrate
that disorder-induced localization can enhance transmission by
orders of magnitude through some realizations of disordered
finite multilayer stacks. The modes responsible for enhanced
transmission are shown to possess untypically high Q-factors, up
to the 106 range, which exist even in relatively thin (LB2–8l)
structures. Combining the inherent sensitivity of our regime with
the presence of high-Q modes may result in major sensing
applications, where optical wavelengths are used to resolve
nanometric details in a multilayer structure.

Results
Our model and the role of evanescent waves. Consider a
one-dimensional (1D) structure made up of 2N dielectric layers,
illuminated by a continuous-wave laser (CW) source at an angle
of incidence y, wavelength l and TE polarization, as shown in
Fig. 1a. The multilayer stack is surrounded by a homogenous
medium with permittivity eext¼ 4, and the permittivity of the
layers alternates between the low and high values eL¼ 1 and
eH¼ 5. Disorder is introduced by drawing the layer thickness
randomly from a uniform distribution between 2 and 18 nm. This
choice of parameters is quite arbitrary and the results henceforth
described would be achieved for other choices, as long as dool
and eext,eh are sufficiently greater than eL (see ref. 26). Another
physical requirement is that the thickness of the layers will be
sufficiently large for the dielectric permittivity to be well defined
and close to its bulk value. An experimental effort will certainly be
affected by such deviations, and, while the precise minimum
thickness depends on the fabrication method and materials, a
minimum thickness of 2 nm seems to be a reasonable estimate for
most dielectrics27. We emphasize that the disorder could also be
introduced into the multilayer in a variety of other ways. For
example, we also studied other realizations of disorder, such as
randomly reshuffling the layers or randomizing the layer
permittivities, and found that the main results we describe
remain valid. We note that, for dBl or larger, the evanescent
decay inside the low-permittivity layers is so significant that
waves do not penetrate into the structure and therefore do not
experience the disorder. We also note that, since dool, analysis
in terms of Bloch states is not helpful.

At first glance, it might appear that transport in this deeply
subwavelength-layered system could be treated using effective
medium theory, in which the effects of individual layers would be
smoothed, so that the wave responds only to an averaged
structure (see refs 28,29). However, it is not always possible to
apply the effective medium approach. For example, we have
recently shown that transmission through a periodic multilayer
stack (free of disorder) can depend on structural features such as
the order and exact number of the layers26, which are neglected in
the conventional effective medium approach. In such cases, it is
necessary to use the full solution of the wave equations with a
method such as the transfer matrix method30,31 employed
in this article. Nevertheless, we find that some concepts from
effective medium theory still apply. Namely, we find that the
effective medium permittivity eeff (in our case is eeff � eH þ eL

2 ¼ 3)
and especially the critical angle for total internal reflection,
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yc ¼ arcsinð
ffiffiffiffiffiffiffiffiffiffi
eH þ eL

2eext

q
Þ ¼ 60� (for a wave propagating from an

external medium with eext to a homogeneous medium with eeff),
are excellent predictors of whether the overall field behaves like
an evanescent or propagating wave within the medium.

We can identify four regimes of operation in different
ranges of y:

0ryoyL: where for our chosen parameters

yL ¼ arcsinð
ffiffiffiffiffi
eL
eext

q
Þ ¼ 30�. In this regime, waves propagate with

real wavevectors in both layers. This is the regime of conventional
Anderson localization. The length scale characterizing
localization diverges as xBl2 or faster18–20, so that localization
due to a deep subwavelength disorder is generally a weak effect.

yLoyoyc: with yc¼ 60�. In this regime, waves in the eL layers
are evanescent, whereas waves in the eH layers remain propagat-
ing waves. Crucially, the evanescent nature of the waves in the eL

layers does not necessarily imply exponentially reduced transmis-
sion through the disordered multilayer structure. In a perfectly
periodic multilayer of this kind, the transmission is a periodic
function of the total thickness, and even full transmission can be
obtained in arbitrarily thick multilayers, in spite of evanescence26.
However when the layers are disordered, we find that the
Goos–Hanchen phase shift (that is, the phase of Fresnel
reflection\transmission coefficients) plays an increasingly
important role, and that short-range localization can take place
even if the disorder is deep subwavelength. Accordingly, we refer
to this regime as the Goos–Hanchen localization (GHL) regime,
which reflects the mechanism underlying this new regime of
localization.

