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Optimizing 3D multiphoton fluorescence microscopy
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We present a new optimization concept for 3D multiphoton fluorescence microscopy by finding the optimal
excitation beam giving rise to the smallest possible light-emitting volume or the highest possible signal to noise

ratio (SNR).
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Scanning multiphoton fluorescence microscopy (MFM)
is a powerful tool used for in-depth, high resolution
three-dimensional (3D) sectioning [1]. In life sciences,
current techniques allow a noninvasive, in vivo, laser
microscopy, without staining, with sub-wavelength 3D
resolution and millimeters penetration [1,2]. In addition,
MFM is also used for nondestructive inspection of
various products and specimens (see, e.g., [3,4]), rewrit-
able high density 3D optical storage [5,6], and 3D multi-
photon lithography [7]. In MFM, images are formed by
scanning samples point-by-point with a focused laser
beam (“pump”), giving rise to multiphoton absorption,
which populates a higher energy level from which light
fluorescence occurs. While two-photon excitation
microscopy is perhaps most commonly used [1,5-7],
the three-photon case is widely used as well [2—4]. In both
cases, higher frequency fluorescence induced by the la-
ser light is detected and collected to form a digital 3D
image. The basic advantages of these nonlinear tech-
niques over the linear techniques are associated with sin-
gle-photon absorption are two-fold: (1) the absence of
linear absorption allows much larger penetration depth
into the specimen. (2) MFM facilitates sectioning: one
can scan the specimen plane by plane. The reason is that
the multiphoton absorption coefficient depends on the
light intensity: when the laser beam has its minimum
width at some spot in a given plane—multiphoton fluo-
rescence at that individual spot are much stronger than
from anywhere else in the volume. Moreover, since sev-
eral photons combine to create a single photon, the ef-
fective excitation profile, and with it the fluorescent
region around that spot, are narrower than the intensity
profile of the laser beam. Yet, even so, the resolution of
the 3D image is always limited by the volume occupied by
laser spot size at its focus. Many attempts have been
made to find the smallest possible laser spot size. Most
of these used the paraxial approximation. Especially im-
portant was [8], optimizing the spot size of single photon
absorption. Of course, in MFM, multiphoton processes
have a smaller effective spot size, due to their depend-
ence on nonlinear intensity. Indeed, paraxial resolution
estimates for MFM were performed for Gaussian beams,
see, e.g., [9,10]. But the smallest spot size obtained in
modern microscopes is never limited by paraxiality.
Clearly, methodical optimization of a specifically engi-
neered beam (amplitude and phase) could yield a sub-
stantial additional reduction of the effective nonlinear
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spot size, and a reduction in the nonlinear volume under-
lying the 3D resolution of MFM.

Here, we introduce a new approach for optimizing
both the nonlinear effective 3D volume for MFM and
the signal to noise ratio (SNR). Our approach is based
on precise solutions of the Helmholtz equation (no para-
xial approximation), accounting for the nonlinear effects
of multiphoton absorption. The effective volume and the
total fluorescence noise are quantified by a tailored fig-
ure of merit (FOM) which naturally includes all the “out
of focus” signal contributions. By including these, the
advantage of the MFM technique is fully revealed. We
demonstrate this approach for two-photon and three-
photon microscopy, and test it for various values of
numerical aperture (NA). In all cases, we compare our
results to the best case Gaussian beam with the same
NA. We find a specific design of a single laser beam
undergoing multiphoton absorption, for which the SNR
is improved by 45%. Yet, the full strength of our algorithm
is illustrated when we find a specific beam that reduces
the on-axis secondary peaks by a factor of 200, which
increases the on-axis SNR by a factor of 70. Likewise,
for three-photon microscopy, our approach yields an
illumination volume 2.5 times smaller than the best
Gaussian beam of unity NA. Finally, we discuss the next
steps needed to make our new approach applicable for
the full EM problem described by the Maxwell equation.

