
1798 OPTICS LETTERS / Vol. 33, No. 16 / August 15, 2008
Multisoliton ejection from an amplifying
potential trap
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We study theoretically the dynamics of a beam launched inside an amplifying trap potential. Raising the
amplification transforms the dynamics from linear tunneling at low amplification to periodic ejection of a
sequence of identical solitons (when the amplification rate exceeds the tunneling rate) and, at strong am-
plification, to nonperiodic multisoliton ejection. © 2008 Optical Society of America
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Controlled emission of solitons from waveguides and
through potential barriers has been investigated
since the late 1980s [1,2]. The phenomenon was ob-
served years later, for a waveguide with asymmetric
nonlinear cladding [3] and for a quadratic nonlinear
waveguide with a phase-mismatched boundary [4].
Recent work [5] has suggested that matter-wave soli-
tons could be emitted from a potential trap via a lin-
ear tunneling process. The power that tunnels
through the potential barrier accumulates outside
the trap and forms a bright soliton. In a similar vein,
nonlinear transmission of matter-wave solitons
through linear and nonlinear inhomogeneities was
suggested [6]. These phenomena were recently ob-
served [7] with optical spatial solitons launched into
a trap potential embedded in a nonlinear medium. It
was shown [7] that the dynamics of a beam launched
into a potential trap changes dramatically as a func-
tion of the initial beam power, transforming from lin-
ear to soliton tunneling and eventually to soliton
ejection. The diversity of effects displayed by a wave
function in a potential trap embedded in a nonlinear
medium becomes even richer when gain is intro-
duced. In optics the combination of amplification and
nonlinearity, in conjunction with solitons, leads to
fascinating phenomena such as solitons in paramet-
ric oscillators [8], solitons in the complex Ginzburg–
Landau equation (CGLE) [9], “optical similaritons”
(self-similar pulses in amplifiers) [10], solitons in PT
periodic potentials [11], and more. Also, it was re-
cently predicted that solitons are emitted from an
amplifying layer on the surface of a periodic struc-
ture [12].

Here, we study the dynamics of a low-power beam
launched into an amplifying trap potential. At weak
amplification the beam tunnels linearly from the
trap. When the amplification rate exceeds the tunnel-
ing rate, a periodic sequence of identical solitons is
ejected from the trap. Finally, at strong amplification,
the multisoliton ejection process becomes nonperi-
odic. The system can be realized in photorefractive
materials, where the potential structure is induced
by light [7,13,14] and the amplification is achieved
via two-wave mixing.

The propagation of a paraxial monochromatic

beam launched into an amplifying potential trap em-
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bedded in a medium with saturable nonlinearity is
described by the �1+1�D NLSE [15]
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where z and x are the normalized coordinates, � is
the field envelope, IPOT is the intensity inducing the
trap potential (���2 and IPOT are normalized to the
background illumination), and g is a spatially depen-
dent gain coefficient. The gain is taken to be satu-
rable: g=g0�x� / �1+q ���2�, where g0�x� determines the
amplifying layer profile, g0�0� is the maximal gain,
and q determines the saturation strength. At low in-
tensity (when the dynamics is governed by linear ef-
fects), the gain can be Taylor expanded: for q ���2�1,
g�g0�x��1−q ���2�. Substituting g into Eq. (1) leads to
the CGLE with a saturable nonlinearity,
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In this limit power tunnels linearly through the bar-
rier. In the absence of amplification the field in the
trap decays exponentially [7], with a decay rate � in-
versely proportional to the tunneling distance Ztun
=1/�, �Ztun is equivalent to tunneling time of a par-
ticle in a trap). The power of the beam inside the trap
is P=�−L

L ���2dx, where 2L is the trap width [Fig. 1(a)].
P varies according to

�P

�z
= �

−L

L

g0�x����2dx − �
−L

L

����2dx − �
−L

L

qg0�x����4dx.