ycoyo90�: In this regime, as in the GHL regime, the wave is
propagating in the high-permittivity layers and is evanescent in
the low-permittivity layers. In the effective medium description,
the wave in this regime is evanescent and displays an exponential

decay in transmission even in a periodic structure without
disorder26. In a fully periodic multilayer structure, the rate of
amplitude decay is close to the rate of decay in the effective
medium model, a ¼ 2p

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eext sin2 yð Þ� eeff

p
. In contradistinction,

the presence of disorder endows the structure with a complex
behaviour because of the interplay between the effective
evanescent decay and Anderson localization, which leads to
enhanced transmission and unusual mode shapes, which will be
described later. We call this angular range the effective medium
evanescence (EME) regime because the overall transmission
decays exponentially.

Depending on the surrounding permittivity, a fourth regime
might also exist in which the waves are evanescent in both layers.
For the parameters we consider here, eH4eext ; hence, this does
not exist for any (real) angle. However, in general, we find that
evanescence in this regime is so dominant that the effects of
disorder are vanishingly small.

The GHL regime. Consider first the regime of conventional
localization, with yoyL. We calculate the field distribution of a
two-dimensional (2D) Gaussian beam incident at y¼ 20� on a
single (arbitrarily chosen) disordered multilayer, with NB2,500
layer pairs, using transfer matrix formalism. We begin with the
extreme case of l¼ 10 mm, relative to a d¼ 10 nm layer thickness,
corresponding to a localization length scale of several millimetres.
As shown in Fig. 1b, the effect of disorder in this case is
weak—almost all of the light is transmitted. The small
amount reflected, evident from the faint interference pattern,
is comparable to the reflection predicted by effective medium
theory because of the permittivity difference between eeff and eext.
For thicker structures, some effects of disorder can appear, but
full localization is only expected in implausible structures with
more than NB105 layer pairs.
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Figure 1 | Physical setting and simulated propagation of light in the multilayer stack with extremely deep subwavelength disorder. (a) Schematics of a

disordered multilayer sample with N¼ 3 pairs. (b) A TE-polarized 2D Gaussian beam incident at y¼ 20� on a disordered stack of N¼ 2,500 layer pairs. The

beam goes through the structure unaffected by the disorder since the layers are 10 nm thick on average—exceedingly thin relative to the l¼ 10mm

wavelength of the beam—and since the incidence angle is far from the critical angle for total internal reflection. (c) The same beam and structure as in a,

but for incidence at y¼60�. For this angle of incidence, at the edge of the GHL regime, the beam is completely reflected by the presence of deep

subwavelength disorder. Notably, a portion of the beam is coupled into a mode localized in the multilayer, and advances through the structure for a

considerable distance. The yellow–grey stripes on the bottom-left hand side of b,c represent the location of the multilayer; the actual layers are 500 times

thinner than in the illustration.
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In contrast to the above case of near-normal incidence, when
the same beam is incident at yc¼ 60� on the same structure, it is
completely reflected by the disorder. As shown in Fig. 1c, almost
no power is transmitted through the multilayer, even though the
overall thickness of the stack is only B5l. Figure 1c also
demonstrates that a portion of the beam is ‘trapped’ inside the
multilayer and travels laterally inside the multilayer for an
appreciable distance—a clear signature of the presence of strongly
localized Anderson modes. We will return to analyse the modes
and transverse behaviour later on. This lateral shift is reminiscent
of the Goos–Hanchen effect in total internal reflection, but
unlike the Goos–Hanchen effect, the transverse shift here is
frequency-dependent and is extremely large. Additional
examples, for other realizations of disorder, are shown in
Supplementary Note 3. Ultimately, Fig. 1c (and the additional
examples in Supplementary Fig. 3) demonstrates that the extreme
subwavelength features of our structure completely dominate the
transport of light.

