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Symmetry breaking in honeycomb photonic lattices
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We study the phenomena associated with symmetry breaking in honeycomb photonic lattices. As the
honeycomb structure is gradually deformed, conical diffraction around its diabolic points becomes elliptic
and eventually no longer occurs. As the deformation is further increased, a gap opens between the first two
bands, and the lattice can support a gap soliton. The existence of the gap soliton serves as a means to detect
the symmetry breaking and provide an estimate of the size of the gap. © 2008 Optical Society of America
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Honeycomb lattices are intriguing systems, possess-
ing a unique band structure [1,2]. Unlike other peri-
odic systems, the first and second bands of honey-
comb lattices do not overlap, yet they are not
completely separated either. Instead, the first two
bands intersect at a set of points, the diabolic points,
irrespective of the depth of the potential of the indi-
vidual lattice sites. The slope of the propagation con-
stant surface at the vicinity of these points is linear.
Hence the phase velocity is constant, and the effec-
tive mass in those regions is infinite. Recent ad-
vances in solid-state physics have attracted much in-
terest in graphene, a carbon 2D honeycomb lattice
where charge carriers with momentum correspond-
ing to the diabolic points act as massless fermions
obeying the Dirac equation. Hence these points are
also called Dirac points, and electron states near
them present unique features such as chiral tunnel-
ing [3] and room-temperature integer quantum Hall
effect [4]. In another domain, matter–wave physics,
honeycomb optical lattices give rise to excitations be-
having like Dirac fermions [5]. Finally, recent work
on honeycomb photonic lattices showed a band struc-
ture similar to that of graphene and also that a beam
propagating in the direction associated with a Dirac
point experiences conical diffraction [6]. That obser-
vation was the first evidence that conical diffraction
is a more general phenomenon than occurring just in
biaxial optical crystals [7–9].

Here, we study the dynamics of optical beams in a
honeycomb photonic lattice whose symmetry is
gradually deformed. We find that, when the honey-
comb symmetry is complete, the conical diffraction
pattern contains two bright rings separated by a
dark ring, rather than a single bright ring as initially
thought [6]. When the lattice is gradually deformed,
the conical diffraction pattern becomes elliptic until,
at some strong enough deformation, the diabolic
points merge, then completely disappear, and a gap
forms between the first and second bands. We show
that the gap in such a strongly deformed lattice can
be detected using a gap soliton: the existence of the
soliton gives direct indication of the presence of a
gap, providing an estimation on the size of the gap.

The paraxial propagation equation for a monochro-

matic wave � in a 2D photonic lattice is
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where �n is the modulation in the refractive index, k
is the wavenumber in the medium, and n0 the back-
ground refractive index. As demonstrated in [6], a
honeycomb photonic lattice is readily generated by
the optical induction technique, by transforming an
intensity pattern Iind into variations in the refractive
index [10–12], using defocusing nonlinearity of the
form �n=�n0 / �1+Iind+B���2� [13]. Here, �n0 is the
maximal index change, Iind and B are in units of the
background illumination, and ����x ,y��2dxdy=1.
Here, Iind is formed by the interference of three plane
waves as

Iind = � �
i=1,2,3

�i exp�ik0�x cos �i + y sin �i���2
, �2�

where k0= �kx
2+ky

2�1/2 is the transverse wavenumber
and �i=0,2� /3 ,4� /3. We can choose �1=1 and con-
sider only the relative amplitudes �2 ,�3. When �2
=�3=1, Iind is a triangular pattern translated into a
perfect honeycomb photonic lattice of lattice constant
D=4� / �3k0�, as shown in Fig. 1(a). The first two
bands cross each other at the diabolic points; hence
there is no complete band gap between these bands,

Fig. 1. (Color online) (a), (b) Lattice in real space for
uniaxial deformation with �=1,0.82, respectively. (c)–(f)
Side view of the band structure manifold of the propagation
constant, �, for uniaxial deformation with �

=1,0.88,0.838,0.82, respectively.
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as shown in Fig. 1(c). Since the honeycomb lattice is
not a Bravais lattice, in order to span it, one should
include a basis vector in addition to the two primitive
vectors. When �i�1 (reducing the amplitude of the
ith wave, with i�2,3), the primitive lattice vectors
and the unit cell remain unchanged. When �2=�3
(uniaxial deformation), the only lattice parameter
that has been modified is the basis vector separating
the two sites inside the unit cell (in the tight binding
picture). However, when �2��3 (biaxial deforma-
tion), the sites inside the unit cell are modified as
well, forming a deformed honeycomb lattice with dif-
ferent atoms inside a unit cell.

