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T
he problem of phase retrieval, i.e., the recovery of a function given the magnitude of its 
Fourier transform, arises in various fields of science and engineering, including electron 
microscopy, crystallography, astronomy, and optical imaging. Exploring phase retrieval in 
optical settings, specifically when the light originates from a laser, is natural since optical 
detection devices [e.g., charge-coupled device (CCD) cameras, photosensitive films, and 

the human eye] cannot measure the phase of a light wave. This is because, generally, optical measure-
ment devices that rely on converting photons to electrons (current) do not allow for direct recording 
of the phase: the electromagnetic field oscillates at rates of ~1015  Hz, which no electronic measure-
ment device can follow. Indeed, optical measurement/detection systems measure the photon flux, 
which is proportional to the magnitude squared of the field, not the phase. Consequently, measuring 
the phase of optical waves (electromagnetic fields oscillating at 1015  Hz and higher) involves additional 
complexity, typically by requiring interference with another known field, in the process of holography. 

Interestingly, electromagnetic fields do have some other features that make them amenable for algo-
rithmic phase retrieval: their far field corresponds to the Fourier transform of their near field. More spe-
cifically, given a mask that superimposes an image on a quasi-monochromatic coherent field at some 
plane in space, the electromagnetic field distribution at a large enough distance from that plane is given 
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by the Fourier transform of the image multiplied by a known qua-
dratic phase factor. Thus, measuring the far field, magnitude, and 
phase would facilitate recovery of the optical image (the wave 
field). However, as noted before, the optical phase cannot be 
directly measured by an electronic detector. Here algorithmic 
phase retrieval comes into play, offering a means for recovering 
the phase given the measurement of the magnitude of the optical 
far field and some prior knowledge. 

This review article provides a contemporary overview of 
phase retrieval in optical imaging, linking the relevant optical 
physics to the signal processing methods and algorithms. Our 
goal is to describe the current state of the art in this area, iden-
tify challenges, and suggest future directions and areas where 
signal processing methods can have a large impact on optical 
imaging and on the world of imaging at large with applications 
in a variety of fields ranging from biology and chemistry to 
physics and engineering.

HISTORICAL BACKGROUND
Algorithmic phase retrieval offers an alternative means for recov-
ering the phase of optical images without requiring sophisticated 
measuring setups as in holography. These approaches typically 
rely on some advanced information to facilitate recovery. In 1952, 
Sayre envisioned, in the context of crystallography, that the phase 
information of a scattered wave may be recovered if the intensity 
pattern at and between the Bragg peaks of the diffracted wave is 
finely measured [1]. In crystallography, the material structure 
under study is usually periodic (a crystal); hence, the far-field 
information contains strong peaks reflecting the Fourier trans-
form of the usually periodic information. Measuring the fine fea-
tures in the Fourier transform enabled the recovery of the phase 
in some simple cases. In 1978, 26 years later, Fienup developed 
algorithms for retrieving phases of two-dimensional (2-D) images 
from their Fourier modulus and constraints such as nonnegativ-
ity and a known support of the image [2] (see Figure 1). 

In the early 1980s, the idea of phase retrieval created a flurry 
of follow-up work, partly because those times signified great hope 

for realizing an optical computer, of which phase retrieval was 
supposed to be a key ingredient. However, in the late 1980s and 
early 1990s, with the understanding that an optical computer is 
unrealistic, the interest in algorithmic phase retrieval diminished. 
Toward the end of the millennium, optical phase retrieval started 
to come back into contemporary optics research with the interest 
arising from a completely different direction: the community of 
researchers experimenting with X-ray imaging, where new X-ray 
sources (undulators and synchrotrons) were developed. The wide-
spread interest in this field was mainly generated by the first 
experimental recording and reconstruction of a continuous diffrac-
tion pattern (Fourier magnitude squared) of a noncrystalline (non-
periodic) test object by Miao et al. in 1999 [3]. 

The reasons for the revival of optical phase retrieval in 1999 
were actually quite subtle. One goal of optical imaging systems 
is to increase resolution, i.e., to image smaller and smaller fea-
tures. However, as proved by Abbe’s work in 1873, the highest 
attainable resolution in diffraction imaging (the so-called dif-
fraction limit) is comparable to the wavelength of the light. For 
visible light, this diffraction limit corresponds to fractions of 
microns. Consequently, features on the molecular scale cannot 
be viewed with visible light in a microscope. One could argue 
then, why not simply use electromagnetic waves of a much 
shorter wavelength, say, in the hard X-ray regime, where the 
wavelength is comparable to atomic resolution? The reason is 
that lens-like devices and other optical components in this spec-
tral region suffer from very large aberrations and are very diffi-
cult to make because refractive indices of materials in this 
wavelength regime are close to one. On the other hand, algo-
rithmic phase retrieval is of course not limited by the quality of 
lenses; however, it requires very low noise detectors. 

An additional problem is that as resolution is improved (i.e., as 
voxel elements in the recovered image are smaller in size), the 
number of photons per unit area must obviously increase to pro-
vide a reasonable signal-to-noise ratio (SNR). This means that the 
required exposure time to obtain a given signal level must 
increase as ( / ) ,d1 4  with d  being the resolution length, assumed 

(a) (b) (c)

[FIG1] A numerical 2-D phase-retrieval example adapted from Fienup’s 1978 paper [2]: (a) test object, (b) Fourier magnitude, and  
(c) reconstruction results [using hybrid input-output (HIO)—see Figure 3(b) for details]. (Images used with permission from [2].)
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to be larger than atomic scales [4]. This, in turn, creates another 
problem: X-ray photons are highly energetic. The atomic cross sec-
tion for photoabsorption is usually much higher than for elastic 
scattering, meaning that for every photon that contributes to the 
diffraction pattern (the measured Fourier magnitude), a consider-
able greater number of photons are absorbed by the sample. This 
energy dissipates in the sample first by photoionization and the 
breakage of chemical bonds, followed by a cascade of collisional 
ionization by free electrons and, at longer timescales, a destruction 
of the sample due to radiolysis, heating, or even ablation of the 
sample. Such radiation damage hinders the ability to recover the 
structure of molecules: the measured far-field intensity (Fourier 
magnitude) would reflect the structural damages, rather than pro-
viding information about the true molecular structure. 

A solution to this problem was suggested by Solem and Chap-
line in the 1980s. They proposed to record images with pulses that 
are shorter than the timescale for the X-ray damage to occur. They 
predicted that picosecond pulses would be required to image at 
nanometer-length scales [5]. Toward the late 1980s, with the 
growing promise in constructing X-ray lasers that generate ultra-
short pulses on the femtosecond scale, it was suggested that such 
pulses could even outrun damage processes at atomic length 
scales [6]. However, forming a direct image in this way would still 
require high-quality optical components (lenses and mirrors) in 
the X-ray regime, which do not currently exist. This is because 
creating lenses for the hard X-ray wavelength regime requires fab-
rication at picometer resolution, much smaller even than the 
Bohr radius of atoms. Likewise, while mirrors for X-rays do exist, 
their best resolution is on the scale of many nanometers, much 
larger than the features one would want to resolve in the imaging 
of molecules, for example. 

The difficulties outlined earlier in direct X-ray imaging leave no 
choice but to use alternative methods to recover the structure of 
nanometric samples. Here is where phase retrieval can make its 
highest impact. Placing an area detector far enough from the sam-
ple to record the far-field diffraction intensity (which is approxi-
mately proportional to the squared magnitude of the Fourier 
transform of the image if the coherence length of the X-ray wave is 
larger than the sample size [7], [145]), together with appropriate 
constraints on the support of the sample, enable the recovery of the 
image at nanometric resolution. Indeed, the phase information has 
been shown numerically and experimentally to be retrieved in this 
fashion in various examples [2], [8]–[12]. 

The combination of X-ray diffraction, oversampling, and phase 
retrieval has launched the currently very active field called coherent 
diffractive imaging (CDI) [3]. In CDI, an object is illuminated with a 
coherent wave and the far-field diffraction intensity pattern (corre-
sponding to the Fourier magnitude of the object) is measured. The 
problem then is to recover the object from the measured far-field 
intensity (see “ Coherent Diffractive Imaging” and Figure S1). Since 
its first experimental demonstration, CDI has been applied to image 
a wide range of samples using synchrotron radiation [13]–[15], 
X-ray free-electron lasers (XFELs) [16], [17], high harmonic genera-
tion [18]–[20], soft X-ray laser [21], optical laser [22], and electrons 
[23], [24]. Recent reviews on the development and implementation 

of phase-retrieval algorithms for the specific application of CDI were 
written by Marchesini [9], Thibault and Elser [25], and Nugent [26]. 
Presently, one of the most challenging problems in CDI is three-
dimensional (3-D) structural determination of large protein mole-
cules [6]. There has been ongoing progress toward this goal over the 
past decade; see, e.g., [16], [17], [27], and [28]. 

Another research field where phase retrieval plays an important 
role is astronomy, where the objects are usually distant stars, 
which are optically incoherent sources. In such cases of incoherent 
waves, the phase is stochastic; hence, the optical signal is the 

COHERENT DIFFRACTIVE IMAGING
In the basic CDI setup (forward scattering), an object is 
illuminated by a quasi-monochromatic coherent wave 
and the diffracted intensity is measured (Figure S1). 
When the object is small and the intensity is measured far 
away, the measured intensity is proportional to the mag-
nitude of the Fourier transform of the wave at the object 
plane with appropriate spatial scaling. 

In optics terms, when the Fresnel number is small 
( ( / ) ,N a d 1F

2 11m=  where a  is a radius confining the 
object in the object plane, d  is the distance between the 
object and the measured intensity plane, and m  is the wave-
length of the light), the relationship between the measured 
intensity Iout  and the wave at the object plane Ein  is given 
by [37] 

( , ) ( , )I x y E d
x

d
y 2

out in?
m m

t

with { }E EFin in=t  and F  denoting the Fourier trans-
form. Once the far-field intensity is measured, the goal 
is to recover Ein  (which is equivalent to recovering the 
object) from .Iout  This requires solving the phase-
retrieval problem, which is attempted using an algo-
rithm such as the ones described in this article.