�3�

We use a Gaussian ansatz for the beam profile, �� �
=�0e−�x2/2�t

2�, where �0 and �t determine the beam
shape [dashed curve in Fig. 1(a)]. For concreteness,
we use a Gaussian profile for the amplifying layer:
g0�x�=g0�0�e−�x2/�G

2 �, where �G /�2 is the amplifying
layer width [dotted-dashed curve in Fig. 1(a)]. The
beam is amplified only when the rate of amplification

exceeds the tunneling loss. When gain and loss are
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balanced, the beam maintains its power and shape as
it propagates. The condition for such a balance is that
the rate of change of the beam power is zero, that is,
�P /�z=0. By choosing a narrow amplifying layer �L
�6�G�, and since most of the power of the beam is
contained inside the trap �L�3�t�, the condition for
the gain–loss balance is

gm
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2
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, �4�

where R=�t /�G is proportional to the ratio between
the widths of the beam and of the amplifying layer
and gm is the minimal gain 
g0�0�� needed for multi-
soliton ejection.

Numerical simulations of Eq. (1) corroborate these
predictions. A Gaussian beam is launched at the cen-
ter of the trap [solid curve in Fig. 1(a)], with the pa-
rameters q=1, �G=1.7, �t=4.2, �=0.0066 (deter-
mined by the profile of the external potential), and
�0=0.16, which yields gm=0.0184. When g0�0�=0 the
field of the beam decays exponentially inside the
trap, as shown in Fig. 1(b) for various barrier widths.
For a specific width raising, the gain slows the linear
decay owing to tunneling, as shown in Figs. 1(c) and
1(d) for gain levels of g0�0�=0 and g0�0�=0.95gm. The
beam in the trap in both figures decays exponentially,
although in Fig. 1(c) the decay rate is fast (no ampli-
fication), and in Fig. 1(d) it is much slower (amplifi-
cation below minimum gain for multisoliton ejection).
At the minimum gain for multisoliton ejection

g0�0�=gm�, the power loss owing to linear tunneling
is exactly balanced by the amplification. Hence, the
power in the trap does not change during propaga-
tion, although ejection does not occur [Fig. 2(a)].
When the gain is increased beyond the minimal gain
for multisoliton ejection, the amplification process
overcomes the losses and the power in the trap is am-

Fig. 1. (Color online) (a) Spatial profiles of the initial wave
function (dashed curve) launched into the potential trap,
the light inducing the trap potential (solid curve), and the
amplifying layer (dashed-dotted curve). (b) Peak amplitude
of the field (in logarithmic scale) versus propagation dis-
tance z for various barrier widths, without amplification.
(c), (d) Propagation of a beam launched at the trap center
(c) without amplification 
g0�0�=0�, and (d) with amplifica-
tion below the minimal gain for multisoliton ejection

g0�0�=0.95gm�. Other parameters are q=1, �G=1.7, �t
=4.2, �=0.0066, and �0=0.16, which yields gm=0.0184. The
dashed line marks the potential barrier. Both beams decay
exponentially owing to tunneling loss.
plified during propagation. Analyzing the beam dy-
namics by the effective-particle model for the motion
of x̄, the average position of the beam in the x direc-
tion [16], yields

d2x̄

�z2 = 2p−1�
−�

� dF

dx
���2dx, �5�

where p=�−�
� ���2dx is the soliton power and F repre-

sents the total refractive index (linear+nonlinear),
which does not depend on the amplification (because
the amplification, being symmetric in x, does
not affect the beam trajectory). Here,
F=−
1/ �1+IPOT+ ���2�� arising from the saturable
nonlinearity and it depends on the soliton profile and
on the potential. Equation (5) is written as
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where ��x� is the effective potential that the effective
particle feels [7]. Since the beam intensity is increas-
ing during propagation, the effective induced poten-
tial varies as well. As the beam intensity reaches the
ejection threshold [7] the beam overcomes the effec-
tive potential barrier and a soliton is ejected. The
propagation of a beam with an initial field amplitude
of �0=0.1�TH is shown in Figs. 2(b) and 2(c) for
g0�0�=1.5gm and 2gm, respectively. As we increase the
gain the intensity of the beam reaches the ejection
threshold faster and ejection occurs earlier. Figure
2(d) shows the effective potential for various beam in-
tensities. The effective potential determining the dy-
namics of the beams in Figs. 2(b) and 2(c) varies with
propagation [from the dashed curve, through the
solid curve, and to the dashed-dotted curve in Fig.
2(d)] until a soliton is ejected. The only difference be-
tween Figs. 2(b) and 2(c) is how soon the ejection pro-
cess occurs.

