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also can be applied to TEGO (figs. S11 and S12),
which is already beingmanufactured in ton quan-
tities (13). By use of this type of simple activation
process already commercially demonstrated for
ACs, scaled a-MEGO and a-TEGO production
for advanced energy/power electrochemical elec-
trical energy storage devices may be realized in a
short period.
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Disorder-Enhanced Transport in
Photonic Quasicrystals
Liad Levi,* Mikael Rechtsman,* Barak Freedman, Tal Schwartz, Ofer Manela, Mordechai Segev†

Quasicrystals are aperiodic structures with rotational symmetries forbidden to conventional
periodic crystals; examples of quasicrystals can be found in aluminum alloys, polymers, and
even ancient Islamic art. Here, we present direct experimental observation of disorder-enhanced
wave transport in quasicrystals, which contrasts directly with the characteristic suppression of
transport by disorder. Our experiments are carried out in photonic quasicrystals, where we find
that increasing disorder leads to enhanced expansion of the beam propagating through the
medium. By further increasing the disorder, we observe that the beam progresses through a
regime of diffusive-like transport until it finally transitions to Anderson localization and the
suppression of transport. We study this fundamental phenomenon and elucidate its origins by
relating it to the basic properties of quasicrystalline media in the presence of disorder.

Anderson localization (1), a fundamental
concept in solid-state physics, describes
how introducing disorder can transform

a conducting crystal into an insulator. This pre-
diction and subsequent experiments have shown
that, generally, disorder works to arrest trans-
port in periodic systems containing disorder
(2–5), as well as in fully randompotentials (6–10).
However, some systems still pose fundamen-
tal challenges to this concept—most notably,

quasicrystals. Quasicrystals (QCs) (11, 12) con-
stitute an intermediate phase between fully pe-
riodic and fully disordered media: They do not
have a unit cell and do not exhibit translation
symmetry; nevertheless, they possess noncrystal-
lographic rotational symmetry and long-range
order and display Bragg diffraction. Although
many of the properties of QCs are now well un-
derstood, some fundamental questions remain. Per-
haps one of the most intriguing questions related
to QCs has to do with transport. Opposite to crys-
tals containing disorder, which exhibit Anderson
localization, it has been suggested that disorder
can enhance transport in QCs (13, 14). Indirect
experiments have indicated that in some regimes,
increasing disorder could enhance transport (14).

The electronic structure of atomic QCs has
been shown to have multifractal eigenstates
(15, 16), which may or may not be normalizable
(thus, localized), depending on the critical expo-
nent associatedwith the given state. The transport
properties of QCs are directly related to the crit-
ical nature of their eigenstates, in particular, in the
presence of disorder (17). QCs have been shown
to exhibit counterintuitive transport properties,
including extremely low conductivity that in-
creases with both temperature (inverseMatheisen
rule) and spatial disorder arising from structural
defects (14). Both of these effects have been
attributed (16, 18) to hopping between critical
states of different spatial extents near the Fermi
energy (due to inelastic electron-phonon scatter-
ing for the former and elastic scattering from
structural defects for the latter). This increase in
transport with disorder is directly opposite to the
characteristic behavior of crystals, wherein trans-
port is reduced with increasing disorder.

Thus far, experiments on transport in atomic
QCs were carried out by the study of macroscop-
ic conductivity. However, conductivity experiments
are problematic for addressing some basic ques-
tions on QCs. First, the mechanisms proposed to
explain the unusual transport in QCs assume non-
interacting electrons; however, conductivity mea-
surements inevitably incorporate electron-electron
interactions. Second, conductivity measurements
do not allow direct observation of wave packets,
which could be a key property in unraveling the
mechanisms underlying transport. With the recent
progress in photonic lattices (19), manifesting anal-
ogies between light propagating in a waveguide
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array and an electron in an atomic lattice, it is
natural to expect experimental studies of trans-
port in photonic QCs. Indeed, experiments have
studied the QC band structure (20), the dynam-
ics of phasons (21), and propagation though
QCs without disorder (22, 23). However, the fun-
damental issue of transport in photonic QCs in
the presence of disorder has not previously been
studied experimentally.