We find that even an infinitesimal deviation of �
from unity reduces the symmetry of the lattice. How-
ever, for uniaxial deformation, the degeneracy at the
diabolic points is not removed, and the bands still
cross each other even for significant deformations. As
the deformation is increased, the diabolic points
move toward each other, until � reaches a critical
value �c	0.838 where each pair of diabolic points
merges, and a gap appears between the first two
bands, shown in Figs. 1(c)–1(f). After the gap ap-
pears, the band is parabolic; hence excitations can no
longer be treated as massless Dirac fermions. Note
that �c is not a universal value but depends on the
lattice constant D and the potential details. For biax-
ial deformations, even extremely small, degeneracy is
removed because the reflection symmetries �	x ,	y�
are broken; hence the bands no longer cross each
other, and a tiny gap always opens up. However, in
spite of the gap, we find that the vicinity of the ex-
trema points still includes a large region where the
dispersion curve is linear. Hence, many of the inter-
esting features of the honeycomb lattice (chiral exci-
tations, diffractionless region) remain even in a con-
siderably deformed lattice, since their origin is not
the diabolic points themselves, but their vicinity.

Next we study the linear propagation of a narrow
beam centered at one of the diabolic points in a lat-
tice with uniaxial deformation. We find that the cross
section of each diabolic cone is no longer circular but
elliptical. The gradient (in k space) of the propaga-
tion constant is the transverse velocity of each mode.
For a circular cone, the velocity is isotropic; hence all
the Bloch modes comprising the beam propagate at
the same velocity, forming a ring [6]. When the hon-
eycomb symmetry is slightly broken (��1 but still
close to 1) in a uniaxial fashion, the cross section is
elliptical; thus transverse velocity is no longer isotro-
pic. An immediate consequence is that the beam
broadens in one direction faster than in the other,
yielding elliptical rings separated by a dark ring
(similar to the dark rings observed in biaxial crystals
[9]). The example in Fig. 2 displays a simulation of
the linear version of Eq. (1) �B=0�. We use dimen-
sionless units, providing n0=2.3 and �n0=5
10−3,
the propagation distance is 1.2 cm, and the radius of
the rings is 150 �m. Figure 2(d) highlights the de-
pendence of the axes ratio R
b /a (a ,b are the axes
of the ellipse) of the elliptical rings versus the defor-
mation of the lattice for a uniaxial deformation.

When the deformation is biaxial, the equi-surfaces
around the extrema are oval; hence a narrow beam
centered at the extremum point propagates into dis-
torted elliptical rings with nonuniform intensity.

We proceed to study nonlinear waves in honeycomb
photonic lattices. Reference [6] has demonstrated
solitons in honeycomb lattices, residing in the gap be-
tween the second and third bands, but no solitons
were found between the first and second bands. In
this context, there is a common conjecture that (the
propagation constant of) solitons in continuous peri-
odic systems must reside in gaps (either the semi-
infinite gap beyond the first band or the gap between
two bands). An ideal honeycomb lattice has no com-
plete band gap between the first two bands; hence it
is expected that it would not support solitons arising
from the edge of the first Brillouin zone. A honeycomb
lattice with deformation beyond �c does exhibit such
a gap. Indeed, we find solitons in our deformed hon-
eycomb lattices for any ��0.82. The lattice can sup-
port a soliton only if the propagation constant of the
soliton, �s, resides inside the gap. We find solitons
with typical intensities B�0.01−0.05, much smaller
than both 1 and Iind; hence �n	�n0 / �1+Iind�
−B�n0 ��2 � / �1+Iind�2
V0+BW, where V0 and W are
linear and nonlinear contributions to �n, respec-
tively. Now we can express �s in terms of B and ���2
and give an estimate for the gap. We find that �s
=k /n0���s�H0��s−B��s�W��s�, where H0=��

2 / �2k�
+V0k /n0. Note that the soliton intensity has a maxi-
mal value, Bmax, since greater values push the soliton
outside the gap into the second band (where it disin-
tegrates); hence �max

�II� 	�s�B=Bmax� (maximum of the
second band). On the other hand, for vanishing B,
�s�B=0�	k /n0��s �H0 ��s coincides with �min

�I� (mini-
mum of the second band), and therefore the band gap
is ��
��min

�I� −�max
�II� ��Bmin��s �W ��s. One can there-

fore find the soliton existence range from experi-
ments and calculate ��.