Far-Field Diffraction Intensity

Object

Coherent

Wave

[FIGS1] A forward-scattering CDI setup: a coherent wave 
diffracts from an object (the sought information) and 
produces a far-field intensity pattern corresponding to 
the magnitude of the Fourier transform of the object.
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intensity of the light (amplitude of 
the complex field squared). This has 
important implications on algorith-
mic phase retrieval in terms of the 
assumptions that can be made on the 
signal (e.g., nonnegativity). One appli-
cation of phase retrieval in astronom-
ical measurements is for adaptive 
optics-based aberration correction, 
caused either by atmospheric turbu-
lence or by imperfections in the opti-
cal imaging system [29]–[31]. Phase retrieval is also used in 
speckle interferometry [32], [33], a method to obtain information 
and later images [34], [35] beyond the diffraction limit of the (tele-
scopic or alike) imaging system. As phase retrieval plays a major 
role in astronomy, there exist several detailed reviews from this 
perspective [31], [33], [36]. 

From a theoretical and algorithmic point of view, phase 
retrieval is a difficult problem, in many cases lacking a unique 
solution. Furthermore, even with the existence of a unique solu-
tion, there is not necessarily a guarantee that it can be found algo-
rithmically. Nevertheless, as reasoned earlier, phase-retrieval 
algorithms and applications have benefited from a surge of 
research in recent years, in large part due to various new imaging 
techniques in optics. This trend has begun impacting the signal 
processing community as well—the past few years have witnessed 
growing interest within this community in developing new 
approaches to phase retrieval by using the tools of modern optimi-
zation theory [38], [39]. More recent work has begun exploring 
connections between phase retrieval and structure-based informa-
tion processing [40]–[45]. For example, it has been shown that, by 
exploiting the sparsity of many optical images, one can develop 
powerful phase-retrieval methods that allow for increased resolu-
tion considerably beyond Abbe’s diffraction limit, resolving fea-
tures smaller than one-fifth of the wavelength [45]. The 
relationship between the fields of sparsity and optical imaging has 
led to an important generalization of the basic principles of spar-
sity-based reconstruction to nonlinear measurement systems [41], 
[44], [46]–[53]. Here too, optics played an important role in signal 
processing: since the phase-retrieval problem is inherently nonlin-
ear (i.e., the signal is related to the measurements nonlinearly), 
employing sparsity-based concepts in phase retrieval required 
modifications to the linear sparsity-based algorithms known from 
the field of compressed sensing [54]. We believe that this field will 
grow steadily in the next few years, with rapid development of 
coherent X-ray sources worldwide [55], [56] and more researchers 
contributing to the theory, algorithms, and practice of nonlinear 
sparse recovery. 

MATHEMATICAL FORMULATION

PROBLEM FORMULATION
Consider the discretized one-dimensional (1-D) real-space distri-
bution function of an object: x CN!  (extension of the formula-
tion to higher dimensions is straightforward). In CDI, for 

example, this corresponds to the 
transmittance function of the object. 
The fact that x  is generally complex 
corresponds physically to the fact 
that the electromagnetic field ema-
nating from different points on the 
object has not only magnitude but 
also phase (as is always the case, for 
example, when 3-D objects are illu-
minated and light is reflected from 
points at different planes). The 1-D 

discrete Fourier transform (DFT) of x  is given by 

 [ ] [ ] , , , , .X k x n e k N0 1 1
n

N
j N

kn

0

1
2 f= = -r

=

-
-/  (1)

The term oversampled DFT used in this article will refer to an M  
point DFT of x CN!  with M N2  
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The recovery of x  from measurement of X  can be achieved  
by simply applying the inverse-DFT operator. Writing [ ]X k =  
| [ ] | ,X k e· [ ]j kz  the Fourier phase-retrieval problem is to recover x  
when only the magnitude of X  is measured, i.e., to recover [ ]x n  
given [ ] .X k  Since the DFT operator is bijective, this is equivalent 
to recovering the phase of [ ],X k  i.e., [ ]kz —hence the term phase 
retrieval. Denote by xt  the vector x  after padding with N 1-  zeros. 
The autocorrelation sequence of xt  is then defined as 

 [ ] , ( ), , .g m x x m N N1 1
{ , }max

i
i m

N

i m
1 1

f= =- - -
= +

-t t/  (3)

It is well known that the DFT of [ ],g m  denoted by [ ],G k  satisfies 
[ ] [ ] .G k X k 2=  Thus, the problem of recovering a signal from 

its Fourier magnitude is equivalent to recovering a signal from its 
autocorrelation sequence. 

Continuous phase retrieval can be defined similarly to its dis-
crete counterpart as the recovery of a 1-D signal ( )f x  from its con-
tinuous Fourier magnitude

 .| ( ) | | ( ) ( ) |expF f x j x dx2
R

o ry= -#

Many objects of interest, such as electromagnetic fields, are 
usually described by continuous functions. However, since the 
data acquisition is digitized (by CCD cameras and alike), and 
the processing is done digitally, we mostly treat the discrete 
case here. 

The Fourier phase-retrieval problem is as a special case of the more 
general phase-retrieval problem, where we are given measurements 

 | , | , , , ,y k M1a xk k
2 fG H= =  (4)

with ak  denoting the measurement vectors. In discrete 1-D Fou-
rier phase retrieval, the measurement vectors correspond to 

.[ ]n ea ( )/kn M
k

j2= r-  For mathematical analysis, it is often easier to 
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treat the case where the measurements are random (i.e., ak  are 
random vectors), as this allows uniqueness guarantees that are 
otherwise hard to obtain [38], [50], [57]–[59]. Nevertheless, more 
structured measurements have also been investigated [60]. 

Before proceeding to the mathematical methodology, it is 
important to highlight the significance of knowing the Fourier 
phase. In fact, it is well known that knowledge of the Fourier phase 
is crucial in recovering an object from its Fourier transform [61]. 
Many times the Fourier phase contains more information than the 
Fourier magnitude, as can be seen in the synthetic example shown 
in Figure 2. The figure shows the result of the following numerical 
experiment: two images (that of a cameraman and a woman named 
Lenna) are Fourier transformed. The phases of their transforms are 
swapped and, subsequently, they are inverse Fourier transformed. 
It is evident, for this quite arbitrary example, that the Fourier phase 
contains a significant amount of information about the images. In 
crystallography, this phenomenon is the source of genuine concern 
of phase bias of molecular models (such as those used in molecular 
replacement) in refined structures. 

In the remainder of this section, we discuss uniqueness of the 
phase-retrieval problem, i.e., under what conditions the solution 
to the phase problem is unique. It is worth noting that, while the 
discussion of theoretical uniqueness guarantees is important and 
interesting, the lack of such guarantees does not prevent practi-
cal applications from producing excellent reconstruction results 
in many settings. 

UNIQUENESS 

FOURIER MEASUREMENTS
The recovery of a signal from its Fourier magnitude alone, in general, 
does not yield a unique solution. This section will review the main 
existing theoretical results regarding phase-retrieval uniqueness. 

First, there are so-called trivial ambiguities that are always 
present. The following three transformations (or any combination 
of them) conserve Fourier magnitude: 

1) global phase shift: [ ] [ ] ·x n x n e j 0& z

2) conjugate inversion: [ ] [ ]x n x n& -

3) spatial shift: .[ ] [ ]x n x n n0& +  
Second, there are nontrivial ambiguities, the situation of 

which varies for different problem-dimensions. In the 1-D setting, 
there is no uniqueness—i.e., there are multiple 1-D signals with 
the same Fourier magnitude. Even if the support of the signal is 
bounded within a known range, uniqueness does not exist [62]. 
Any pair of 1-D signals having the same autocorrelation function 
yields the same Fourier magnitude, as the two are connected by a 
Fourier transform. Consider, for example, the two vectors 

[ ]1 0 2 0 2u T= - -  and .[( ) ( )]1 3 0 1 0 1 3v T= - +  Both of 
these vectors have the same support and yield the same autocorre-
lation function .[ ] [ , , , , , , , , ]g m 2 0 2 0 9 0 2 0 2= - -  Therefore, 
they are indistinguishable by their Fourier magnitude, even 
though they are not trivially equivalent. 

For higher dimensions (2-D and above), Bruck and Sodin [63], 
Hayes [64], and Bates [65] have shown that, with the exception of a 
set of signals of measure zero, a real d 2$  dimensional signal with 
support [ ],N NN d1f=  i.e., , ,[ ]x n n 0d1 f =  whenever n 0k 1  
or n Nk k$  for , ,k d1 f=  is uniquely specified by the magnitude 
of its continuous Fourier transform, up to the trivial ambiguities 
mentioned earlier. Furthermore, the magnitude of the oversam-
pled M  point DFT sequence of the signal, with 2 1M N$ -  
(where the inequality holds in every dimension), is sufficient to 
guarantee uniqueness. The problematic set of signals that are not 
uniquely defined by their Fourier magnitudes are those having a 
reducible Z transform: denoting the d-dimensional Z  transform of 
x  by ( , , ) , , ,[ ]xX z z n n z z

n nd d
n

d
n

1 1 1
d

d1f g f g= - -

1
/ /  ( )X z  

is said to be reducible if it can be written as ( ) ( ) ( ),X X Xz z z1 2=  
where ( )X z1  and ( )X z2  are both polynomials in z  with degree 

.p 02  It is important to note that, in practice, for typical images, 
a number of samples smaller than 2 1N -  is many times sufficient 
(even 2M N/1 D$  can work, where D is the dimension [66]); how-
ever, the exact guarantees relating the number of samples to the 
type of images remains an open question. 

Magnitude

Magnitude

Phase

Phase

–1
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[FIG2] The importance of Fourier phase. Two images, a cameraman and Lenna, are Fourier transformed. After swapping their phases, 
they are inverse Fourier transformed. The result clearly demonstrates the importance of phase information for image recovery.
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Additional prior information about the signal, other than its 
support, can be incorporated and will naturally improve the condi-
tioning of the problem. For example, knowledge of the Fourier 
phase sign (i.e., a single bit of phase information) has been shown 
[67] to yield uniqueness with some restrictions on the signal (spe-
cifically that the signal is real and its Z transform has no zeros on 
the unit circle). A different, popular, type of prior knowledge that 
has been used recently in various applications [54], [68] is that the 
signal x CN!  is sparse—i.e., contains only a small number k  of 
nonzero elements, with .k N%  The exact locations and values of 
the nonzero elements are not known a priori. In this case, it has 
been shown [69] that knowledge of the full autocorrelation 
sequence of a 1-D k-sparse real signal x  is sufficient to uniquely 
define x  as long as k 6!  and the autocorrelation sequence is colli-
sion free. A vector x  is said to have a  collision-free autocorrelation 
sequence if  ,[ ] [ [ ] [ ]]x i x j x k x l!- -  for all  distinct 
, , , { , }i j k l N1 f!  that are the locations of distinct nonzero 

values in .x  In addition, under these conditions, only M  Fourier 
magnitude measurements are sufficient to uniquely define the 
autocorrelation sequence and, therefore, the signal ,x  as long as 
M  is prime and M k k 12$ - +  [70]. An interesting perspective 
relating phase retrieval to the Turnpike problem, for example, 
reconstructing a set of integers from their pairwise distances, is 
presented in [71]. Using this approach, the authors prove 
uniqueness with high probability for random signals having a 
nonperiodic support. 

