AGN Obscurers

Jelle Kaastra SRON & Sterrenwacht Leiden

The NGC 5548 campaign

2

Why a campaign on NGC 5548?

- Successful campaign on Mrk 509 in 2009
- Time for another target: NGC 5548
- One of two best studied Seyfert 1 galaxies (2400 publications over half a century)
- Source was not observed since 2001 with XMM-Newton and 2007 with Chandra

Set-up campaign

- 14 x 50 ks with XMM-Newton (RGS, EPIC, OM)
- 6 x HST/COS
- 4 x NuSTAR
- 4 x INTEGRAL
- 3 x Chandra LETGS
- Daily Swift monitoring (XRT, UVOT)
- Ground-based support (Israel, Chile)
- Core June/July 2013, 2 observations ½ year later

- 1) Low-ionisation UV lines never seen before
- 2) No RGS data?
- 3) Strongly absorbed X-ray spectrum EPIC
- 4) Broad UV absorption lines

- 1) Low-ionisation UV lines never seen before
- 2) No RGS data?
- 3) Strongly absorbed X-ray spectrum EPIC
- 4) Broad UV absorption lines

- 1) Low-ionisation UV lines never seen before
- 2) No RGS data?
- 3) Strongly absorbed X-ray spectrum EPIC
- 4) Broad UV absorption lines

- 1) Low-ionisation UV lines never seen before
- 2) No RGS data?
- 3) Strongly absorbed X-ray spectrum EPIC
- 4) Broad UV absorption lines

Strong absorption but normal high-E flux

What is the obscurer and where is it?

- UV BLR covered by 20-40% → R 2-7 lightdays from core (~10¹⁴ m)
- WA de-ionized \rightarrow R< 3 pc (10¹⁷ m)
- F_{cov} high \rightarrow likely close to BLR
- High velocity up to 5000 km/s → close to BLR
- Variations in obscuration @ 2 days: for size ~20GM/c² and M=4x10⁷ M_{sun}, needed crossing velocity ~3000 km/s → comparable to v_{rad}
- Line of sight inclined by about 30 degrees (Pancoast et al. 2014) → predominantly poloidal outflow (from accretion disk?)

Obscuring stream

- Two components:
- Main: log ξ = -1.2, N_H=10²⁶ m⁻², f_{cov}=0.86 (X-ray) and ~0.3 in UV; produces UV BAL
- Second: almost neutral, N_H=10²⁷ m⁻², f_{cov}=0.3 (X-ray) and <0.1 in UV
- Partial covering inner BLR, v up to 5000 km/s, inside WA → distance few light days (~10¹⁴ m, 0.003 pc)
- Obscuration already 3 years ongoing

Obscured SED modeling

Another case: NGC 985

(Ebrero et al. 2016)

Obscuration seen in August 2013 Present but weaker in Jan 2015

Mrk 335

The case of Mrk 335

- UV data non-simultaneous with X-ray
- X-rays: more like "normal" WA (high ξ) in medium flux state (with UV BAL)
- Published by Longinotti et al.

Statistics

- Markowitz et al. (2014):
- 260 years observing time RXTE
- 12 X-ray eclipse events in 8 sources
- NGC 3783 is one of them

New high-ionisation component

24

Complex modeling

- Need model with <u>48 components</u>
- Includes 16 *pion* components, all stacked and influencing each other
 - 2 for the emission lines
 - 11 for the WA (different v, ξ)
 - 3 for the obscurer
- 19 free parameters (L/ ξ is fixed)
- Fit: optical to hard X-ray spectrum
- 80 s calculation time per full model allows interactive fitting
- Forthcoming paper: Mehdipour et al. 2017 (submitted to A&A Letters)

Balmer line absorption?

27

Comparison between sources

Comparison of sources

	NGC 5548	NGC 985	Mrk 335	NGC 3783
Components	2	1	?	3
N _H (10 ²⁶ m ⁻²)	1 & 10	2	?	20 & 5 & <mark>2</mark>
$\log \xi$	-1 & <-2	-1	?	-1.8 & -1.8 & <mark>3.7</mark>
F _{cov} (X-ray)	0.86 & 0.30	0.92	?	0.4 & 0.5 & <mark>1</mark>
UV Center (km/s)	-1000 (up to - 6000)	-6000	-6500	-1900 & -1900 & - <mark>2300</mark>
UV FWHM	3000	1400	750	2500 & 2500 & 6000
UV depth	40%	25%	15%	30 %
Duration	> 6 years continuous	> 18 month??	Frequently, month?	1 month

Questions

- what is the difference between obscuration and an eclipse?
- What are the timescales for obscuration: weeks, years, centuries?
- where is the obscuring stream originally born and how?
- is there a connection between certain accretion disk behavior and the obscuration?
- What fraction of the AGN continuum is covered by the obscuration?