Scaling of the localization length with the wavelength. From
this point onwards, we simplify the setting by treating the
incident beam as a plane wave of infinite extent and singularly
defined angle of incidence instead of a Gaussian beam.
Specifically, we calculate the localization length, defined as
x¼ �hlnTi/L (refs 24,25), for a plane wave incident at some
angle from an external medium with eext into the multilayer. Here
the averaging denoted by oy4 is performed over a large
ensemble of realizations of the disorder, T is the transmission
through a specific realization and L is the overall thickness of the
structure. Our calculations are performed for L44x.

For conventional Anderson localization and for most of the
GHL regime, the localization length diverges as the square of the
wavelength, xBl2. However, for waves incident at an angle close
to yc, we find (Fig. 2a) that xB6l. The localization length
remains very short even for extreme subwavelength disorder. For
planewaves, incident at any yoyc, x eventually diverges for
asymptotically large wavelengths. So the angular bandwidth over
which localization plays a dominant role in transport does
diminish with increasing wavelengths. This raises an immediate
question regarding the feasibility of observing such effects
experimentally, for very large l, because any physical beam (a
wavepacket) has a non-zero angular bandwidth, unlike the ideal
plane wave considered here. This therefore presents a physical
limit preventing localization from being relevant to infinitely
large wavelengths (or, equivalently, to infinitely small disordered
features). However, as evident in Fig. 1c, such effects should be
physically meaningful even for dBl/1,000, far beyond what is
usually considered possible. The angular bandwidth with

dBl/1,000 is still sufficient to dictate the transmission of realistic
beams with finite width. These results suggest a new approach for
optical sensing of deep subwavelength structural features, enabled
by a completely different mechanism than previously suggested
super-resolution techniques.

To see the transition from ‘ordinary’ Anderson localization to
the GHL regime, we set l¼ 1mm and calculate x as a function of
y. We see in Fig. 2b that x decreases as y increases, indicating
stronger localization. In the range 0oyryL¼ 30� this decrease
is intuitive—larger angles of incidence imply larger Fresnel
reflection coefficients at each interface, and therefore stronger
scattering and shorter localization lengths.

The transition into the GHL regime, as shown in Fig. 2b,
is smooth. This is surprising since phase accumulates differently
for yo30� and 30�oyo60�. Beyond y¼ 30�, the wave alternates
between being evanescent and propagating. Accordingly, the
Fresnel reflection coefficients are complex with unity magnitude.
Phase in this case is accumulated by Fresnel reflections from the
interfaces between the layers, as well as regular propagation.
Moreover, the Fresnel transmission coefficients are actually larger
than unity (but power is preserved and the time-averaged
Poynting vector is constant26). However, no distinct kink or
sharp transition is seen in Fig. 2b around yL¼ 30�; rather,
x continues to drop monotonically until it reaches its minimum
value at yc¼ 60� at the exceedingly small value of x¼ 1.1 mm.
This is comparable to the shortest localization lengths found in
near-normal incidence for disordered multilayers with l/4
average layer thicknesses32, which are commonly believed to
yield the strongest localization lengths. In principle, we could
continue to even larger angles of incidence. However, for y4yc

we are at the EME regime and transmission drops exponentially
because of evanescence—even without disorder. In this case,
x ¼ � lnTh i

L describes the effect of both disorder-induced-
localization and EME. Usually, x also represents the typical
longitudinal length scale of the localized modes, but in the EME
regime we find that this is not necessarily true and separating the
roles of localization and evanescence can be a major challenge.