GENERAL MEASUREMENTS
Considering inner products with general non-Fourier (typically ran-
dom) measurement vectors allows simpler derivation of theoretical 
guarantees. There have been several theoretical results relating the 
number and the nature of the measurements that are required for 
uniqueness, mostly dealing with random measurement vectors. The 
work of Balan [40] implies that, for real signals in ,RN  N2 1-  ran-
dom measurements are needed, provided that they are full spark, i.e., 
that every subset of N  measurement vectors spans RN  [43]. This 
result was later extended to the complex case [43], where it is conjec-
tured that N4 4-  generic measurements, as defined in [43], are suf-
ficient for bijectivity. In terms of stability, i.e., when the 
measurements are noisy, it is shown in [50] that on the order of 

( )logN N  measurements [or ( )logk N  measurements in the  

k-sparse case] are sufficient for stable uniqueness. Furthermore, 
minimizing the (nonconvex) least-squares objective: | |yi2-/   

, | | ,a xi
p2G H  with ,p1 21 #  yields the correct solution under 

these conditions [50]. For the noiseless case, any k-sparse vector in 
RN  has been shown to be uniquely determined by k4 1-  random 
Gaussian intensity measurements with high probability [70]. 

To study the injectivity of general (i.e., not necessarily random) 
measurements, the complement property was introduced in [40] 
for the real case. An extension was presented in [43] for the com-
plex setting. A set of measurement vectors { }ai i

M
1=  with a Ri

N!  
satisfies the complement property if for every { , , },S M1 f3  
either { }ai i S!  or { }ai i SC!  span .RN  It has been shown in [40] that 
the mapping constructed by | , | , , ,y i N1a xi i fG H= =  is injec-
tive if and only if the measurement set satisfies the complement 
property. This poses a lower limit on the number of necessary 
measurements .M N2 12 -  

The results reviewed in this section are summarized in Table 1. 
In addition, there is a large amount of work on phase-retrieval 
uniqueness under different conditions, e.g., when the phase is 
known only approximately [72] or from redundant masked Fou-
rier measurements [42], [73]. 

ALGORITHMS
Despite the uniqueness guarantees, no known general solution 
method exists to actually find the unknown signal from its Fourier 
magnitude given the other constraints. Over the years,  several 
approaches have been suggested for solving the phase-retrieval 
problem, with the popular ones being alternating projection 
 algorithms [2], [74], [75]. In addition, to help regularize the phase-
retrieval problem, different imaging techniques were suggested that 
yield better behaved imaging models. For example, using exposures 
with different masks (e.g., the phase diversity method for aberration 
correction by adaptive optics [29], and also more recently [73]), or 
obtaining images at different propagation planes [31], [76], [77]. 
Another method to obtain additional information is scanning CDI 
(also termed ptychography) [78]–[80], which uses several different 
illumination patterns to obtain coherent diffraction images. Using 
such a modified imaging setup is then followed by applying an 
appropriate algorithm, performing the phase retrieval. 

There are many existing approaches for phase retrieval. In 
this section, we focus on common general algorithms (see the 

[TABLE 1] pHASE RETRIEVAL—UNIqUENESS.

Fourier  
meAsurement

1-D no uniqueness [62]

≥ 2D uniqueness For reAl nonreDuCiBle signAls. requires oversAmpling By ≈2 [64]

k-spArse 1-D uniqueness For signAl with Collision-Free AutoCorrelAtion, (AnD K ≠ 6) [69]  
M  Fourier mAgnituDe meAsurements Are suFFiCient, For A prime M k k 12$ - +  [70] 

generAl  
meAsurements

reAl signAl RN sAtisFying the Complement property is neCessAry AnD suFFiCient. 2N-1 Full-spArk rAnDom 
meAsurements guArAntee uniqueness with high proBABility [40]

reAl signAl RN

(noisy)
n log ( )N  meAsurements(or k  log ( )N  meAsurements in the k-spArse CAse) Are suFFiCient  
For stABle uniqueness [50]

Complex signAl CN ConjeCture: 4N−4 generiC meAsurements Are suFFiCient [43]
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“General Algorithms” section) and sparsity-based methods, i.e., 
techniques exploiting prior knowledge in the form of signal 
sparsity (see the “Sparsity-Based Algorithms” section). We also 
discuss the transport-of-intensity equation (TIE) [81]–[83], 
which considers the recovery of an object’s phase from several 
defocused intensity images. 

GENERAL ALGORITHMS
The general phase-retrieval problem we wish to solve can be for-
mulated as the following least squares problem or empirical risk 
minimization: 

 ( | , | ) ,min y a x
k

M

k k
1

2 2
x

G H-
=

/  (5)

with y  being the measurements and ak  being the measurement 
vectors defined in (4). In general, we can replace the square in the 
objective by any power .p  Unfortunately, this is a nonconvex prob-
lem, and it is not clear how to find a global minimum even if one 
exists. In this section, we describe several approaches that have 
been suggested to deal with this problem and types of prior infor-
mation that can be incorporated into these methods to increase 
the probability of convergence to the true solution. 

ALTERNATING PROJECTIONS
The most popular class of phase-retrieval methods is based on alter-
nate projections. These methods were pioneered by the work of Ger-
chberg and Saxton (GS) [74], dealing with the closely related problem 
of recovering a complex image from magnitude measurements at two 
different planes—the real (imaging) plane and Fourier (diffraction) 
plane. The original GS algorithm consists of iteratively imposing the 
real- and Fourier-plane constraints, such as the measured real-space 
magnitude [ ] ,x n  and Fourier magnitude | [ ] | ,X k  as illustrated in 
Figure 3(a). The GS iterations are described in Algorithm 1. The 
recovery error, defined as [ ] [ ] ,E Z k X k

ki i
2

= -/  is easily 

shown to be monotonically nonincreasing with i  [75]. Despite this 
fact, recovery to the true solution is not guaranteed, as the algorithm 
can converge to a local minimum. 

Extending the GS projection ideas further, in 1978 Fienup [2] 
suggested a modified version, in which the real-space magnitude 
constraints are replaced by other types of constraints, in addition 
to consistency with the measured Fourier magnitude. The 
 real-space constraints may be, e.g., nonnegativity, a known signal 
support, i.e., [ ]x i 0=  for all ,i N02  where N0  is known (or 
approximately known), or both. The basic framework of the Fie-
nup methods is similar to GS—in fact, the first three steps are 
identical. Step 4, however, replaces imposing the real-space mag-
nitude constraint by applying a correction to the real-space 

Algorithm 1: The GS algorithm.

Input: | [ ] | , | [ ] | ,x n X k e

| [ ] |x n -Real-space magnitude 
| [ ] |X k -Fourier magnitude 
e-Error threshold 
Output: [ ]z n - a vector that conforms with both magnitude con-
straints, i.e., : | [ ] | | [ ] | ,z n x n=  and | [ ] | | [ ] | ,Z k X k=  where 
[ ]Z k  is the DFT of [ ]z n

Initialization: Choose initial [ ] | [ ] | ( [ ])expz n x n n0 z=  (e.g., with 
a random [ ])nz  
General Step: ( , , ):i 1 2 f=  

1) Fourier transform [ ]z ni  to obtain [ ]Z ki
2) Keep current Fourier phase, but impose Fourier magni-
tude constraint: [ ] | [ ] | · [ ] / [ ] .Z k X k Z k Z ki i i=l

3) Inverse Fourier transform [ ]Z kil  to obtain [ ]z nil
4) Keep current real-space phase, but impose real-space  
magnitude constraint: [ ] | [ ] | · [ ] / [ ]z n x n z n z ni i i1 =+ l l

5) Go to 1
Until [ ] [ ]E Z k X k

ki i
2
# e= -/

zi [n] Zi [k ]

zi +1[n ] = |x [n ]| ⋅
zi  [n]′

|zi  [n]|′

zi  [n]′ Zi [k ]
Zi  [k ]  = |X [k ]| ⋅′

|Zi [k ]|
–1

Impose
Real-Space
Magnitude
Constraint

Impose
Fourier

Magnitude
Constraint

zi [n] Zi [k ]

zi  [n]′
Zi [k ]

Zi  [k ]  = |X [k ]| ⋅′
|Zi [k ]|

–1

Apply
Real-Space
Correction

Impose
Fourier

Magnitude
Constraint

zi +1[n ] =
βzi  [n]′

zi  [n]′

zi [n] –

n ∉γ

n ∈γ

(a) (b)

[FIG3] The block diagrams of (a) the GS algorithm and (b) the Fienup HIO algorithm. The algorithms differ in their fourth (colored) step.
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estimate. Some possible variants to this step were also suggested 
[75]. Here, we describe the one most commonly used, referred to 
as the hybrid input-output (HIO) method, which consists of the 
following correction step: 

4) Obtain [ ]z ni 1+  by applying a correction to the real-space 
image estimate: 

 [ ]
[ ],
[ ] [ ], ,

z n
z n
z n z n

n
ni

i

i i
1

"

!b

c

c
=

-
+

l

l
)  (6)

with b  being a small parameter and c  being the set of indices for 
which [ ]z nil  violates the real-space constraints.

The real-space constraint violation may be a support violation 
(e.g., a signal is nonzero where it should be zero) or a nonnegativ-
ity violation. 

The Fienup algorithm is represented schematically in 
Figure 3(b). There is no proof that the HIO algorithm converges. 
It is also known to be sensitive to the accuracy of the prior infor-
mation (e.g., the real-space support needs to be tightly known, 
especially in the complex signal case [84]). Nonetheless, in prac-
tice, the simple HIO-based techniques are commonly used in opti-
cal phase-retrieval applications such as CDI [85], [86]. Other 
variants of the correction step include the input–output method, 
and the output–output method [75], corresponding respectively to 
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An important feature of the HIO algorithm is its empirical 
ability to avoid local minima and converge to a global minimum 
for noise-free oversampled diffraction patterns. However, when 
there is high noise present in the diffraction intensity, HIO suf-
fers from several limitations. First, the algorithm sometimes 
becomes stagnant and fails to converge to a global minimum. 
Second, a support has to be predefined. Third, the image 
 oscillates as a function of the iteration. Over the years, various 
algorithms have been developed to overcome these limitations, 
including the combination of HIO and the error-reduction (ER) 
algorithm [75], difference map [8], hybrid projection reflection 
[10], guided HIO (GHIO) [87], relaxed averaged alternating 
reflectors (RAAR) [11], noise robust (NR)-HIO [88], and oversam-
pling smoothness (OSS) [12]. 