Here, we study photonic quasicrystals con-
taining disorder and present the first direct exper-
imental observation of disorder-enhanced transport
in QCs by directly imaging wave packets propa-
gating through the photonic QC containing disor-
der. We show that disorder considerably enhances
the transport of wave packets associated with ei-
genstates in the proximity of a pseudogap (a sharp
reduction in the density of states), the region in
which the Fermi energy is found in electronic sys-
tems. Enhanced transport occurs because disor-
der acts to couple highly localized states near the
pseudogap, and as a result, states become more
extended. When disorder is further increased, we
experimentally demonstrate finite-time, diffusive-
like transport, as predicted for weakly disordered
QCs (24). Upon increasing the disorder even
further, Anderson localization prevails: the width
of the wave packet shrinks, and its tails display
exponential decay. Our photonic system is equiv-
alent to a two-dimensional (2D) Penrose QC con-
taining disorder, and the wave packet we image
is analogous to the probability amplitude of an
electron propagating in it; hence, our findings are
relevant to conduction electrons in quasicrystal-
line electronic systems.

We work with photonic lattices, in the trans-
verse localization scheme (25), described by the
paraxial equation for monochromatic light

i
∂Y
∂z

¼ %HY ≜

−
1

2k

∂2

∂x2
þ ∂2

∂y2

� �
−

k

n0
Dnðx, yÞ

� �
Y ð1Þ

Here z is the propagation coordinate, x and y
are the transverse coordinates, %H is the Ham-
iltonian (defined by Eq. 1), Y is the slowly
varying envelope of an optical fieldEðx,y,z,tÞ ¼
Re½Yðx,y,zÞeiðkz−wtÞ� (t is the time coordinate) of
frequency w and wave number k = wn0/c, n0 is
the bulk refractive index, Dn is the local change
in the refractive index (lattice plus disorder),
and i2 = –1. Equation 1 has the form of the
Schrödinger equation: the equivalence emerges
when z→t and –Dn→V (where V is the potential).
Hence, the evolution of a light beam behaves like
the wave packet of a quantum particle in a 2D
potential, but with the coordinate z replacing time.
Solving for the eigenstates Yb = Ab(x,y)exp(–ibz)
(Ab is the z-independent eigenmode), for which
%HYb ¼ bYb (b is the energy), is the equivalent
to solving for the eigenmode of a particle, where
the propagation constant corresponds to the eigen-
energy E. Our photonic QC containing disorder
is a Penrose-tiled 2D refractive index structure on

which we superimpose 2D random disorder. The
refractive index structure Dn(x,y) corresponds to
an array of parallel waveguides, ordered as a
Penrose tiling, with random transverse variations
whose strength is controlled at will.

Figure 1 shows the experimental scheme. We
use the induction technique (26) to transform an
optical intensity pattern into a z-independent re-
fractive index structure Dn(x,y,z), which includes
both theQC lattice and the disorder (27).We study
transport by launching a weak probe beam and
monitoring the beam exiting the sample (28).
Meaningful results are obtained by repeating ex-
periments multiple times with many realizations
of the disorder (same parameters) and ensemble-
averaging over the intensity patterns at the exit face.

We now describe the results on enhanced trans-
port in disordered QCs. The simulation results,

shown in Fig. 2A, display the ensemble-averaged
width, Weff (3, 29), of the beam propagating
through the QC, without disorder (lower curve)
and with 20% disorder (upper curve). We nu-
merically launch a narrow Gaussian beam at a
center of local 10-fold symmetry in the QC struc-
ture (center of a “flower”; see two example points
marked by arrows in Fig. 2B). Without disorder,
transport through the pure QC displays a “bumpy
ride,” with irregular oscillations occurring be-
cause of the presence of states of very different
spatial extent within small energy ranges. On the
other hand, transport through the QC containing
disorder is considerably enhanced (Fig. 2A, up-
per curve): Throughout propagation, the width of
the beam propagating in the disordered QC is
larger than the width of the beam propagating in
the pure QC. Moving the launch point to any

Fig. 1. Experimental scheme for transverse localization in photonic QCs containing disorder. A narrow
optical beam is launched at the input face of a 2D quasicrystal lattice (A) containing disorder (B and C).
The output intensity (D) pattern is monitored and ensemble-averaged over many realizations of disorder.
FWHM, full width at half maximum.