As the soliton is ejected from the trap, some power
is left behind and experiences amplification. When
the amplified intensity of this “leftover” beam
reaches the ejection threshold, another soliton (iden-
tical to the previous one) is ejected. The power re-

Fig. 2. (Color online) Soliton ejection through an amplify-
ing layer. (a) Propagation of a beam launched at the trap
center with (a) g0�0�=gm (amplification equal to minimal
gain for multisoliton ejection), (b) g0�0�=1.5gm, (c) g0�0�
=2gm. Other parameters in (a)–(c) are q=1, �G=1.7, �t
=4.2, �=0.0066, and �0=0.16, which yields gm=0.0184. (d)
Effective induced potential for various beam intensities. ��
is the difference between the maximum of the effective in-

duced potential and ��0�.
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maining in the trap is again amplified, until a third
soliton is ejected, etc. This process is fully periodic,
and an infinite number of identical solitons is ejected
from the trap [Figs. 3(a)–3(c); the latter showing
long-distance propagation]. It is obvious from Figs.
3(a) and 3(b) that the soliton is ejected as soon as ��,
the difference between the maximum of the effective
induced potential and ��0�, vanishes [�� was defined
in Fig. 2(d)]. This process is bounded from above by
soliton interactions. As g0�0� is increased, the dis-
tance between the ejected solitons, �, decreases [Fig.
3(e)]. When � is of the order of the soliton width, the
interactions among the solitons destroy the periodic-
ity of the process [Fig. 3(d)]. Figure 3(e) shows � ver-
sus gain (normalized to gm) for various barrier
widths. As the barrier width is increased, the ejection
threshold increases and, therefore, for a given g0�0��
is increasing with the barrier width.

To conclude, we proposed a controlled multisoliton
ejection process. The shape of the ejected solitons is
predetermined by the shape of the external (linear)
potential, and the distance between the solitons is de-

Fig. 3. (Color online) Periodic (a)–(c) and nonperiodic (d)
multisoliton ejection. (a) Propagation of a beam launched
at the trap center with (a) g0�0�=6gm, (b) g0�0�=15gm, and
normalized ��. (c) Long-distance propagation with g0�0�
=15gm. (d) Beam propagation for g0�0�=50gm. At gain lev-
els between minimal gain for multisoliton ejection and
g0�0��20gm the process is periodic, whereas at high gain
the process is nonperiodic. Other parameters in (a)–(d) are
q=1, �G=1.7, �t=4.2, �=0.0066, and �0=0.16, which yields
gm=0.0184. (e) Distance between the ejected solitons, �,
versus gain (normalized to the minimal gain for multisoli-
ton ejection, gm) for various barrier widths.
termined by the gain. These results were obtained
with nonlinear saturable gain. However, they occur
also with linear amplification, as long as the amplifi-
cation level is low enough for the beam to eject as a
soliton before its intensity increases too much and
the beam breaks up. The minimum gain needed for
multisoliton ejection can also be controlled through
“environment engineering” [17,18]. By designing the
coupling to the external potential to alter the tunnel-
ing rate, or to make it nonexponential, the minimum
gain for multisoliton ejection can be reduced. Thus,
we achieved a controlled process of multisoliton ejec-
tion from a potential trap. These ideas are general
and can be implemented in any kind of nonlinear me-
dia and with different types of amplification.
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