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* Accretion onto a black hole proceeds through the formation of a disk.

* The standard disk model is that of Shakura and Sunyaev (S573) which
assumes the viscous stresses needed to remove the fluid’s angular
momentum is proportional to the local pressure t,, = a P
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* We also have hydrostatic equilibrium in the z-direction
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* The energy release per unit surface area is ( o, = (3/4)Q=(3/4)(GM/r3)}2 )
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* The energy released from infinity to r_isco =r, is
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* The potential energy releasetor;isV = GMMT—
1

However because 2T+V=0 only half of it is available for heat. The rest
remains as kinetic energy T = V/2



* What about the factor (3/2) in ZQW(,,I):/WMQMWEM@ ?
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* This extra energy is due to the energy transferred by the viscous
torques!
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* It iIs important to bear in mind that besides ang. momentum viscous
forces transfer also energy. This can make the local energy E>0. Loss

of excess energy in winds across entire disk (Blandford & Begelman 99).
* It is generally assumed that all this energy is dissipated locally!
* Setting this equal to r2 6T® we infer that T ~ r3/4

The disk temperature is then T~ 10%5(M/Mo)(*/4) . For quasars M~ 108
Mo, T ~ 30,000 K, and the emission represents the so called Big Blue
Bump (BBB).
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Some questions concerning the AGN SEDs

* Why such a large difference in a_,?

* If the disk is BB emission from a disk extending to ISCO, why such a
arge range in X-ray emission?

* |t appears that the BBB/X-ray ratio depends on the accretion rate (in
Eddington units).

* Microlensing indicates that the X-ray emitting plasma is smaller than
that of the UV emitting one (Patchy Corona?).

* If X-ray emission is due to a corona, is this a free parameter to be
adjusted?

* The corona (in most cases) should not cover the entire (inner
segment) of the disk (Haardt & Maraschi 92).



Winds

111

* 50% of all AGN are observed to have UV absorbers, blue shifted by up

to 10,000 km/s.

* 50% of all AGN X-ray spectra have X-ray absorption features, blue

shifted by up to ¢/2 and as low as 200-300 km/s.
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Winds from Galactic Black Holes
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* How can we have winds with different velocities along the line of
sight? (1. we observe the acceleration of the wind; 2. winds are
inherently 2D, LoS cuts through segments of different velocities)

* We do see ions (along the line of sight) at very different values of
their ionization parameter €.

* Radiatively, or thermally driven winds achieve asymptotically
velocities v ~ 1/r?, at which point € is constant. => Lower § segments
should be associated with the wind acceleration, i.e. they should have
smaller velocity v and higher column N, (assuming nearly spherical
geometry).

* Considering that § =L / nr? and that Mdot ~ vnr? ~(L/ &) v,
measuring &, v we can estimate the mass flux associated with a given
ion. This is found to be greater than that necessary to power the BH!

* Most available mass never reaches the BH; it escapes in the wind!



Why X-Ray Spectroscopy?

* The presence or not of a specific ion depends on the ionization
parameter§ =L/ nr?=L/N,r.

* The advantage of X-ray spectroscopy is that it can access all states of
ionization (5-6 decades in &) within a factor of 20 in X-ray energy.

* By measuring the absorption depth (column) of widely spaced in &
ionic species we can then obtain a good estimate of the absorber
density along our lines of sight

* AMD(E) = dN, / dlogg ~ (log&)P
e Distribution of column with logé (AMD)



Absorption Measure Distribution
(AMD)

AMD(E) = dNy, / dlogg ~ (log&)P

~ log(T) [K]
5.0

4-0 4.5 5_5 6.0 2.: B T T T | T T T T | T T T T
1 | 1 | | L
I I l ' l ¥ L B i
1023- - : . N{J(._-‘ ."Hl‘.‘ .
] IRAS 13349+2438 : nsf M IRAS 1334942438 -
. ] - & MCG-6-15-30
— ] : B A NGO 5548
o i T A NGC 7460
- 3 = .
T = -
= . = 2151
€ 21 o - Z
s 107 I
© - ] =) -
= ] = 2+
= . = B
Lﬁ- 1020‘- ™ i“ +
] 205
. (0.02 < p < 0.29)
10" 4 E 20
3 . : - : T B | | | 1 | | | | 1 1 1 | 1 1 1 1 1 1 1 1
1 0 1 2 3 4 ! ! ! : 3

. -1
log € [ergem s |

log(&) [erg cm s7']



Some Simple Estimates/Conclusions
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LoS Radiation Transfer

Photoionization with XSTAR (e.g. Kallman+Bautista01)
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Fig. 2. A model X-ray absorption line spectrum of the Galactic black hole
GRO J1655-40 (blue lines) overlaid on the Chandra data. The line widths and
depth are all obtained from a single wind model and not modeled individually.
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The model —the same we employed to model AGN - provides also the
velocity structure of the absorption lines.
We find that the wind density profile that fits the data best is
proportional to 1/r1-2

normalized counts s=!' A~ cm=2
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Figure S4 EW ratios between our model and data for o« = —0.1,0,0.2 and 0.4.