Fig. 2. Experimental and simulation results of transport through photonic quasicrystals, demonstrating
disorder-enhanced transport and Anderson localization. (A) Simulation: beam width (ensemble-averaged)
versus propagation distance for a pure QC (black) and a QC containing 20% disorder (blue). Transport is
always higher in the disordered QC. (B to F) Experimental results: output intensity after z = 10 mm
(ensemble-averaged), the log of its cross section (shown in white), and samples of the refractive-index
profile (below each panel). Disorder-enhanced transport is apparent from the transition from 0% to 10%
disorder [(B) and (C)]. For higher disorder levels, parabolic and linear fits [in (D) to (F)] indicate diffusive-
like transport and the transition to Anderson localization, respectively. Yellow arrows in (B) indicate points
of local 10-fold symmetry.
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other center of local 10-fold symmetry yields
virtually identical results. The experimental re-
sults are depicted in Fig. 2, B to F. Figure 2B
shows the beam exiting the pure QC after 10 mm
of propagation. The exiting beam, which has a
mean width (Weff) of ~150 mm, is always frac-
tured and varies depending on the launch point,
because the QC has no translational symmetry.
Figure 2, C to F, depicts the ensemble-averaged
output beam and its log-plot cross section, for
increasing strength of disorder. The ensemble av-
eraging is taken over 100 realizations of the dis-
order for Fig. 2, B to D, and over 50 realizations
for Fig. 2, E and F, for each value of disorder
strength. At 30% disorder (Fig. 2D), the wave
packet is diffusive-like, as indicated by the par-
abolic cross section near the center of (the log
of ) the ensemble-averaged beam. A parabolic
fit to these data in the central region, where the
signal is strongest, gives a R2 goodness-of-fit
value of 96% (as shown in the figure). Notice that
the width of the averaged beam in Fig. 2, C and
D (221.6 and 224.4 mm, with standard devia-
tions of 47 and 31 mm, respectively) is greater than
the width of the output beam in the pure QC
(150.8mm in Fig. 2A), indicating enhanced trans-
port. On the other hand, further increasing the
disorder strength (50 and 100% disorder) makes
the beammore localized (Fig. 2, E and F), while
displaying the exponential tails characteristic
of the transition to Anderson localization, with
an average beam width of 212 and 206 mm (stan-
dard deviations of 28 and 35 mm), respectively.
The linear fits to Fig. 2E give R2 values of 96%
(for both the left and right sides); the fits in Fig. 2F

gives R2 values of 86 and 98% (left and right
sides). The distribution ofWeff in all these experi-
ments shows no significant outliers on the high
end, meaning that the decay properties of the
wave functions in Fig. 2, B to F, are not skewed
by a small number of measurements.

Our results on disorder-enhanced transport
call for a direct comparison between crystals and
quasicrystals. We therefore simulate transport
in triangular and QC lattices of the same mean
lattice spacing. Figure 3A shows the simulated
Weff exiting the hexagonal lattice after propagat-
ing in it (z = 30 mm), as function of disorder
strength. Clearly, for the hexagonal lattice, trans-
port decreases monotonically with increasing
disorder strength. In sharp contrast, for the QC
lattice (Fig. 3B) increasing disorder first enhances
transport, and only after reaching a pronounced
peak transport begins to decline with increasing
disorder. To examine the expansion rate of the
beam, we followWeff while propagating through
the QC (Fig. 3C) for different levels of disorder
and calculate the derivative of log(Weff) with re-
spect to log(z) to deduce its characteristic ex-
ponent. Figure 3D reveals that the exponent of
the expanding beam, for a wide range of disorder
levels, is close to 0.5, indicating a diffusive-like
expansion. Increasing the disorder past the level
causing maximal transport (between 5 and 10%
in Fig. 3B) shows that the exponent converges
toward 0.5. By fitting Weff versus z, the diffusion
constants for 10, 30, 50, and 100% disorder are
found to be 0.038, 0.029, 0.029, and 0.027 mm,
respectively, giving mean free paths of 8.1, 6.3,
6.3, and 5.7 mm [derived as in (3)]. As clearly

