FEEDBACK AND MERGERS AT Z=2-5 AND IN LOCAL E+A GALAXIES

Hagai Netzer

With a LOT of help from Benny Trakhtenbrot, Paulina Lira, Dalya Baron

May, 2017

Main questions

- Have we found evidence for feedback capable of quenching SFR in the most luminous AGN at z=2-5
- Are mergers essential for triggering the most luminous starbursts at high z?
- Do we know how ULIRGs end their SF phase (the case of local E+A galaxies)?
- How much can we trust numerical simulations of AGN feedback?

The most massive and most luminous active BHs

Netzer and Trakhtenbrot 2012 Adapted from Benny Trakhtenbrot presentation

ංන akhtenbrot olot adapted

How to grow a SMBH in ~1 Gyr?

plot adapted from Trakhtenbrot & Netzer 12

BH growth rate through cosmic time

The hosts of the most luminous AGNs at z=2-3.5

Netzer et al 2016

The most luminous AGNs and the highest luminosity SF galaxies at z=2-5

What is the typical SFR in AGN hosts? What are the SFRs in the undetected Herschel hosts? Is this due to feedback? (see R. Maiolino talk)

Netzer et al. 2016

ALMA cycle 2 observations of six fastgrowing SMBHs at $z\sim4.8$

- In 3 sources we detect 20-40 kpc companions: One Herschel detected and 2 not-detected
- Some very powerful starburst galaxies do not have (clear) companions
- The observed companions are SMGs. They allow us to confirm the median Herschel SFR - i.e. hosts are on the Main Sequence of SF galaxies

ALMA Observations of fast-growing SMBHs at $z{\sim}4.8$

The fraction of starbursting systems quenched by feedback at high redshift

At z=4.8 ~0% At z=2-3.5 33-66%

Main questions

- Have we found evidence for feedback capable of quenching SFR in the most luminous AGN at z=2-5
- Are mergers essential for triggering the most luminous starbursts at high z?
- Do we know how ULIRGs end their SF phase (the case of local E+A galaxies)?
- How much can we trust numerical simulations of AGN feedback?

The most accurately timed AGN feedback: ULIRGs and E+A galaxies

Baron et al. 2017

E+A galaxies: NLR, outflow or both?

Outflow signature in several emission lines:

Mass outflow rate = $M/t \sim (L(Ha)/n)/(R/v) \sim 1/nR$ Emission line (blue wing) ratios ~ L/nR^2 Mass outflow rate ~ LR Example : Mass outflow rate = 83 R_{kpc} Msun/yr

Timing feedback A toy model with real masses

Questions: Is this a continuous ~100 Myr-long feedback? Can such an outflow shut off, abruptly, SF in ULIRGs?

Main questions

- Have we found evidence for feedback capable of quenching SFR in the most luminous AGN at z=2-5
- Are mergers essential for triggering the most luminous starbursts at high z?
- Do we know how ULIRGs end their SF phase (the case of local E+A galaxies)?
- How much can we trust numerical simulations of AGN feedback?

תודה רבה – Thank you

Thank you Ari and Ehud

- Thank you Reuma and the Technion
- We will visit you again when we know how to simulate AGN feedback