As an example, the recently proposed OSS algorithm exhibits 
improved performance over HIO and its variants in many set-
tings. OSS is based on Fienup iterations with an added smooth-
ing Gaussian filter applied to the off-support region in the 
real-space object in each iteration. The fourth step in HIO is 
replaced by 
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[ ] [ ], ,
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z n
z n z n
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=
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where [ ]W k  is a Gaussian function with its variance decreasing 
with iterations. A quantitative comparison for a specific example 
between OSS and HIO can be found in the section “Quantitative 
Comparison of Alternating-Projection Algorithms.” For a compari-
son and numerical investigation of several alternate projection 
algorithms, see, e.g., [9] and [12]. 

The performance of Fienup methods is dependent on the ini-
tial points. Therefore, it is possible and recommended to try sev-
eral initializations. In [58], the authors consider a clever method 
for initial point selection and show that for the random Gaussian 
measurement case, the resulting iterations yield a solution arbi-
trarily close to the true vector. 

Analyses of iterative phase-retrieval algorithms from a con-
vex optimization perspective can be found in [10] and [89]–[93]. 
In [91], the authors study the ER algorithm by viewing it as an 
iterated projections algorithm onto nonconvex sets. In [10] and 
[92], it is shown that the HIO method can be interpreted within 
different optimization frameworks depending on the constraints 
enforced. For example, given a support constraint, HIO coin-
cides with the Douglas–Rachford algorithm for 1b =  [94], 
[95]. In [10], it is shown that under the same constraint, in the 
more general case of ,1!b  HIO can be formulated in terms of 
projections and reflections. This representation, however, no 
longer holds when nonnegativity restrictions are added. 

SEMIDEFINITE PROGRAMMING ALGORITHMS
An alternative recently developed to solve the phase-retrieval prob-
lem is based on semidefinite relaxation [39], [46], [57], [96]. The 
method relies on the observation that (4) describes a set of qua-
dratic equations that can be rewritten as linear equations in a 
higher dimension. Specifically, define the N N#  matrix 

.X xx= *  The measurements (4) are then linear in X  

 | , | ( ),y Tra x x a a x x A x A X*
k k k k k k

2G H= = = =* *  (8)

where .A a ak k k= *  Our problem is then to find a matrix X xx= *  
that satisfies (8). The constraint X xx= *  is equivalent to the 
requirement that X  has rank 1, and is positive semidefinite, which 
we denote by .0X *  Therefore, finding a vector x  satisfying (4) 
can be formulated as 

 
( ), , , ,

( ) .
,

y k M1

1
0

find
s.t. Tr

rank

X
A X

X
X

k k f

*

= =

=

 

(9)

Equation (9) is equivalent to the following rank minimization 
problem: 

 ( ), , , ,
.

min
y k M1

0
s.t.

rank( )
Tr
X

A X
X
k k f

*

= =  
(10)

Unfortunately, rank minimization is a hard combinatorial prob-
lem. However, since the constraints in (10) are convex (in fact lin-
ear), one might try to relax the minimum rank objective, for 
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example, by replacing it with minimization of .( )Tr X  This 
approach is referred to as PhaseLift [39]. Alternatively, one may 
use the log-det reweighted rank minimization heuristic sug-
gested in [97], which is the approach followed in [38] and [46]. In 
[38], it is shown that PhaseLift yields the true vector x  with large 
probability when the measurements are random Gaussian and 

.~ ( )logM O N N  
An interesting approach is taken in [57], where x  is sepa-

rated into an amplitude component and a phase component, 
and only the phase is optimized. This approach yields several 
variations of existing methods, notably PhaseCut [57], which is a 
relaxation of the MaxCut algorithm [98] obtained by dropping 
the rank constraint. 

The semidefinite programming (SDP) approach requires matrix 
lifting, i.e., replacing the sought vector with a higher-dimensional 
matrix, followed by solving a high-dimensional problem. It is, 
therefore, in principle, more computationally demanding than the 
alternating projection approaches, or greedy methods, which will 
be discussed in the section “Greedy Methods with Sparsity Prior.” 
In addition, in general, there is no guarantee that the rank minimi-
zation process will yield a rank-1 matrix or that the true solution 
will be found even if there is a unique solution.

TRANSPORT OF INTENSITY 
The TIE approach is a method that solves the known propagation 
equation of the electromagnetic field to recover the phase at some 
plane ,z0  from several intensity measurements in the vicinity of 
that plane. Specifically, in the case of light propagation under the 
paraxial approximation (i.e., only small angles from the optical 
axis are considered, implying that the light field varies slowly on 
the scale of the optical wavelength), the TIE is 

 ,z
I I I2 ·
2
2 d d

m
r z zD=- -  (11)

where ( , , )I x y z0  is the intensity distribution in plane ,z0  m  is 
the wavelength of a monochromatic field, ( , )x yd 2 2=  is the 
transverse gradient, x y

2 2 2d 2 2D = = +  is the 2-D Laplacian, and 
( , , )x y z0z  is the phase to be recovered. Recovering z  amounts 

to solving the partial differential equation (11). This can be 
achieved by first numerically estimating the derivative on the 
left-hand side of (11) using the measured intensity at two (or 
more) planes, e.g., ( )I z0  and ( ),I z dz0+  for a small .dz  Then, 
after plugging in ( )I z0  into the right-hand side of (11), a variety 
of methods can be applied to solve for z  using appropriate 

SpARSE LINEAR pROBLEMS 
Finding sparse solutions to sets of equations is a topic that 
has drawn much attention in recent years [54], [68], [105], 
[106]. Consider the linear system 

 y Ax=  (S1)

with y  being a set of M  linear measurements, A  being an 
M N#  measurement matrix, and x  being the unknown 
length—N  vector. When the system is underdetermined (i.e., 
M N1 ), there are infinitely many possible solutions x .  
A key result of the theory of sparse recovery is that adding 
the constraint that x  is sparse, i.e., contains only a few 
nonzero entries guarantees a unique solution to (S1), under 
general conditions on .A  One such condition is based on 
the coherence of A  [107] 

 ,x 2
1 1 1

0 # n
+c m  (S2)

with x 0  being the number of nonzero entries in ,x  and 
the coherence defined by

 
,

.max
·A A

A A
,i j i j

i j1 2
n =  (S3)

Here, we denote by Ai  the ith  column of ,A  and by Ai  
its Euclidean norm. 

Under (S2), one can find the unique solution to (S1) by solving 

 .min s.t.x y Ax0x
=  (S4)

Unfortunately, (S4) is an NP-hard combinatorial problem. How-
ever, many methods have been developed to approximately 

solve (S4). One class of such methods consists of greedy algo-
rithms such as orthogonal matching pursuit [108]. Another 
popular method is based on convex relaxation of the l0  norm 
to an l1  norm [109], which yields the convex problem 

 .min s.t.x y Ax1x
=  (S5)

In fact, under the condition (S2), it has been shown [107] 
that the solution to (S5) is equal to that of (S4). 

Another important criterion to evaluate the recovery ability 
in sparse linear problems of the form (S1) is the restricted isom-
etry property (RIP) [110] of A . For an M N#  matrix A  (with 
M N1 ), define the restricted isometry constant kd  as the 
smallest value such that for every submatrix Ak  composed of k  
columns of A  

 ( ) ( ) , .1 1x A x x x Rk k k
k

2
2

2
2

2
2 6# # !d d- +  (S6)

The RIP is therefore a measure of whether A  preserves the 
energy of any k-sparse signal—which is the case if kd  is small. 
In the context of sparse recovery, it is used to prove uniqueness 
and noise-robustness results. For example, if A  is such that 

,2 1k2 1d -  then solving (S5) will yield the unique sparse 
solution to (S1). In practice, it is combinatorially difficult to cal-
culate the RIP of a given matrix. However, certain random 
matrices can be shown to have good RIP with high probability. 
For example, an M N#  independent and identically distrib-
uted Gaussian matrix obeys the k-RIP with high probability, for 

~ ( ( / ))logM O k N k  [105]. This is one of the reasons that ran-
dom matrices are favorable for sparse sensing.
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boundary conditions and further assumptions (a common one 
is that I  is constant in , ,x y  so that I 0d =  inside some bound-
ary) [81]–[83], [99], [100]. 

The TIE approach requires acquisition of several images at 
different (and close) planes. It is relatively simple to implement 
when applicable and can produce phase measurements when the 
coherence of the light is not sufficient for interferometric mea-
surements [101]. However, the necessity of multiple closely 
spaced imaging planes can naturally pose a limitation on possible 
applications, such as applications requiring a fast acquisition 
time or a high SNR. This is because multiple imaging planes 
require the use of beamsplitters, which leads to signal loss. Some 
tradeoffs between different parameters in the TIE approach, e.g., 
the amount of defocus ( )dz  versus recovery accuracy, are dis-
cussed in [102]. 

SPARSITY-BASED ALGORITHMS
A specific kind of prior knowledge that can be incorporated into the 
phase-retrieval problem to help regularize it is the fact that the sought 
real-space object is sparse in some known representation (see “Sparse 
Linear Problems”). This means that the object x  can be written as 

 x aW=  (12)

with W  being a representation matrix (the sparsity basis), and a  
being a sparse vector, i.e., a vector containing a small number of 
nonzero coefficients. The simplest example is when the object is 
composed of a small number of point sources, in which case W  is 
the identity matrix. Equipped with such prior knowledge, one can 
hope to improve the performance of phase-retrieval algorithms 
by limiting the search for the true vector to the set of sparse vec-
tors. There are several different ways that sparsity can be incorpo-
rated, which are described in this section.

ALTERNATING PROJECTIONS WITH SPARSITY PRIOR
The Fienup algorithm described in the section “Alternating Pro-
jections” allows, in principle, for the incorporation of various types 
of general knowledge about the object, including sparsity [41], 
[103]. Sparsity was shown to be a useful prior in phase-retrieval 
algorithms already in 2004 [104] in the iterative charge-flipping 
algorithm, although it was not exploited directly (the electron 
density in [104] is assumed to have extended regions of zeros). 
More explicitly, the method in [103], for example, is based on the 
Fienup iterations, with the first three steps remaining unchanged. 