shown in Fig. 3C, the wave-packet widths greatly
exceed these mean free paths, indicating that we
are in the multiple-scattering regime. This fact,
together with the characteristic exponent of 0.5,
strongly suggests diffusive-like transport. We
examine the log of the ensemble-averaged and
azimuthally averaged beam intensities (over 100
realizations) in Fig. 3, E to H, as a function of the
transverse radial coordinate, r. In these plots, for
0, 10, 30, and 50% disorder, respectively, we fit
parabolas (Gaussian wave packets; i.e., diffusion)
or lines (exponential wave packets; i.e., a signa-
ture of localization) only where the fit is highly
appropriate (R2 > 97%). We find that for 10%
disorder (Fig. 3F), some features of the original
QC remain; thus, parabolic and linear fits are
not appropriate. For 30% disorder (Fig. 3G), a
Gaussian wave packet is observed at z = 5 mm,
whereas the wave packet shows the exponen-
tial tails signifying the start of localization by z =
20mm.At 50%disorder (Fig. 3H), thewave packet
quickly reaches exponential decay. As explained
below, we use a narrow beam selected specif-
ically to excite pseudogap states to demonstrate
disorder-enhanced transport [unlike in (3) where
a broader beamwas used]. Consequently, the beam
is a superposition of many eigenmodes, some of
which have high energy and extremely large
localization lengths, larger than the simulation
box. Therefore, we do not observe the wave func-
tion coming to an absolute halt. It is well known
that in two dimensions, some localization lengths
can be extremely large and out of reach of any
simulation. That said, the beam in Fig. 3, G andH,
exhibits exponential decay (for z ≥ 10 mm),

Fig. 3. Simulation results comparing transport through a hexagonal lattice
and a QC for increasing disorder, showing disorder-enhanced and diffusive-
like transport, as well as signatures of Anderson localization. (A and B)
Ensemble-averaged beam width versus disorder strength for the hexagonal
and QC lattices (same characteristic lattice spacing), showing disorder-
enhanced transport for weak disorder (0 to 10%), then transport declines with
further increase of disorder. (C) Beamwidth versus propagation distance in the

QC for disorder levels indicated in (B). (D) The derivative with respect to log(z)
of the log-log plot of (C); i.e., the characteristic expansion exponent. Con-
vergence to 0.5 with increasing disorder indicates diffusive-like transport.
(E to H) Logarithm of the ensemble- and azimuthally averaged wave function
at 0, 10, 30, and 50% disorder, for various propagation distances. Parabolic
fits indicate diffusive-like transport, and linear fits indicate the transition to
Anderson localization for sufficiently large distances and disorder levels.
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which is a clear signature that the wave packet is
undergoing a transition to Anderson localiza-
tion (1). The experimental and theoretical results
displayed in Figs. 2 and 3 unequivocally show
that disorder enhances transport in QCs; they
demonstrate diffusive-like transport and show
exponentially localized wave packets, a signa-
ture of the transition to Anderson localization.

These results raise the natural question: What
is the underlying mechanism responsible for
disorder-enhanced transport in QCs? Transport
in atomic crystals is closely related to the density
of states around the Fermi energy. In aperiodic
systems, higher density of states is generally as-
sociated with broader eigenfunctions, which sup-
port higher transport. This is the case for potentials
where the eigenmodes are localized (as in any
potential containing disorder) or for critical states
(as in QCs). To examine this point in our system,
we solve Eq. 1 for a QC potential and find its eigen-
functions and eigenvalues b. Figure 4A shows a
comparison between the band structure of a pure
QC (black) and a QC containing 20% disorder
(blue). The eigenvalues (energies) are presented
in ascending order, because the notion of Brillouin

zone does not exist for a QC. Nonetheless, there
are regions (pseudogaps) in the band structure
(gray in Fig. 4A) where the density of states is
considerably lower. The band structure of the
quasiperiodic potential is fractal-like; hence, higher-
order pseudogaps exist on any scale (12). It is this
fractured structure that is responsible for the low
density of states, especially around pseudogaps,
which in turn leads to highly localized states and
thus to low conductivity/transport in QCs.