Analytical derivation of the localization length scaling.
To better understand the origin of these results, we investigate
the GHL regime analytically. The full proof is found in
Supplementary Note 4, while here we provide only the principal
arguments and insights they produce. Specifically, we focus on a
wave incident at y¼ yc, and show that x indeed is linear with the
wavelength, going as x � lffiffiffi

D
p , with D ¼ 1

2 eh� elð Þ, in accordance
with the numerical results in Fig. 2a and in Supplementary
Fig. 11.
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Figure 2 | Characteristics of localization by deep subwavelength disorder. (a) Localization length as a function of wavelength l for incidence at yc¼ 60�

and several other angles of incidence. As explained in the text, this plot is drawn for wavelengths, which are much larger than the layer thickness.

(b) Localization length as a function of y, the angle of incidence for l¼ 1mm.
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The approach we consider here utilizes the transfer matrix
formalism, which yields an exact solution of Maxwell’s equations
in 1D. From the transfer matrices, we find the average rate of
transmission decay using the Hamiltonian mapping method,
which maps the transfer matrix problem to a trajectory in the
Ey,Bx plane (the y and x components of the electric and magnetic
fields, respectively), as a function of the number of layers.
Alternative methods include transfer matrix theory33, Green
function-based approaches34 and mapping the problem to the
Fokker–Planck equation35,36. These alternative methods are very
rigorous and accurate, but are less suited to the case at hand than
the Hamiltonian mapping technique, which we use here, based on
the methods of ref. 37.

The first step we take is to consider the evolution of the system
under the influence of the unperturbed Hamiltonian, in which
disorder is absent. Away from the critical angle, the phase
accumulated per bilayer is g(l44d)Bkz,hd. However, at critical
incidence, y¼ yc, we show in Supplementary Note 4 that phase
accumulates much more slowly g l44dð Þ ¼ 1

2 kz;hd
� �2

. The
trajectory in the Ey,Bx plane at critical incidence maps into an
elliptical orbit, extremely narrow in the Bx axis. But in the l44d
limit, the amplitude of the disorder-induced fluctuations in Bx can
be much larger than the unperturbed Bx. Consequently, the naive
perturbation approach fails. Instead, we make the ansatz that in
the presence of disorder the amplitude Bx of the basic trajectory is
l/d larger than in the naive effective medium case. The intuition
for this ansatz comes from calculating the characteristic size of Bx

to the lowest order in l/d in the presence of minimal disorder.
Following this first stage, we include additional disorder as a
perturbation upon this new basic state. This ansatz is supported
by numerical calculations (see Supplementary Note 4). Using this
assumption, we find the average rate of change in the radius of
the Ey,Bx trajectories and deduce the scaling relation x � lffiffiffi

D
p .

Importantly, this derivation provides significant insight into the
origins of the unusual linear scaling relation—it shows that for
critical incidence, and only for critical incidence, the importance
of effective medium decays with increasing l much faster than the
importance of disorder-induced perturbations.

Another interesting insight gained from the analytical
description relates to the influence of structural correlations to
the strength of localization. It is well known that, for certain
types of disorder, unusual effects such as Fano resonances35 can
appear, but introducing correlations often destroys localization38.
However, some types of correlations lead to more severe
delocalization than others. In our case we find that severe
delocalization occurs if both layers have the same random
thickness (d2n¼ d2nþ 1). For this case, we show in Supplementary
Note 5 that the localization length scales exceedingly fast, as
xBj4. This relation is the same as in ref. 37, but the distinction
between correlated and uncorrelated disorder in our case
becomes quite astounding. ‘Switching on’ correlations, which
are correlations on the very deep subwavelength scale, can move
the localization length from xB5l in the uncorrelated case for l/
1,000 to an excessively long xB106l. This is further evidence of
the influence deep subwavelength features can have on transport
in this regime.