Step 4 is replaced by projection and thresholding. Assuming an 
invertible W  and a k-sparse vector a  such that :x aW=

4) Obtain [ ]z ni 1+  by projecting [ ]z nil  onto ,W  thresholding, 
and projecting back. 

•	 Calculate .zi i
1a W= - l

•	 Keep only the k  largest elements of | | ,ia  setting the 
rest to zero. 
•	 Set .zi i1 aW=+

Similar to the GS iterations, the error here can be shown to be 
nonincreasing so that convergence to a local minimum is guaran-
teed [103]. 

Note, that while this method is suggested in [103] for an 
orthonormal basis ,W  it can be easily modified to accommodate a 
noninvertible .W  This can be done by replacing the first two 
parts with finding a sparse solution ai  to ,zi iaW=  using any 
sparse solution approach [54]. 

SDP-BASED METHODS WITH SPARSITY PRIOR
SDP methods can also be modified to account for prior knowledge 
of signal sparsity. The incorporation of sparsity may be performed 
in several different ways. The first work to suggest sparsity-based 
SDP phase retrieval came from the domain of optics and dealt 
with partially spatially incoherent illumination [46]. This work 
actually considered a theoretical problem of greater complexity, 
combining phase retrieval with subwavelength imaging. Experi-
mental results on subwavelength CDI can be found in [45], where 
the sought signal is an optical image with subwavelength features, 
and the measured data correspond to the Fourier magnitude sam-
pled by a camera at the focal plane of a microscope lens. 

The method suggested in [46], dubbed quadratic compressed 
sensing (QCS), is based on adding sparsity constraints to the rank 
minimization problem (10). When x  is sparse, the result of the 
outer product X xx= *  is a sparse matrix as well, as shown in 
Figure 4. Therefore, one strategy might be to minimize the l1  
norm of the matrix .X  Alternatively, it is possible to further exploit 
the structure of X  by noticing that the number of rows in X  with 
a nonzero norm is equal to the number of nonzero values in .x  
This means that the sparsity of x  also implies a small number of 
nonzero rows in .X  Consider the vector p  containing the l2  norm 
of the rows of ,X  i.e., p X

( / )

kj jk
2 1 2

= ` j/  (note that the l2  norm 
can be replaced by any other norm). Since p  should be sparse, one 
might try to impose a low l1  norm on ,p  in the spirit of l1  
 minimization for the sparse linear problem. This yields the con-
straint ,p Xp

j kjj jk1
2

# h= =
( / )1 2c m/ //  corresponding 

exactly to a low mixed l1 2-  norm constraint on X  [111]. The 
problem to solve, as cast in [46], is therefore 
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,

min
y k M

X

1
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s.t.
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Tr
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*

h
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c m//  (13)

where e  is a noise parameter and h  is a sparsity parameter, 
enforcing row sparsity of .X  [FIG4] The sparse vector outer product yields a sparse matrix.
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Since finding a rank-1 matrix X  satisfying the constraints is 
NP hard, the solution to (13) is approximated in [46] using the 
iterative log-det heuristic proposed in [97], with an additional 
thresholding step added at each iteration, to further induce signal 
sparsity. Once a low-rank matrix Xt  that is consistent with the 
measurements and the sparse prior is found, the sought vector x  
is estimated by taking the best rank-1 approximation of Xt  using 
the singular value decomposition: Decomposing Xt  into 

,X USU*=t  the rank-1 approximation of Xt  is taken as 
,SX U U *

1 11 1 1=t  where S11  represents the largest singular value, 
and U1  is the corresponding column of .U  

Similar ideas that add sparse priors to SDP methods have 
been later suggested in [47], [57], and [112]. In [47], the rank mini-
mization objective is relaxed to a convex trace minimization, with 
an additional l1  regularization term to induce sparsity. This for-
mulation yields 

 
( )

| ) | , , , ,
.

min
y k M1

0
s.t.

Tr
Tr(

X X
A X

X
k k

1

f#

*

m

e

+

- =  
(14)

The solution of (14) is shown [47] to be unique in the noiseless case 
( ,)0e =  under the following condition: ( / ) ( ( / )),1 2 1 1X 0 # n+r  
where ,X xx= )r r r  with xr  being the true solution to (4). The mutual 
coherence n  is defined by ( , ) / ( ),max B BB B,i j i j i j1 2n =  
with B  being the matrix satisfying ,y BXS=  where XS  is the vec-
tor obtained from stacking the columns of .X  The same work also 
relates other recovery guarantees to the RIP criterion. 

In [59] it is shown that for ai  that are independent, zero-mean 
normal vectors, on the order of logk n2  measurements are sufficient 
to recover a k-sparse input from measurements of the form (4), 
using SDP relaxation. In [112], an algorithm is suggested to solve the 
sparse 1-D Fourier phase-retrieval problem based on a two-step pro-
cess, with each step cast separately as an SDP problem: first, the sup-
port of x  is determined from its autocorrelation sequence, and then 
x  is found, given the support. This approach is shown experimentally 
to recover k-sparse signals from ( )O k2  measurements. 

GREEDY METHODS WITH SPARSITY PRIOR
Since matrix-lifting algorithms involve a dimension increase, they 
are not ideally suited for large vectors, where the computational 
cost can become significant. In addition, they are generally not 
guaranteed to converge to a correct solution. An alternative is to 
use sparsity-based greedy methods [48], [51], [113]. One approach 
that is both fast and accurate is greedy sparse phase retrieval 
(GESPAR) [51]. GESPAR attempts to solve the least squares sparse 
quadratic problem (5). That is, it seeks a k-sparse vector x consis-
tent with the quadratic measurements .y  It is a fast, local search 
method, based on iteratively updating the signal support, seeking a 
vector that corresponds to the measurements under the current 
support constraint. A local search method is repeatedly invoked, 
beginning with an initial random support set. Then, at each itera-
tion, a swap is performed between a support and an off-support 
index. Only two elements are changed in the swap (one in the sup-
port and one in the off-support), following the so-called two-opt 

method [114]. Given the support of the signal, the phase-retrieval 
problem is then treated as a nonconvex optimization problem, 
approximated using the damped Gauss Newton method [115]. See 
Algorithm 2 for a general description. 

GESPAR has been shown to yield fast and accurate recovery 
results (see “Sparse Phase-Retrieval Algorithms—A Comparison” 
and  Figure S2) and has been used in several phase-retrieval optics 
applications, including CDI of 1-D objects [116], efficient CDI of 
sparsely temporally varying objects [52], and phase retrieval via 
waveguide arrays [53]. A similar approach has been applied to treat 
the combined phase-retrieval and subwavelength imaging prob-
lem [45] (see the section “Subwavelength CDI Using Sparsity”). 

AppLICATIONS IN LENSLESS IMAGING 
In this section, we present several CDI applications with connec-
tion to the phase-retrieval algorithms described previously. The 

Algorithm 2: GESPAR—Main steps.

Input: , , ,y ITERAi i x . 

, , , ,i M1 2A Ri
N N f! =# - symmetric matrices.

, , , , .y i M1 2Ri f! =

x-threshold parameter. 

ITER - Maximum allowed total number of swaps. 

Output: x-an optimal (or suboptimal) solution of (5). 

Initialization: Set , .T j0 0= =  
1) Generate a random index set (| | )S S s0 0 =

2) Invoke the damped Gauss–Newton method with support 
S0  and obtain an output .z0  Set ,x U zS0 00=  where 
U RS

N s
0 !

#  is the matrix consisting of the columns of the 
identity matrix IN  corresponding to the index set S0

General Step: ( , , ):j 1 2 f=  
3) Update support: Let p  be the index from S j 1-  correspond-
ing to the component of x j 1-  with the smallest absolute value. 
Let q  be the index from S j

c
1-  corresponding to the compo-

nent of ( )f x j 1d -  with the highest absolute value, where ( )f xd  
is the gradient of the least-squares objective function from (5), 
i.e., ( ) ( ) .f y4x x A x A x*

i i i id = -/  Increase T  by 1, and make 
a swap between the indices p  and ,q  i.e., set Su  to be

 .( \ { }) { }S S p qj 1 ,= -
u

4) Minimize with given support: Invoke the damped Gauss–
Newton method [115] with input Su  and obtain an output .zu  
Set ,x U zS=u u  where U RS

N s! #  is the matrix consisting of 
the columns of the identity matrix IN  corresponding to the 
index set .S  If ( ) ( ),f fx x j 11 -u  then set , ,S S x xk k= =u u  and 
go to Step 3. If none of the swaps resulted with a better objec-
tive function value, go to Step 1. 

Until ( )f x 1 x  or .T ITER2  
The output is the solution x  that yields the minimum value for 
the least-squares objective.



 IEEE SIGNAL PROCESSING MAGAZINE [98] MAY 2015

SpARSE pHASE-RETRIEVAL ALGORITHMS—A COMpARISON 
We simulate sparse-Fienup [103] and GESPAR [51] for vari-
ous values of [ , , ],N 64 2 048!  and .M N2=  The recovery 
probability versus sparsity k  for different vector lengths is 
shown in Figure S2(a) and (b). In both cases, the recovery 
probability increases with ,N  while GESPAR clearly outper-
forms the alternating iteration method. 

We then simulate the recovery success rate of three sparsity-
based phase-retrieval algorithms. We choose x  as a 

random vector of length .N 64=  The vector contains uniformly 
distributed values in the range [ , ] [ , ]4 3 3 4,- -  in k  randomly 
chosen elements. The M 128=  point DFT of the signal is calcu-
lated, and its magnitude-square is taken as ,y  the vector of mea-
surements. To recover the unknown vector ,x  three methods are 
used: a greedy method (GESPAR [51]), an SDP-based method 
[112, Algorithm 2], and an iterative Fienup algorithm with a 
sparsity constraint [103]. The sparse-Fienup algorithm is run using 
100  random initial points, out of which the chosen solution is 
the one that best matches the measurements. xt  is selected as 
the s -sparse output of the sparse-Fienup algorithm with the 
minimal cost ( ) (| | )xf yF x

i i
N 2 2

1
= -

=
i/  out of the 100 runs. The 

probability of successful recovery is plotted in Figure 6(c) for dif-
ferent sparsity levels .k  The success probability is defined as the 
ratio of correctly recovered signals x  out of 100 simulations. In 
each simulation, both the support and the signal values are ran-
domly selected. The three algorithms (GESPAR, SDP, and sparse-
Fienup) are compared. The results clearly show that GESPAR 
outperforms the other methods in terms of probability of suc-
cessful recovery—more than 90% successful recovery up to 

,k 15=  versus k 8=  and k 7=  in the other two techniques. For 
more extensive comparisons, we refer the reader to [51]. 