When disorder is introduced in a QC, the
highly localized states near the pseudogap couple
to one another, together forming eigenstates that
are broader and less localized (at other energies,
disorder acts to “smooth out” the fractal band struc-
ture, but the effect on transport is less pronounced).
In other words, disorder mediates “hopping” be-
tween localized quasicrystalline eigenstates near
the pseudogap (30). In turn, this coupling be-
tween localized states results in smoothing of the
density of states, reducing the pseudogap until it
altogether disappears (blue curve in Fig. 4A).

We calculate and plot Weff of each of the
eigenfunctions (Fig. 4B) for pure QC (black) and
for the QC containing 20% disorder (blue). Going
back to the plot of the eigenvalues (Fig. 4A), we
find that the eigenstates near the two large pseudo-
gaps tend to be more localized (Fig. 4B). At the
same time, simple initial wave functions (e.g.,
Gaussian) are found to easily excite the localized
eigenstates near the higher pseudogap, an ex-
perimentally indispensable condition. Figure 4B
shows that adding 20% disorder to a pure QC
results in the broadening of all eigenfunctions
with energies in the vicinity of a large pseudo-
gap. It is therefore expected that the expansion
rate of a wave packet made up of such eigen-
functions will be higher in the disordered QC
than in the pure QC. That is, the phenomenon of
disorder-enhanced transport is expected to be
most pronounced for wave packets associated
with the pseudogaps in QCs. With this in mind,
we analyze the wave packets launched in our
simulations and experiments and examine their
transport. Consider the Gaussian wave packet of
Fig. 2A whose propagation displays enhanced
transport in the disordered QC. Figure 4C displays
the projection of this wave packet on the eigen-
functions of the pure QC. The underlying mech-
anism for disorder-enhanced transport in QCs is
therefore due to the increase in the density of states
near its pseudogaps. This explanation holds well
for any launch point of a high 10-fold symmetry,
which always excites mostly localized states from
the vicinity of the pseudogap. Finally, we empha-
size that the Fermi energy in atomic QCs resides in
a pseudogap (similar to crystals where it resides in
the gap), hence our initial wave packet represents
conduction electrons residing in a kBT-sized stripe
(where kB is the Boltzmann constant and T is
temperature) around the Fermi energy.

This article was devoted to providing a direct
experimental demonstration that transport in
quasicrystals is enhanced by virtue of disorder,
while displaying features associated with diffusion

and localization. We studied this fundamental
phenomenon and elucidated its origins, relating it
to the basic properties of quasicrystalline media
in the presence of disorder.
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Fig. 4. Revealing the mechanism underlying
disorder-enhanced transport in quasicrystals. (A)
Band structure of a pure QC (black) and of a QC
containing 20% disorder (blue). The fractured self-
similar structure of the spectrum characteristic of a
pure QC is smeared by the disorder, leading to a
continuous density of states, which increases trans-
port. The red oval denotes the fractal-like band. (B)
Weff of each eigenstate of a pure QC state (black)
and in the QC containing 20% disorder (blue).
Adding 20% disorder to a pure QC results in the
broadening of all eigenfunctions associated with the
vicinity of a large pseudogap (A). It is therefore
expected that the expansion rate of a wave packet
made up of such eigenfunctions will be higher in the
disordered QC than in the pure QC. (C) Projection of
a Gaussian wave packet (of Fig. 1A) on the eigen-
functions of the pure QC; ϕn represents the eigen-
functions. This wave packet, associated with the vicinity
of a pseudogap, expands faster in a disordered QC,
due to both the increase in the density of states (A)
and to the broadening of the width, Weff, of the
eigenfunctions (B) in this region.
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