Characterizing Anderson localization. Before proceeding, it is
crucial to explicitly address the question of Anderson localization.
So far, we have demonstrated strong exponential decay in
transmission through a disordered multilayer, but did not
explicitly show that this decay stems from randomness and
disorder in the multilayer. In particular, the transmission decay
we have shown (Figs 1c and 2) could be interpreted as a direct
consequence of the evanescent decay occurring in half of the

layers in the structure, regardless of the disorder. It is therefore
essential to test whether our results are truly induced by disorder
and can be identified as Anderson localization.

We demonstrate that localization is induced by disorder in
three ways (see also additional the discussion in Supplementary
Note 2):

First, we find that in absence of disorder and for yoyc, we see
no exponential decay in transmission with increasing sample
thickness. In fact, full transmission can be obtained through a
periodic multilayer with an arbitrarily large number of layers.
Only when disorder is added, do we see the exponential decay in
transmission and all of the other effects we describe. Therefore,
disorder is essential for the decay in transmission we observe and
the other effects associated with it. Evanescence in the layers or
the vicinity of yc is not sufficient to induce localization.

Second, we examine the statistical distribution of transmission
in our regime and show it is a log-normal distribution
and also this distribution obeys single-parameter scaling (see
Supplementary Fig. 1). These are both well-known characteristics
of Anderson localization in 1D (refs 17,39,40).

Third, we show that the field distribution inside the layered
structure does not decay monotonically (as is the case for simple
evanescent decay). Instead, the field is a sum of fields in distinct
transmission modes, which are strongly localized even for
dBl/1,000, as shown in Supplementary Fig. 2. As expected for
Anderson localization, these modes have a Lorentzian frequency
dependence and are characterized by a length scale similar to x.

We can also better understand the transverse propagation
seen in Fig. 1c in this modal approach. The trapped energy is
energy-coupled in high-Q modes inside the sample. We find that
these trapped modes often exist and have surprisingly high-Q
factors, reaching a maximum of several times 104 (for the given
configuration parameters). Moreover, some high-Q mode is
almost always found in the vicinity of the critical angle and there
is, on average, a mode with Q-factor of B200 that can play a role
for beams incident at yc. Accordingly, these modes trap part of
the beam’s energy for a significant length, and it is relatively easy
to find realizations in which the beams travel for very extended
lengths inside the structure.

Enhanced transmission at incidence above the critical angle.
Next, we consider the EME regime in which waves are incident at
y4yc and transmission is expected to decay exponentially even in
a disorder-free system. As before, the modes of the system are
strongly localized with Lorentzian spectral lines. However, the
probability distribution of transmission (shown in Fig. 3 for
y¼ 62�4yc) differs slightly from a log-normal distribution and
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the width of the distribution is roughly half that expected
from the single-parameter scaling hypothesis. This indicates that
propagation is modified fundamentally by the coexistence of
localization and evanescence in this regime. It is intriguing to
compare the transmission in Fig. 3 with transmission through a
periodic (disorder-free) structure. For some realizations of
disorder, the transmission through the disordered structure is
lower than in the periodic one, but in most of the realizations,
adding disorder enhances the transmission dramatically.
Notably, in B4% of the realizations, transmission increases from
TB0.0005 in the periodic structure to T40.1 in the disordered
sample.

This finding contrasts with disorder-enhanced transport in
periodic41 or quasi-periodic structures11. In those studies, the
confinement that restricts the transmission results from the order
in the structure, and the enhancement of transmission is a result
of the disruption in the periodic structure. Unlike those cases,
the confinement mechanism here, evanescence, arises in the
effective medium description. It depends only on the averaged
permittivity, which does not change in the presence of disorder
and, in addition, occurs over a broad bandwidth. Therefore,
our results indicate that it is really localization that is
counterintuitively responsible for enhancing transmission. Our
findings are also related to the prediction of disorder-enhanced
quantum tunnelling42. However, the enhancement predicted by
ref. 42 and other works following ref. 42 is a mild effect, which is
not expected to raise the transmission to a significant level.
For example, in our case, it is similar to the increase seen in
Fig. 3 from log10 T¼ � 3.3 in the disorder-free structure to
hlog10 Ti¼ � 2.8, which, while higher, is still a very low
transmission. What we show here, on the other hand, is that
for some sample realizations, disorder-induced localization
elevates the system from being extremely reflective to
transmitting an appreciable part of the energy.