Given an optical field F'(x, y, 2) obeying the Helmholtz
equation, we define the following family of FOMs
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The choice of f(x,y, 2) defines what parameter we wish
to optimize. For example, f'(x, ¥, 2) can be a 3D step func-
tion (“window”) in case we wish to optimize the overall
SNR. Alternatively, we can choose f = a2 + y* + 22 for
optimizing the size of the illumination volume, since this
FOM is the variance of the light intensity. In all of the
above, the FOM is calculated for the fluorescence light
emitted following n-photon excitation—this is why the
intensity is taken with a power of 2n. To find the optimal
beam, we minimize S under the constraint that E(x, y, 2)
satisfies the Helmholtz equation—which, assuming
sources relying on propagating (nonevanescent) waves,
amounts to requiring the Fourier transform of E'(x, y, 2)
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to reside on the surface of a sphere of radius k¥ = w/c in
k-space. For a single forward-propagating beam, the sol-
ution is confined (in k-space) to a half-sphere. Additional
constraints may be included depending on specific de-
sign. Importantly, a threshold exists at n > 2 (for n =
2 we suggest to take f = /(2® + y? + 2?) [11]). In what
follows, we demonstrate our method by presenting three
cases of optimization: of the total SNR, of the on-axis
SNR for n = 2, and of the illumination volume for n = 3.

In most cases, the optical NA is restricted to some
value. This is incorporated into our method by restricting
the field in Fourier space to reside within a certain spatial
angle which translates to a slice of the k-sphere. For
NA = 1 (assuming air as background material) the field
is restricted to the k-hemisphere in Fourier space. Hence,
we optimize the beam shape by starting from the conven-
ient initial choice of a half-sphere of equal distribution,
use the FOM [Eq. (1)] to quantify the S parameter, and
then find the optimal improvement iteratively through
a numerical procedure. To do that, we introduce a
new algorithm for the optimization of the spot size. This
numerical method combines a variational approach and
an infinite-dimensional gradient descent, which is never-
theless computationally easy. The procedure is demon-
strated in Fig. 1 for the simplest case of no additional
constraints. To explain the optimization procedure, first
note that any angularly symmetric beam can be de-
scribed by an integral expression for the electric field
(our initial choice corresponds to w = 1)

/2 X
E(r,z) = A w(ky)e’* cosko) J (kr sin(ky)) sin(k,)dk,.
©))

This defines the field for NA = 1 (in air); the only change
needed for a smaller NA is changing the z/2 into a
smaller angle. One can directly extend this into materials
with permittivity different than 1. Note that the expres-
sion in Eq. (2) is an exact solution of the (nonparaxial)
Helmholtz equation for any choice of the function w. For
the optimization procedure, we substitute Eq. (2) into
Eq. (1) and add an infinitesimally small variation in w,
expanding S to first-order in w. Finally, we define the op-
timal variation to be the one that has the strongest
gradient in S, i.e., decrease (increase) the spot volume
(the SNR) as much as possible. One can prove that this
happens when

Aw(ky) = /E|E|2n_2J0(k7‘ sin(k,))e~t= cos(ky)
x (f(r,2) — S)rdrdz. 3)

Here lies the strength of our algorithm: a single calcula-
tion of Eq. (3) is sufficient to update the entire field, add-
ing the best possible variation, even though this variation
is found in an infinite-dimension phase space. The algo-
rithm has three steps: (1) calculate the current parameter
S with the FOM defined in Eq. (1), (2) use it in Eq. (3) to
calculate Aw, and (3) update w by adding Aw multiplied
by a small number which sets the “step size,” and then
normalize the beam power. It is convenient to begin with
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Fig. 1. Demonstration of SNR optimizations for n = 2 and
NA = 1. (a) and (b) Amplitudes of the MFM spot of an optimal
Gaussian beam and the optimized beam found by our algorithm,
respectively. The beams are normalized to have the same “sig-
nal” strength, meaning that the numerator of Eq. (1) is the same.
Note that the side lobes of the optimized beam are smaller,
mainly along the z axis. The blue ellipses mark the edge of
the FOM window, with diameters of 2 x 1.5 wavelengths. The
maximum fluorescence intensity outside the window (marked
by dashed arrows) is reduced by 54%. The figures present the
normalized intensity, and the axes are measured in units of the
optical wavelength. The axes are z (vertical) and «
(horizontal). (c) Comparison between the on-axis MFM side
lobes of the optimal Gaussian beam (blue), the beam of equal
angular distribution (black), and our optimized solution (red).
The plots are normalized to have the same maximum peak am-
plitude. The maximum fluorescence intensity outside the win-
dow (marked by dashed arrows) is reduced by a factor of 200!

an initial uniform distribution (w =1 for all ky). The
condition for stopping the algorithm is not a zero gra-
dient, but a gradient which is approximately proportional
to the value of w in the same iteration. To gain some
intuition about the function we optimize, w, note that
it is related to the Fourier structure of the excitation
beam. One can design a setup where the spot plane
(2 =0) is in the focal plane of a high NA lens. The
required mask at the focal plane is azimuthally sym-
metric and only depends on the radius k, as
mask(k,) = w(arcsin(k, /k)/~/ (K* - k2).