A major advantage of greedy methods over other techniques 
(e.g., SDP based) is their low computational cost; GESPAR may be 
used to find a sparse solution to the 2-D Fourier phase retrieval—
or phase retrieval of images. Figure S3 shows a recovery example 
of a sparse 195 195# -pixel image comprised of s 15=  circles at 
random locations and random values on a grid containing 225 
points, recovered from its 38,025 2-D Fourier magnitude measure-
ments using GESPAR. The dictionary used in this example contains 
225 elements consisting of nonoverlapping circles located on a 
15 15# -point Cartesian grid, each with a 13-pixel diameter. The solu-
tion took 80 s. Solving the same problem using the sparse-Fienup 
algorithm did not yield a successful reconstruction, and using the 
SDP method is not practical because of the large matrix size.

2,048
1,536
1,024

768
512
384
256
192
128

96

64

N
 (

Lo
g 

S
ca

le
)

1

0.8

0.6

0.4

0.2

0
10 20 30 40

k
50 60 70

(a)

2,048
1,536
1,024

768
512
384
256
192
128

96

64

N
 (

Lo
g 

S
ca

le
)

1

0.8

0.6

0.4

0.2

0
10 20 30 40

k
(b)

50 60 70 80

0 5 10
k

15 20 25

(c)

R
ec

ov
er

y 
P

ro
ba

bi
lit

y

1

0.8

0.6

0.4

0.2

0

Sparse-Fienup SDP GESPAR

0 5 10 155555 2020222022202222200 25252252255225

0
–5
–10
–15
–20
–25

1

0.5

–0.5

–1

0

1

0.5

0

–0.5

–1
20 40 60 80 100 120 140 160 180 200 220

Index
(c)

V
al

ue

True
Recovered

(a) (b)

[FIGS2] A comparison of sparsity-based phase-retrieval 
algorithms. (a) The sparse-Fienup recovery probability versus 
sparsity ,k  for various signal length ,N  and with .M N2=   
(b) GESpAR recovery probability versus sparsity k  for various 
signal length ,N  and with .M N2=  (c) The recovery 
probability for three algorithms: sparse-Fienup, SDp, and 
GESpAR for N 64=  and M 128=  [51].

[FIGS3] A 2-D Fourier phase-retrieval example. (a) A true 
195 195#  sparse circle image (s 15=  circles). (b) The measured 
2-D Fourier magnitude (38,025 measurements, log scale). (c) The 
true and recovered coefficient vectors corresponding to circle 
amplitudes at each of the 225 grid points [51].
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concept of phase retrieval in optical 
imaging arises from the attempt to 
recover images from experimental 
measurements. To this end, it is 
essential to emphasize that, com-
pared to numerical simulations or 
signal processing of digital data, 
phase retrieval of experimentally 
obtained patterns has several addi-
tional challenges. First, the far-field 
intensity distribution (Fourier magnitude) is corrupted by various 
types of noise, such as Poisson noise, detector readout noise, and 
unwanted parasitic scattering from the optics components in the 
system. Second, in single-shot experiments, the measured far-field 
intensity distribution is usually incomplete, including a missing 
center (i.e., the very low spatial frequency information cannot be 
directly recorded by a detector) [85]. Third, when the far-field 
intensity distribution is measured by a detector, each pixel inte-
grates the total number of photons within the solid angle sub-
tended by the pixel, which is not exactly equivalent to uniform 
sampling of the diffraction signal [117]. Additionally, many experi-
ments are carried out using incoherent (but bright) sources. Spa-
tial optical coherence [to distinguish from the term coherence in 
signal processing, as defined by (S3)] is achieved by propagating a 
long distance from the source, but often the experiment is con-
strained to be carried out with a partially incoherent beam [118]. 

All of these issues add complications to algorithmic phase 
retrieval. However, notwithstanding these challenges, successful 

phase retrieval of experimental data 
in optical imaging has been widely 
achieved [3], [13], [16], [17], [23], 
[28], [80], [119], [120]. Next we show 
several examples. 

QUANTITATIVE COMPARISON 
OF ALTERNATING-PROJECTION 
ALGORITHMS 
Quantitative comparisons between 

the OSS, HIO, ER-HIO, and NR-HIO algorithms have been per-
formed using both simulated and experimental data [12]. Figure 5 
shows a noise-free oversampled diffraction pattern (Fourier mag-
nitude squared) calculated from a simulated biological vesicle 
[Figure 5(c)]. High Poisson noise was then added to the diffraction 
intensity [Figure 5(b)].  Figure 5(d)–(g) shows the final reconstruc-
tions by HIO, ER-HIO, NR-HIO, and OSS, respectively. Visually, 
OSS produced the most faithful reconstruction among the four 
algorithms [see the insets of  Figure 5(d)–(g)]. The recovery error 
was quantified using consistency with the measurements 

 | [ ] [ ] | / | [ ] | ,E z n z n z n
n

r m
n

m= -/ /  (15)

where [ ]z nr  is the final reconstruction and [ ]z nm  is the model 
structure. The value for E  of the HIO, ER-HIO, NR-HIO, and OSS 
reconstructions is 0.28, 0.24, 0.16, and 0.07, respectively. 

Next, the four algorithms were compared using an experimen-
tal diffraction pattern measured from a Schizosaccharomyces 

Model

(a) (b) (c)

NR-HIO OSS

(f) (g)

HIO ER-HIO

(d) (e)

[FIG5] A quantitative comparison between the HIO, ER-HIO, NR-HIO, and OSS algorithms. (a) A noise-free oversampled diffraction 
pattern calculated from simulated biological vesicle. (b) The high poisson noise added to the oversampled diffraction pattern. (c) The 
structure model of the biological vesicle and its fine features (inset). (b) The final reconstruction of the noisy diffraction pattern in (b) 
by (d) HIO, (e) ER-HIO, (f) NR-HIO, and (g) OSS [12].
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pombe (S. pombe) yeast spore cell [12]. The experiment was con-
ducted on an undulator beamline at a third-generation synchro-
tron radiation facility (Spring-8) in Japan. A coherent wave of  
5 keV X-rays was incident on a fixed, unstained S. pombe yeast 
spore. An oversampled X-ray diffraction pattern was acquired by a 
CCD detector. Figure 6(a) shows the experimental diffraction pat-
tern in which the centrosquare represents the missing low spatial 
resolution data [86]. By using a loose support, phase retrieval was 
performed on the measured data with the HIO, ER-HIO, NR-HIO, 
and OSS algorithms. For each algorithm, five independent trials 
were conducted, each consisting of 100 independent runs with 
different random initial phase sets. In each trial, the reconstruc-
tion with the smallest error metric RF  was chosen as a final 
image, where RF  is defined as 

 .[ ] [ ] / [ ]R Z k Z k Z kF e r
k

e
k

g= -/ /  (16)

Here, [ ]Z ke  is the measured Fourier magnitude, [ ]Z km  is the 
recovered Fourier magnitude, and g  is a scaling factor. 

For each algorithm, the mean and average of the five final 
images were used to quantify the reconstruction. Figure 6(c)–(j) 
shows the average and variance of five final images obtained by 
HIO, ER-HIO [75], NR-HIO [88], and OSS [12], respectively. The 
average RF  and the consistency of five independent trials are 
shown in Figure 6(b). Both visual inspection and quantitative 
results indicate that OSS produced the most consistent recon-
structions among all four algorithms. 

XFEL CDI
The majority of imaging experiments at XFEL sources use the 
method of CDI. The lensless nature of CDI is actually an advan-
tage when dealing with extremely intense and destructive 
pulses, where one can only carry out a single pulse measure-
ment with each object (say, a molecule) before the object 
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[FIG6] The phase retrieval of an experimental diffraction pattern from a biological sample. (a) An oversampled x-ray diffraction pattern 
measured from an S. pombe yeast spore cell. (b) The average RF  and the consistency of five independent trials of phase retrieval using 
four different algorithms. The average reconstruction of five independent trials using (c) HIO, (d) ER-HIO, (e) NR-HOp, and (f) OSS.  
The variance of five final images with (g) HIO, (h) ER-HIO, (i) NR-HOp, and (j) OSS [12].
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disintegrates. In such cases, often one cannot use any optical 
components at all, because any component, e.g., a lens, would 
be severely damaged by the extremely high flux of X-ray pho-
tons, and the damaged components will distort the measured 
data. CDI solves these problems: it works without the need for 
optical components. In this vein, CDI also facilitates reliable 
imaging of moving objects. Indeed, in many experiments, the 
objects move (flow) across the X-ray beam, for example, when 
the X-ray laser beam hits a focused aerosol beam or nanoparti-
cles in a liquid jet. In such an exper-
iment, the particle density is usually 
adjusted so that the X-ray laser 
pulse is more likely to hit a single 
particle than several. A particle is 
hit by chance by a pulse, but this is 
not known until the diffraction pat-
tern is read out from the detector, 
which is done on every pulse. The 
stream of data is then analyzed and 
sorted to give the single-particle 
hits, which contain the meaningful measured data, while all 
other data are ignored. 

There are two generic classes of these “single particle” CDI 
experiments: imaging of reproducible particles and imaging of 
unique particles. The first category includes particles such as 
viruses. Assuming that these particles are not aligned in the same 
direction, the collected data represent diffraction patterns of a 
common object, but in random orientations. If the orientations 

can be determined, then the full 3-D Fourier magnitude of the 
object can be determined, which in turn could be phased to give a 
3-D image. A proof of concept of this experiment was carried out 
by Loh et al. [121]. 