Localized modes in the EME regime. These results reflect
the interplay between evanescence and disorder (where by
evanescence we are referring here to EME). While both Anderson
localization and evanescence lead to the exponential decay
of average transmission, the mechanism for the decay is
fundamentally different. Namely, the evanescent field in a
uniform or periodic sample decays monotonically into the
sample. On the other hand, in disorder-induced localization,
the field profile is more complex, and the intensity inside
the structure can be much higher than at the input, especially
near resonance with localized modes. This leads to increased
transmission in some realizations. The profile of the localized

modes is illustrated in Fig. 4. This figure shows the energy-density
distribution in three high-transmission realizations of disorder
in the GHL and EME regimes. In the EME regime (Fig. 4b),
the modes are centred inside the structure, have a high Q-factor
and exhibit an overall exponential decay away from their peak,
with a length scale close to the exponential decay length in the
corresponding disorder-free periodic structure. In our deep
subwavelength structure, the role of these modes in enhancing
transmission is similar to localized modes in the bandgap of a
disordered photonic crystal.

A salient feature of the modes shown in Fig. 4b is that they
exhibit a single peak—they rise and fall without large oscillations
in intensity and at the same time are strongly localized with
Q-factors that can exceed 105, even in a sample only a few
wavelengths thick. This behaviour is very different from what is
typical in localized modes—these exhibit many oscillations (and
nodes), superimposed on top of an envelope, which decays
exponentially in a distance roughly equal to the localization
length. For example, compare Fig. 4b with Fig. 4a, for which the
angle of incidence is changed from y¼ 62�4yc (EME regime) to
y¼ 58�oyc (GHL regime) in a specific random realization of the
disorder. This slight change in y translates to a completely
different landscape of modes—unlike in Fig. 4b, the localized
functions in Fig. 4a possess multiple peaks and nodes and lower
Q-factors. In other words, the structure of the resonant
transmission modes in our deep subwavelength multilayer stack
in GHL and EME regimes differ dramatically. For yoyc the
modes behave like traditional Anderson localized modes, even
though in half of the layers the waves are evanescent. When y
approaches and exceeds yc, however, we start seeing localized
modes rise and fall without oscillations and have high Q-factors.

These unusual modes are in fact the first modes, that is, the
modes with the longest wavelength in the structure (noting the
discussion on modes in (Supplementary Note 2). Usually, such
first modes of a potential are extended modes with low Q-factors.
The fact that even the first modes in our structure are localized is
another consequence of the interplay between evanescence and
disorder. To show that these modes are indeed the first modes, we
consider the log10 I(z,l) (as in refs 32,43), in a specific (arbitrarily
chosen) realization, for incidence below and above the critical
angle. Consider first the GHL case (y¼ 58�oyc) shown in Fig. 5a.
Here we see a relatively orderly array of wide modes and node
lines (seen in Fig. 5a as thin bright curves). We denote the longest
transmission resonance wavelength as l and accordingly
designate the mode associated with it (at the bottom of Fig. 5a)
as the first mode. This is the wavelength above which disorder
plays a role—for wavelengths much longer than l, the field decays
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monotonically away from the interface, just as in the effective
medium model (for y4yc). The resonance wavelengths for the
sample simulated in Fig. 5a appear as dark horizontal lines,
denoted by l2,l3 and so forth. Going back to the case at hand, we
see that l1B5 mm—roughly equivalent to the sample size—and
thus that x(l1) is comparable to or is larger than the sample size.
Owing to the logarithmic representation of Fig. 5b, the lines of
minimum intensity are clearly visible. These lines, which we refer
to as node lines, extend upwards from every mode in Fig. 5. If we
follow the node line, which starts at the first mode, we see that
this line intersects the second mode of the structure at
l2B2.5 mm. This intersection is the location of the second
mode’s node. In a similar manner, the third mode is intersected
by two such node lines originating from the first and second
modes, and so forth. Eventually, for sufficiently short wave-
lengths, we do see spectrally narrow localized modes, but these
modes are of high order and intersect multiple node lines. This
behaviour, diffusive for long wavelengths and localized for short
wavelengths, is broadly characteristic of the crossover from
diffusive to localized waves. In our case, it characterizes the
wavelength dependence in most of the GHL regime, but changes
dramatically above yc.