Our first example is the optimization of the SNR in a
two-photon fluorescence process (n = 2) for NA =1,
and thus we aim to decrease the unwanted side-lobes.
We take the FOM to be an elliptic window of diameter 2 x
1.5 wavelengths, so that f equals 1 inside the window and
zero outside. This way, S measures the signal strength
(numerator) divided by the total fluorescence intensity
(denominator). The SNR equals S/(1 -S), and since S
is between 0 and 1, it turns out that maximizing S also



maximizes the SNR. Our optimization result is presented
in Figs. 1(a) and 1(b), showing an SNR improvement of
45%: from 4.49 in the best Gaussian case to 6.54 in the
optimized case. It is important to note that our initial con-
dition of equal distribution already achieves most of this
improvement, by having an SNR of 6.05.

Our second example optimizes the SNR in sectioning
microscopy. To do that, we change the FOM to include
only on-axis fluorescence light, so that we improve the
spot along the 2z axis by minimizing the on-axis secondary
peaks, which usually appear both before and after the
main peak. This is done by changing the integration of
Egq. (1) to be a 1D integral along 2z at » = 0, and choosing
f to be a window function with a width of two wave-
lengths centered around the highest peak (2 = 0). The
SNR is calculated as before. The result of this optimiza-
tion is presented in Fig. 1(c), demonstrating an improve-
ment of a factor of 70. In this example, the SNR for the
natural choice of a Gaussian beam is ~101, whereas the
best SNR found through our procedure is 7007. Of
course, a better fit of the window size can further im-
prove the results. Unlike the previous examples, here
the initial conditions of equal angular distribution in k-
space are far from optimum, having an SNR of only
293. This emphasizes that our procedure is successful
even when the initial conditions are far from the best
result. Consequently, while for some FOMs the perfor-
mances of the Gaussian beam can only be slightly im-
proved, other FOMs are significantly improved,
highlighting the fact that the beam of equal distribution
is not only suboptimal, but also sometimes very far from
optimum.

In our last example, the goal is to optimize the illumi-
nation volume for three-photon microscopy. Hence, we
take f = 22 + 4% + 22, which yields the illumination spot
volume to be smaller than the best Gaussian beam by a
factor of 2.3 (In nonparaxial optics the limit case of a
Gaussian with the thinnest waist is actually an Airy-disk
beam ([12,13].). Compare the volumes Fig. 2(a) (the
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Gaussian beam) and Fig. 2(b) (the optimal beam). As be-
fore, the initial condition for our algorithm is taken as a
uniform k-space distribution beam, which in this case is
already much better than the natural choice of a
Gaussian beam. In fact, the optimized illumination
volume is smaller by only 7%, with respect to the choice
of initial condition. For a smaller NA values, the improve-
ment (with respect to the initial choice) made by our
algorithm can go beyond 20%.

The algorithm is illustrated in Fig. 2(c), which displays
w as a function of k, for several iterations, for the results
presented in Figs. 1(a) and 1(b). It is easily seen that the
optimal k-space distribution is very different than the
initial choice of uniform distribution (red line). In par-
ticular, the field at steeper angles (close to the limit of
z/2 for NA = 1) should be stronger to achieve a smaller
spot. We find a similar trend favoring the steep angles
(for the field) for any value of NA, and for the other FOMs
above. Figure 2(d) shows the difference between the am-
plitudes of the optimal beam [Fig. 2(b)] and the beam of
uniform k-space distribution. The orange part around the
center emphasizes that the spot size is indeed smaller,
but this comes at the expense of increasing the adjacent
peaks on the z axis (yellow spots above and below the
center). This clarifies the physical limitation on the im-
provement in the spot size: there is a trade-off between
squeezing the main spot and increasing the side-lobes.
The result is of course much more impressive when com-
pared to Gaussian beams. Nevertheless, we choose to
compare the result to beams of uniform k-space distribu-
tion since it highlights the counterintuitive result: against
expectations, the beam of uniform k-space distribution
does not give the optimal spot size (or the optimal
SNR) for any value of NA in MFM (expect for a perfect
4Pi setup).