We follow the dynamics of a soliton as the lattice
deformation is gradually decreased. We find that the
localized nonlinear eigenstate of the system is a suit-
able probe for the existence of a given gap. Techni-
cally, we use the self-consistency method for a lattice
with a specific deformation, find such an eigenstate,
and study its dynamics by simulating its propagation
using Eq. (1) for a variety of lattices in which the in-
put is not an eigenstate, as shown in Fig. 3. Our
simulations reveal that the dynamics of the nonlin-
ear probe dramatically changes when the deforma-
tion crosses a threshold value (which depends on the

Fig. 2. (Color online) (a) Input beam with no angular de-
pendence. (b) Conical diffraction; the equation of the con-
tour is �x /320�2+ �y /320�2=1. (c) Elliptical diffraction for �
=0.98; the equation of the contour is �x /310�2+ �y /330�2=1.
(d) 1−R (R axes ratio) of the ellipses increases rapidly with
deformation of the lattice.
intensity of the probe), for which the propagation
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constant (eigenvalue) �s is too close to one of the
bands.

The following describes our simulations where we
launch such a localized beam into the deformed lat-
tice, under various conditions. When the beam is
propagating linearly in the slightly deformed (or non-
deformed) lattice, it exhibits diffraction broadening
after some propagation distance Z0=0.6 cm, shown in
Fig. 3(b). As we apply the nonlinearity, the behavior
of the wavefunction dramatically changes for two
cases. When the deformation is such that the gap is
sufficiently large, the beam propagates without any
significant change, as the input wavefunction adjusts
adiabatically to the parameters of the deformed lat-
tice. The actual value of the deformation ratio hardly
affects the propagating wavefunction, and the probe
beam evolves into a gap soliton, a stable nonlinear
self-localized state, as shown in Fig. 3(c). This is true
also when the probe beam is initially not an eigen-
state of the lattice; the beam evolves into a gap soli-
ton, as long as the lattice deformation is sufficient.
However, as the lattice deformation decreases and
crosses the threshold value, the gap is too small to
support the particular nonlinear probe, and the
wavepacket disintegrates, as shown in Fig. 3(d).

In conclusion, we have studied linear and nonlin-
ear wave dynamics in deformed honeycomb lattices.
As the lattice deformation increases, the diabolic
points get closer together until they merge, then com-
pletely disappear, and a gap opens up between the
first two bands. As the lattice increasingly deforms,
conical diffraction of beams associated with the dia-
bolic points becomes elliptic with its eccentricity ris-
ing rapidly with lattice deformation, accompanied by
a dark ring. Once the lattice is sufficiently deformed,
it can support a robust gap soliton residing in the gap
between the first two bands. The existence of such a
gap soliton can be used as an experimental probe for
the presence of the gap, which provides an estimate
of its magnitude. Last but not least, this work is in
fact a precursor for exploring the intriguing possibil-

Fig. 3. (Color online) (a) Input intensity, (b) linear propa-
gation of a nonlinear eigenstate at three diffraction
lengths, (c) nonlinear propagation of a nonlinear eigenstate
at �30 diffraction lengths, and (d) nonlinear propagation
in a lattice with a gap not large enough to support a gap
soliton at three diffraction lengths.
ity of observing Anderson localization in honeycomb
lattices containing disorder. The technique to carry
out such experiments was demonstrated recently
[14]. However, investigating Anderson localization
specifically in honeycomb lattices is so interesting ex-
actly because of these diabolic points, with the
unique transport properties of the Bloch modes asso-
ciated with their vicinity. The present work shows
unequivocally that, even when the degeneracy at the
diabolic points is removed and very small gaps open
up, the dispersion curve at the vicinity of these points
is still linear, that is, dispersionless, even in the pres-
ence of considerable deformations of the honeycomb
lattice. This is a crucial issue, because, if every small
deformation had caused major modification of this
unique dispersion curve, then the questions regard-
ing localization on honeycomb lattices would simply
reduce to known results in any 2D lattice. In this
sense, the present work suggests that Anderson local-
ization in honeycomb lattices will indeed exhibit
unique features, arising from the unique transport
properties at the vicinity of the diabolic points.
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