Next, we compare the first modes in the GHL regime at
y¼ 58�oyc (Fig. 5a) to the first modes in the EME regime at
y¼ 62�4yc (Fig. 5b). The landscape of resonant modes and node

lines is visibly different in the EME regime. The modes in the
EME regime are now much sharper, indicating that larger
Q-factors are involved (since the integral of the intensity over
space and frequency is expected to be the same in all modes). In
particular, we see that the first mode is strongly localized (usually,
with a Q-factor larger than that of the second and third modes).
The crucial difference between Fig. 5a,b is the wavelength
scale—for instance, the first mode in Fig. 5b is associated with
l1B1mm, which is much shorter than the size of the multilayer.
Consequently, the mode associated with l is characterized by a
localization length also shorter than the multilayer size and is
strongly localized. Being the first mode, it does not intersect any
node lines, giving it the characteristic node-less shape seen in the
modes in Fig. 4b. We emphasize that, owing to the logarithmic
scaling, the node lines can be traced through the structure.
Therefore, the mode we designated as the ‘first’ is truly the longest
wavelength mode of the structure. The fact that the Anderson
localization is so strong that it ‘overrides’ evanescence is in itself
evidence of the potency of localization in this regime.

To demonstrate the generality of these results, we examine an
ensemble of realizations of the disorder at y¼ 58� and 62� for
structures of thickness L¼ 6, 9 and 12mm. The probability
distribution of l is plotted in Fig. 5c. For incidence at yoyc, the
ls are generally of the same order as L. The first mode in those
cases leaks out of the disordered sample easily and has relatively
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low Q-factors. In contrast, for y4yc the distribution of l is
centred at much shorter wavelengths and does not change
appreciably as L is increased. Accordingly, for these modes,
localization is of short range and we find Q-factors in the range of
B102–106 (compared with QB10–103 found for 58�). Moreover,
these Q-factors are also much higher than the QB100 often
reported in the literature for disordered multilayers32. For more
information, consider the Q-factor probability density plot in
Supplementary Fig. 13.

Discussion
In conclusion, we have examined the two unique regimes of
transport in which waves become sensitive to deep subwavelength
features in the structure because of the vital role of evanescence.
We showed transport is dominated by disorder in layers which
are dBl/1,000 in thickness, far thinner than what is usually
considered to be ‘deep subwavelength’. Moreover, localization in
this regime is unusually potent, occurring on a length scale of
xB6l and yielding significant Q-factors. This unique sensitivity
to extreme subwavelength details suggests a number of potential
applications, such as for spectral filtering or for sensing of
miniscule features. Most importantly, suitable targets may already
be found in the natural materials or biological samples44.
However, this work focuses on the fundamental aspects—
understanding the nature of wave transport in the presence of
evanescent waves and the similarities and differences borne to
conventional Anderson localization. Our results shed new light on
localization phenomena, on the fundamental process of evanescent
decay and on the interplay between these. Specifically, the
transmission of an evanescent wave can be enhanced by the
presence of subwavelength disorder and localized modes45,46. The
competition between evanescence and disorder also leads to the
formation of unique node-less localized modes. Finally, since
the mechanism for phase accumulation in such structures is
fundamentally different from the usual regime of localization, which
involves propagating waves only, we believe that the interplay
between evanescence and disorder will continue to generate
intriguing questions, surprising answers and rich new physics.

Data availability. The data that support the findings of this study
are available from the corresponding author upon request.
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