An example of the second class of flash diffractive imaging is 
imaging airborne soot particles in flight in an aerosol beam [28]. 
Several diffraction patterns of soot particles and clusters of poly-
styrene spheres as test objects are shown in Figure 7 along with 
the 2-D reconstructions of the objects. The experiments were car-

ried out at the Linac Coherent Light 
Source using the Center for Free-
Electron Laser Science-Advanced 
Study Group multipurpose instru-
ment [122] at the atomic, molecular, 
and optical science beam line [123]. 
Pulses of about 1012 photons of 1.0-nm 
wavelength were focused to an area 
of .10 m2n  The X-ray detectors (pnCCD 
panels) were placed to give a maxi-
mum full-period resolution of 13 nm 

at their center edges. 
In these experiments, the phase retrieval of the patterns was 

carried out using the RAAR [11] algorithm and shrinkwrap proce-
dure [124], which determines and iteratively updates the support 
constraint used. The objects were such that it was possible to 
apply an additional constraint that the image is real valued. Strik-
ingly, the X-ray coherent diffraction patterns have a very high 
contrast. The intensity minima are close to zero. This has an 

41 nm 45 nm 37 nm 28 nm

27 nm 24 nm 24 nm

(a) (b) (c) (d)

(e) (f) (g) (h)

32 nm

[FIG7] The diffraction patterns from single x-ray FEL pulses from particles in flight and reconstructed images: (a)–(d) clusters of  
polystyrene spheres with radii of (a) and (b) 70 nm, and (c) and (d) 44 nm; (e) and (f) ellipsoidal nanoparticles; (g) a soot particle; and  
(h) a salt–soot mixture [28].
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enormous effect on the ability to recover the phase of these pat-
terns reliably. This reliability is quantified in the phase-retrieval 
transfer function (PRTF) [125], which compares the magnitude 
of the complex-valued average of patterns phased with different 
starting guesses to the square root of the measured diffraction pat-
tern. If, at a particular pixel of the diffraction pattern, the phases 
are consistently reconstructed, then the sum over N  patterns will 

give a magnitude N  times higher than the measured magnitude, 
and so the PRTF will be unity. If the phases are random, then this 
sum will be close to zero. For patterns generated with XFELs, this 
function is often close to unity and is lower primarily in areas 
where the SNR is low. 

Because the signal is limited, ultimately, so is the resolution; an 
estimate of the achieved resolution is given by the white dotted 
circle on each pattern in Figure 7. The reconstructed images are 
sums of ten independent reconstructions. These complex-valued 
sums have the property that their Fourier spectrum is effectively 
modulated by the PRTF and, hence, any artifact due to noise (or 
even due to forcibly truncating the data to a lower resolution) is 
unlikely to show up in the recovered image. 

TABLETOP SHORT WAVELENGTH CDI
To date, most CDI experiments are carried out in third-generation 
synchrotron and XFELs. However, limited access and experimen-
tal time hinder the development and applications of CDI using 
these methods. Thus, over the past several years, CDI microscopes 
based on tabletop sources of coherent extreme ultraviolet and soft 
X-rays are also being developed [126]. Figure 8 shows the first 
tabletop CDI experiment with extreme UV wavelength. 

Phase retrieval, i.e., obtaining Figure 8(d) from (c), is achieved 
using the GHIO algorithm [87]. In GHIO, the standard HIO is first 
run in parallel starting from several (16 in this case) random ini-
tial points, for a set number of iterations (2,000). This is genera-
tion zero of the algorithm. Then, the best output (in the sense of 
distance from the measurements) is selected to serve as the seed 
for the next generation. The inputs for the first generation are 

(b) (c) (d)
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1 mJ, 25 fs, 3 kHz

Vacuum Vacuum
Noble Gas AI AI

Flat EUV Mirror

Curved EUV
Mirror

Sample

Movable
Beamblock

X-Ray
CCDVacuum Chamber

(a)
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[FIG8] The first tabletop short-wavelength CDI. (a) The experimental setup. Coherent extreme UV radiation is generated through the 
process of high harmonic generation. A single harmonic order at wavelength 29 nm is selected and focused onto a sample by a pair of 
multilayer mirrors. The scattered light is detected by the x-ray CCD camera. (b) The original image, used to analyze the performance of 
the CDI process, obtained with a scanning electron microscope (SEM). The image shows a masked carbon film placed on a 15-µm 
diameter pinhole. (c) The recorded multiframe diffraction pattern [corresponding to Fourier magnitude squared of the object shown in 
(b)]. (d) CDI reconstruction using the GHIO algorithm with 214-nm resolution [18].
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[FIG9] The sparsity-based subwavelength CDI. A 2-D object 
consisting of an arrangement of nanoholes (100 nm in diameter) 
is illuminated by a 532-nm laser, and the Fourier plane 
magnitude is measured. High spatial frequencies are lost during 
propagation, because the features (the circles as well as their 
separation) are smaller than ~ /2m . Using an iterative greedy 
algorithm, and exploiting the prior knowledge that the object is 
sparse in a dictionary made of 100-nm circles, the phase is 
retrieved and the object is recovered from its low-pass-filtered 
Fourier magnitude [45].
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obtained by multiplying the seed with each of the 16 images and 
taking the square root of the product. The same procedure is 
repeated for the next generations. The result in Figure 8(d) was 
obtained after the eighth generation, for which the 16 recon-
structed images became consistent. 

SUBWAVELENGTH CDI USING SPARSITY
Prior knowledge of object sparsity can help regularize the phase-
retrieval problem as well as compensate for loss of other kinds of 
information. Here, we consider a 
problem in which the high spatial 
frequencies are lost. As described 
before, when an object is illuminated 
by coherent light of wavelength ,m  
the far-field intensity pattern is pro-
portional to the magnitude of the 
object’s Fourier transform. In addition, features in the object that 
are smaller than ~ /2m  are smeared due to the diffraction limit. 
Consequently, the intensity measured in the far field corresponds 
to | | ,y LFx 2?  where L  represents a low-pass filter at cutoff fre-
quency / ,1co m=  F  represents the Fourier transform, and | · | 2  
stands for elementwise squared absolute value. 

Figure 9 (adapted from [45]) shows the recovery of a sparse 
object containing subwavelength features (100-nm holes illu-
minated by a 532m = -nm laser) from its experimentally mea-
sured low-pass- filtered Fourier magnitude. The prior knowledge 
used for recovery is that the object comprises a small number of 
100-nm diameter circles on a grid, illuminated by a plane wave. 
The exact number, locations, and amplitudes of the circles are 
not known a priori. The recovery is performed using a greedy 
algorithm that iteratively updates the support of the object, 
finds a local minimum, and removes the weakest circle until 
convergence [45]. 

Another type of information loss in CDI, for which the prior 
knowledge of object sparsity can be helpful, is low SNR. In nonde-
structive X-ray CDI measurements, it is not uncommon for signal 
acquisition time to be on the order of tens of seconds [18], [20], 
[127] to achieve sufficiently high SNR. This poses a severe limitation 
on the temporal resolution attainable with such measurements, 
restricting the types of dynamical phenomena accessible by X-ray 
CDI. Exploiting sparsity in the change that an object undergoes 
between subsequent CDI frames has been recently suggested as a 
means to overcome high noise values and, consequently, signifi-
cantly decrease acquisition time [52]. In other words, the fact that an 
object is sparsely varying can be used as prior information to effec-
tively denoise sequential Fourier magnitude measurements. In [52], 
CDI of a sparsely varying object is formulated as a sparse quadratic 
optimization problem and solved using GESPAR [51]. Numerical 
simulations suggest a dramatic potential improvement in temporal 
resolution. In an example consisting of a 51 51# -pixel object with 
five randomly varying pixels between frames, an improvement of two 
orders of magnitude in acquisition time is possible [52]. 

Finally, in [53], an experimental proof of concept is presented 
for an optical system in which discrete phase retrieval is per-
formed using a small number of intensity measurements. The 

system considered is a model multiple-input, multiple-output 
communication system: an array of coupled optical waveguides 
in which a small (sparse) number of input waveguides is excited. 
As the light propagates through the array, the energy couples into 
neighboring waveguides until, ultimately, at the output plane, the 
energy is distributed among many of the waveguides. The purpose 
is to recover the complex input field, i.e., which waveguides were 
excited, and at what amplitude and phase, given output intensities 
of only a subset of the waveguides. This problem is formulated as 

a discrete phase-retrieval problem, 
and the loss of information, both of 
phase and of unmeasured wave-
guides, is compensated by a sparsity 
prior. The phase is then retrieved 
using GESPAR [51]. 

OTHER pHySICAL SETTINGS,  
BOTTLENECKS, AND VISION 
This review article is focused on the simplest physical setting for 
phase retrieval in optical imaging (Figure 2), CDI: an unknown 2-D 
optical image is recovered algorithmically from a single measure-
ment of its far-field intensity pattern, given a known image support 
(or other prior information). In terms of signal processing, this 
problem corresponds to recovering a 2-D object from measure-
ments of its Fourier magnitude. However, the issue of phase 
retrieval in optical imaging and, in a more general sense, in optics 
is far broader and includes other physical settings that naturally 
translate into signal processing problems that are different than the 
standard phase-retrieval formulation. This section provides a short 
overview of those physical settings, defines the various problems in 
terms of signal processing, and provides some key references. We 
conclude with a discussion on the main challenges and bottlenecks 
of phase retrieval in optical imaging, followed by an outlook for the 
upcoming years and long-term vision. 

NON-FOURIER MEASUREMENTS 
The simplest optical phase-retrieval problem assumes that the 
measured data corresponds to the Fourier magnitude. In optical 
settings, this means that the measurements are taken in the Fou-
rier domain of the sought image, which physically means per-
forming the measurements at a plane sufficiently far away from 
the image plane (the so-called far field or the Fraunhofer regime) 
or at the focal plane of an ideal lens [37]. In reality, however, the 
measurements can be taken at any plane between the image 
plane and the far field, which would yield intensity patterns that 
are very different than the Fourier magnitude of the signal. This 
of course implies that new (or revised) algorithms—beyond those 
described in previous sections—must be used, which naturally 
raises issues of conditions for uniqueness and convergence. At 
the same time, these measurements have some interesting 
advantages, which can be used wisely to improve the perfor-
mance of phase retrieval. Let us begin by describing the relevant 
physical settings. 

As stated earlier, the optical Fourier plane corresponds to a plane 
sufficiently far away from where the object (the sought signal) is 
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positioned. Far away here means asymptotically at infinite distance 
from the object plane or at the focal plane of a lens. However, the 
entire propagation-evolution of electromagnetic waves from any 
plane to any other plane is known: it is fully described by Maxwell’s 
equations. As such, one can formulate the problem through a 
proper transfer function of the electromagnetic wave that is differ-
ent than the Fourier transform. 