It is important to also discuss the limits of our method.
First, the procedure stops at the first local extremum and
while we conjecture this is also the global minimum—so
far we were not able to prove it. This emerges from the
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Fig. 2. Demonstration of the procedure for minimizing the illumination volume, for » = 3 and NA = 1. (a) and (b) Amplitudes of
the MFM spot of an optimal Gaussian beam and the optimized beam found by our algorithm, respectively. The beams are normalized
so that the numerator of Eq. (1) is the same. The two subfigures have the same color scale to emphasize that the optimized illumi-
nation spot is smaller and more intense. The volumes are calculated as S°/2 and measured in wavelengths. (c) Several iterations in
the optimization process, showing the angular k-space distribution w(k,) in subsequent steps in the algorithm (plotting every 2nd
step until the procedure converges). The initial distribution is uniform (red line), with later steps having a steeper curve around the
right boundary of z/2. (d) The difference between amplitude of the initial condition (uniform angular k-space distribution) and
amplitude of the optimal spot. Positive (bright) values are where the optimized beam has smaller amplitude, plotted in % of
the maximum amplitudes, and in the same length scales of the two left subfigures. This highlights pros and cons of the optimized
solution: the width of the optimized beam is narrower mostly along the z axis, but the peak intensity is slightly smaller and it contains

side-lobes.
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fact that our functional is not convex for any of our
FOMs. Second, we do not know whether the optimization
procedure is always stable. The evolution of w(ky)
around the desired extremum might strongly depend
on the exact initial conditions for some FOMs. To test
our procedure numerically, we add ~20% white noise
to the initial w, and find that, for the above mentioned
FOMs, the optimization still converges to similar results.
The noise is even slowly decreasing, emphasizing the
stability of the procedure. This does not promise stability
for other situations, yet the stability is not crucial for the
algorithm to converge to an improved beam, and might
even improve performances by dodging local extremum
points. For example, the factor of improvement for the
illumination spot minimization (Fig. 1) is increased from
2.3 to more than 2.5, although adding 20% noise only
makes the initial conditions worse, and the factor of im-
provement for the on-axis SNR is increased to 73 (final
SNR of 7430), although the SNR in the initial condition is
now 269 instead of 293. In other words, the performance
of our algorithm improves when the initial conditions in-
clude higher noise (this finding could possibly be related
to the phenomenon of stochastic resonance [14]). Most
importantly, having an unstable optimization procedure
does not reflect on the stability of the derived beam.
On the contrary, the dynamics of the light in MFM sys-
tems is always stable since the nonlinear fluorescence
light has a negligible effect on the fundamental harmonic
that has created it.

To make our algorithm applicable to the state-of-
the-art microscopy techniques, two important develop-
ments are still needed. First, a FOM that optimizes both
the illumination spot size and the SNR should be de-
signed. The simplest idea is to take a linear combination
of the variance (f = 2> + y* + 2%) and the inside-out win-
dow (1 - f). However, better designs might be possible.
This calls for further study with extensive numerical test-
ing. Second, our current algorithm handles only scalar
fields, i.e., solutions of the Helmholtz equation. One
should really optimize the vector field obeying Maxwell’s
equations: the field should be expressed via a 3D vector
w, and therefore S should be written as a function of w,
while also accounting for the tensor nature of the nonli-
nearity. Then, a variation approach should be used to ex-
tract the vector Aw and update w in each step. This way,
the optimization would be performed on a vector field
and the iterative algorithm would involve the whole vec-
tor being updated in parallel. While this adds some com-
puting steps, the efficiency of the optimization process is
of the same order.

Looking ahead, our method is general and is not lim-
ited to the parameter constraints of the present system: it
could be generalized to different types of nonlinear
processes, and be incorporated in leading experimental

techniques as the STED [15,16], or be used for optimiza-
tion of the family of abruptly autofocusing waves [17-19].
Moreover, the same approach would let us optimize
spatiotemporal fields. For example, optimization of
time-dependent EM fields, composed of several frequen-
cies, would be achieved by confining the k-space field to
a sphere of a width given by the frequency range. Finally,
utilizing the polarization of the EM field is known to sig-
nificantly improve the resolution of linear microscopy
[20,21]. Our optimization algorithm can be applied for
the full Maxwell equations in time and space, thus giving
the optimal space-time volume for MFM.
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