General Model Assumptions

* The winds are two dimensional (2D axisymmetric).

* We have assumed self-similarity, so all parameters run as power-laws
of the radius with the same dependence on the polar angle 0, with
velocity V ~ 1/r(1/2)

* They extend across the entire disk domain (to the point that the
Keplerian velocity V, is comparable to the velocity dispersion o of the
overlying spheroid (half the distance to the companion in XRBs).

* Their inner segements are fully ionized with the highest & ions (Fexxvi-
Fexxv) having the highest velocities. These depend on the ionizing
radiation of their SEDs (low X-rays = high velocity V — BAL QSO,
high X-rays = low V, XRBs)
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Correlations with Outflow Velocity

Velocity Dependence on SED (X-ray Slope)
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Application to GRO J1655-40

* GRO J1655-40 is a Galactic BH low mass binary. It exhibits the entire
suit of states that these objects do as a function of time and mdot (g-
diagram).

* |n its soft state it exhibited a large number of high S/N absorption
features that make it ideal for applying our variable mdot models.

* The model has 3 parameters: the wind mass flux, its radial
dependence (assuming to be a power law) and the observer
inclination angle.

 We compute the entire wind ionization and choose the parameters

that provide the best agreement with the data (Fukumura, DK, Shrader, Behar;
Tombesi, Contopoulos, 2017, Nature Astronomy, 1, 62)



Implications of Global Wind Structure

* There is mounting evidence that the accretion disk winds mass flux
increases with distancer.

 Therefore the disk accretion rate must decrease with r!

* Therefore mdot will become sufficiently small that would support an
ADAF disk, interior to some radius r,.

» As the overall mass accretion rate Mdot increases (relative to that of
Eddington) r, decreases. Then, the BBB flux relative to the X-rays
increases. The X-rays are emitted by the ADAF segment of the flow
interior to r,.



* Assume that we do have a wind density profile close to n(r) ~ 1/r

 Then, the wind and accretion disk mass fluxes will be of the form
mdot ~ mdot, x/? .

* Assume that at x <~ x, = rt/R; mdot ~ mdot, x,'/? < a?
* Then the flow reverts to a less efficient ADAF (ADIOS).
* Then

o |
Lx > x,) f ) 7 eydin ~ ”ffz

Xtr x xn»

BBB disk emission

X gir (X 2 X, X 1/2
L(x < Xxp) X [ (Y) J(x)dlnx ~ ’hé |:l” (_r) — 20+ 2¢ (_1) X-ray emission

X7 x] xa“i‘



The ratio of luminosities emitted at radii larger (BBB) and smaller (X-rays) to the
transition radius is given by

R_L(x>xﬁ~)_ | L1 1
 L(x <xy) gy xM/? P2 a® P2

Ir

where

This ratio is given graphically by the next figure



Still need to understand
the precise spectral

distribution between
I'X <L uv (BAL QSO) the BBB and the X-Rays

Ly “ Lyv (Seyferts)
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Variation of properties, phenomenology with increasing global accretion rate (g-diagram)
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Summary - Conclusions

* There is mounting evidence of the ubiquitous presence of outflows associated
with accreting black holes.

* The broad range of ionized species and their velocities imply a broad range of
launching radii, inconsistent with radiatively driven winds.

* The distribution of absorbing columns with & provides a measure of the wind
density with r. This implies that the wind mass flux increases with distance from
the black hole! = MHD launching.

* It also implies the disk mass flux decreases with decreasing r (ADIOS)! As a result
there exists a radius below which the disk makes a transition to an ADAF, a region
where the entire X-ray emission is located. This makes X-ray emission integral
part of dynamics of accretion, rather a corona with arbitrary geometry and
properties.

* The transition radius, which determines the relative importance of the X-ray to
BBB emission, depends on the global (normalized) mass flux.



Summary — Conclusions (continued)

* The wind ionization properties, in turn, depend on the amount of X-rays in the
spectrum:

* Low X-ray content implies little ionization, even very close to the BH = High velocities absorption
features (BAL).

» High X-ray content (transition to ADAF at large r), implies highly ioninzed inner wind regions = Lower
velocity absorbers (UFO, Seyfert Warm Absorbers).

» The BBB of Galactic sources is in X-rays =2 Low Absorber Velocities.

* Motivated by the X-ray absorber properties we have produce a general framework that reproduces the
global, broad-brush-stroke properties of accreting black holes, in general, across the 10 — 10° mass
scale with main fundamental parameter the (normalized) mdot.

* It suggests that AGN and Galactic accreting BH systems extend over many scales in radius (~10° Rg,,,,)
and are largely driven by magnetic forces, which expel their excess angular momentum needed to
achieve accretion in MHD winds.

 What is the origin of these magnetic fields? (Cosmic Battery?)