In this context, the most well -
studied case is the regime of Fresnel 
diffraction, where the transfer func-
tion is expressed in an integral form 
known as the Fresnel integral [37]. 
This regime occurs naturally at a 
range of distances away from the 
object plane, which naturally also 
includes the Fraunhofer regime where the transfer function 
reduces to a simple Fourier transform. Going beyond the Fresnel 
regime is also possible. This means that the (magnitude squared of 
the) electromagnetic wave will be measured at some arbitrary 
plane away from the object. A more general case arises by express-
ing the scalar transfer function of the light in a homogeneous 
medium, at any plane z  as 

 ( , , ) [ ( ) ] .expT k k z iz k k kx y x y
2 2 2= - - +  (17)

Here, / ,k c~=  with ~  being the frequency of the light, c  being 
the speed of light in the medium, and ,k kx y  describe the trans-
verse wavenumbers. The field at any arbitrary plane ,z  ( , , ),E x y z  
is then given by inverse Fourier transforming the spectral func-
tion at that plane ( , , )F k k zx y  [namely, the Fourier transform of 
( , , )E x y z  with respect to , ,]x y  which is related to the spectrum 

at the initial plane by 

 ( , , ) ( , , ) ( , , ) .F k k z F k k z T k k z0x y x y x y= =

With the transfer function (17), one can now formulate a new 
phase-retrieval problem, where the measurements are conducted 
at some arbitrary plane ,z  giving | ( , , ) | ,E x y z 2  and the sought 
signal is .( , , )E x y z 0=  This approach can be extended to 
include polarization effects, in which the transfer function is vec-
torial, thereby describing the propagation through Maxwell’s 
equations with no approximation at all. The optical far field—
where the measurement corresponds to the Fourier magnitude of 
the image at the initial plane (i.e., the measurement is propor-
tional to | ( , , ) | )F k k zx y

2 —is obtained for distances z  larger than 
some minimum distance z0  that depends on the spectral extent of 
( , , ),F k k z 0x y =  and only within a region close enough to 

the z-axis in the measurement plane. 
It is interesting to compare these more general phase-retrieval 

problems to the generic problem of recovering a signal from its 
Fourier magnitude. In terms of algorithmics, the generic problem 
is much simpler and was extensively studied throughout the years, 
whereas the general case is considerably more complex and was 
studied only sporadically. However, in terms of optics, the mea-
surements in the general case can provide more information. 

Namely, measurements of | ( , , ) |E x y z 2  can be taken at multiple 
planes (multiple values of ),z  and each measurement adds more 
information on the signal. In contrast, for the generic problem, 
once the measurements are taken in the optical far field, taking 
more measurements at further away distances does not add addi-
tional information because all of the far-field measurements corre-

spond to the Fourier magnitude (to 
within some known scaling of coor-
dinates in the measurement planes). 
As such, performing phase retrieval 
of optical images in the most general 
(non-Fourier) case can be beneficial 
as it leads to multiple measurements, 
possibly relaxing the conditions on 
oversampling and/or the advance 

knowledge on the support in the image plane. 
Historically, these ideas on non-Fourier measurements have 

been known to the optics community since the early days of 
optical phase retrieval [2]. They are currently being used in the 
context of improving the convergence of phase retrieval by tak-
ing non-Fourier measurements at several planes [14], [128]. 
Alternatively, one can take measurements at several different 
optical frequencies ,~  which would be expressed as different 
values of /k c~=  in the general transfer function given before. 
In this multifrequency context, it is important that the frequen-
cies are well separated, each having a narrow bandwidth, to 
conform the high degree of coherence required for CDI. These 
ideas are now being pursued by several groups [19], [118], 
[129]. Interestingly, the multifrequency idea also works in the 
continuous case of broad bandwidth pulses centered on a single 
frequency. In this case, the power spectrum of the pulse must 
be known in advance [118], [129], [130]. In a similar vein, 
recent work has demonstrated scanning CDI, where the beam is 
scanned through overlapping regions on the sample to allow 
imaging of extended objects, a method known as ptychography 
[80], [131]–[133]. 

More sophisticated physical settings also exist, where the 
medium within which the waves are propagating is not homoge-
neous in space. Famous examples are photonic crystals, wherein 
the refractive index varies periodically in space, in a known fashion, 
in one, two, or three dimensions. Obviously, in such settings, the 
transfer function for electromagnetic waves is fundamentally dif-
ferent from the transfer function in free space. The phase-retrieval 
problem in such systems, albeit less commonly known, is no less 
important. For example, photonic crystal fibers can in principle be 
used for imaging in endoscopy. The measurements in such sys-
tems correspond to the magnitude squared of the field at the mea-
surement plane, which would be very different than the Fourier 
magnitude of the image. Still, once the transfer function is known, 
complicated as it may be, the phase-retrieval problem is well 
defined and can be solved with some modifications to the algo-
rithms described earlier; see, e.g., the pioneering work on phase 
retrieval in a photonic crystal fiber [134], and very recently, work 
on sparsity-based phase retrieval and superresolution in optical 
waveguide arrays [53]. In addition to these, the concept of CDI has 
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also been extended to other schemes, such as Bragg CDI, suitable 
to periodic images to reconstruct the structure and strain of nano-
crystals [135]–[138]. 

PHASE RETRIEVAL COMBINING  
HOLOGRAPHIC METHODS 
As explained earlier, optical settings always suffer from the inability 
of photodetectors to directly measure the phase of an electromag-
netic wave at frequencies of terahertz and higher. A partial solution 
for this problem is provided through 
holography, which was invented by 
Denis Gabor in 1948 [139], who was 
awarded the Nobel Prize in Physics in 
1971. Holography involves interfering 
an electromagnetic field carrying 
some image, ,Eimage  with another 
electromagnetic field of the same fre-
quency and a known structure, 
denoted as .Eref  Typically, the so-
called reference wave, ,Eref  has a very simple structure, for exam-
ple, approximately a plane wave (wave of constant amplitude and 
phase). The detection system records | | .E E 2

image ref+  Originally, 
such holographic recording was done on a photographic plate that 
was made from a photosensitive material whose transmission, 
being sensitive to the intensity of the light, became proportional to 
the recorded pattern | | .E E 2

image ref+  Such a photographic plate is 
called a hologram, wherein the information contained in the image 
wave Eimage  is embedded in transmission function of the hologram. 
To see the recording, the wave of the known pattern, ,Eref  is gener-
ated (which is possible because its structure is simple and fully 
known) and made to illuminate the hologram. The magnitude of 
the wave transmitted through the illuminated hologram is there-
fore proportional to | | .E E E·2

image ref ref+  One of the terms is 
| | .E E·2

ref image  Since | |E 2
ref  carries virtually no information, i.e., 

it is just a constant, this transmitted wave reconstructs the image 
times that constant. This is the principle of operation of hologra-
phy. Over the years, it has been shown that it is almost always bene-
ficial to record not the actual image but its Fourier spectrum; 
hence, the reconstructed information is the Fourier transform of 
the image, and the image itself is recovered either in the far field (as 
explained in the beginning of this article) or at the focal plane of a 
lens. This process is termed Fourier holography [140]. 

In the context of phase retrieval, holography is used to add 
information in the measurement scheme. Because in most cases 
the measurements used are Fourier magnitudes, which physically 
imply far-field measurements, the natural inclusion of holographic 
methods is through Fourier holography. For example, adding a tiny 
hole (a delta function) at a predetermined position in the sample, 
close to where the sought image resides, creates an additional wave 
in the far field with a tilted phase that arises from the displacement 
between the hole and the sought image. The far-field intensity, 
therefore, now corresponds to the absolute value squared of the 
sum of the Fourier transform of the sought image and the known 
wave. As such, it introduces additional prior knowledge that can be 
used for increased resolution of the algorithmic recovery or for 

relaxing the constraints on the prior knowledge on the support. 
These ideas have been exploited successfully using X-rays and elec-
trons by several groups [141]–[143]. 

CHALLENGES
The current challenges can be briefly defined as higher resolution, 
the ability to recover more complex objects, improved robustness 
to noise, and real-time operation. The very reason phase retrieval in 
optical imaging has recently become so important is owing to the 

vision to be able to one day directly 
image complex biological molecules, 
track their structural evolution as it 
evolves over time, and even view the 
dynamics of the electronic wave func-
tions bonding atoms together. The 
reasoning is obvious: to understand 
biology at the molecular level and to 
decipher the secrets of how their 
atomic constituents bond together 

and how they interact with other molecules. The current state of 
the art is far from those goals: imaging resolution is not yet at the 
atomic (subnanometer) level, and—at nanometric resolution—
imaging cannot handle objects that are bounded by a support that 
is extremely large compared to the resolution. In terms of being 
able to perform real-time experiments, state-of-the-art measure-
ments have demonstrated extremely short optical pulses: tens of 
attoseconds (10 18-  s, on the order of the passage of a photon 
through a distance comparable to the size of an atom). Pioneering 
experiments have even started to probe the dynamics of electrons 
in molecules and tunneling processes on these timescales. But, as 
of today, none of these ultrafast methods was applied to imaging of 
even a simple molecule, let alone complex biological structures. 

Clearly, the underlying physics and engineering pose great chal-
lenges to meet these goals. Generating coherent radiation in the 
hard X-ray regime is still a major obstacle, often requiring very 
large enterprises such as the X-ray sources at the SLAC National 
Accelerator Laboratory. These facilities around the world are con-
tinuously improving their photon flux at shorter wavelengths, 
thereby constantly improving imaging resolution. The fundamental 
limits on the coherent X-ray flux possible with current methods 
(such as synchrotrons, XFELs [55], [56], and the process of high 
harmonics generation [144]) are not even known. But the steady 
improvement does give hope for imaging at the atomic level in the 
near future. Taking the CDI techniques to the regime of attosecond 
science is an important challenge. These pulses are extremely short, 
and, hence, their bandwidth is huge. Therefore, the coherent dif-
fraction pattern is a superposition of their multispectral contents, 
which requires new algorithmic methods. As described earlier, 
these issues are currently being explored by several groups. But the 
problem is fundamentally more complicated because the process of 
scattering of light by molecules at these short wavelengths and 
ultrashort timescales is not like passing light through a mask on 
which an image is imprinted. Rather, many issues related to light-
matter interactions under these conditions are yet to be understood 
(e.g., tunneling ionization of atoms by laser pulses). 

THE CURRENT CHALLENGES  
CAN BE BRIEFLy DEFINED AS  
HIGHER RESOLUTION, THE  

ABILITy TO RECOVER MORE  
COMpLEx OBjECTS, IMpROVED 
ROBUSTNESS TO NOISE, AND  
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Finally, the long-term vision must include imaging the dynam-
ics within complex biological systems at the atomic level and in 
real time. But such systems are extremely complex to handle, in 
terms of details on many spatial and temporal scales simultane-
ously, in terms of the statistical nature and huge redundancy in 
the physical processes taking place within such complexes simul-
taneously, and even in terms of the quantum mechanics govern-
ing the dynamics at those scales. This is where the signal 
processing community can make a large impact—by devising new 
and original methods for recovering the information from 
 experimental measurements. Clearly, the algorithms will have to 
be tailored to the specific physical settings. 
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