Dusty windshield

Radiative magnetohydrodynamics simulations of IR and UV radiation pressure on dusty AGN tori

Chi-Ho (Edwin) Chan with Julian H. Krolik (JHU)

Hebrew University of Jerusalem & Tel Aviv University

May 25, 2017

Geometrical thickness of the obscuring torus

Ramallah

Dynamical models of the obscuring torus

- Warped disk (e.g., Phinney 1989) blocks large solid angle only with severe warps and twists
- Clumpiness (Krolik & Begelman 1988) needs unusual magnetic fields to counter inelastic collisions
- Magnetocentrifugal wind needs large-scale magnetic fields
- Supernovae needs more energy than observed
- Stellar ejecta ties torus lifetime to starburst
- Radiative support has not been tested with full radiative hydrodynamics (RHD)

(e.g., Königl & Kartje 1994)

(e.g., Wada & Norman 2002)

(e.g., Schartmann et al. 2009)

(e.g., Pier & Krolik 1992)

Dynamical models of the obscuring torus

- Warped disk (e.g., Phinney 19 blocks large solid angle only with severe warps and twists
- Clumpiness (Krolik & Begelman 19 needs unusual magnetic fields to counter inelastic collisions
- Magnetocentrifugal wind needs large-scale magnetic fields
- Supernovae
 needs more energy than observed
- Stellar ejecta ties torus lifetime to starburst
- Radiative support

has not been tested with full radiative hydrodynamics (RHD)

(e.g., Königl & Kartje 1994)

(e.g., Wada & Norman 2002)

(e.g., Schartmann et al. 2009)

(e.g., Pier & Krolik 1992)

Interaction between gas and radiation

- Requires simultaneous solution of gas and radiation
- Requires quality RT near photosphere

Outline

1. Our recent radiative magnetohydrodynamics simulations

2. Lessons about torus-scale inflow and outflow

Our recent radiative magnetohydrodynamics simulations

Simulation code

Simulation parameters

Luminosity

0.1 times Eddington

IR opacity

20 times Thomson if below sublimation

Optical depth

Thomson: 2 Infrared: 40 extrapolatable to realistic AGNs

Central mass

0.8 solar mass

UV opacity

80 times Thomson if below sublimation

Angular momentum

flat radial profile

genuinely arbitrary

Simulation domain

Radiation-driven inflow–outflow

1/2

colors: dust model from VLTI line: maser disk

orange: 12 µm green: system axis (100 pc)

Tristram et al. 2014)

(Wilson et al. 2000)

colors: dust model from VLTI line: maser disk yellow: ionization cone

orange: 12 µm green: system axis (100 pc)

Tristram et al. 2014)

Cartoon of inflow–outflow torus model

Kinematics fits expectations

$$\dot{M}_{\rm wind} \sim \frac{L_{\rm UV}}{cv_{\infty}} \qquad \frac{L_{\rm kin}}{L_{\rm UV}} \sim \frac{v_{\infty}}{c} \qquad v_{\infty}^2 \equiv \frac{GM}{R_{\rm in}} \frac{L_{\rm UV}}{L_{\rm E}} \frac{\kappa_{\rm UV}}{\kappa_{\rm T}}$$

Mass loss rate and speed match observed

$$\dot{M}_{\text{wind}} \sim 0.2 \, M_{\odot} \, \text{yr}^{-1} \times \left(\frac{M}{10^7 \, M_{\odot}}\right)^{3/4} \left(\frac{L_{\text{UV}}/L_{\text{E}}}{10^7 \, M_{\odot}}\right)^{3/4} \\ v_{\infty} \sim 900 \, \text{km} \, \text{s}^{-1} \times \left(\frac{M}{10^7 \, M_{\odot}}\right)^{1/4} \left(\frac{L_{\text{UV}}/L_{\text{E}}}{0.1}\right)^{1/4} \right)^{1/4}$$

temporal variation: 10%

Radiation-driven outflow explains AGN outflows

Covering fractions are close to observed type-2 fraction

 $\begin{array}{c|c} 0.71 \lesssim C_{\rm IR} & \lesssim 0.73 \\ 0.77 \lesssim C_{\rm UV} & \lesssim 0.82 \\ 0.78 \lesssim C_{\rm soft} & \lesssim 0.83 \\ 0.15 \lesssim C_{\rm hard} \lesssim 0.28 \end{array}$

due to mid-plane and outflow; same for all central mass

_ due to mid-plane; dependent on central mass

Flat column density distribution agrees with X-ray studies

Radiation-driven outflow explains AGN obscuration

Covering fractions are close to observed type-2 fraction

 $\begin{array}{c|c} 0.71 \leq C_{\rm IR} \leq 0.73 \\ 0.77 \leq C_{\rm UV} \leq 0.82 \\ 0.78 \leq C_{\rm soft} \leq 0.83 \end{array} \qquad \begin{array}{c} {\rm due \ to} \\ {\rm same \ f} \\ 0.15 \leq C_{\rm hard} \leq 0.28 \end{array} \qquad \begin{array}{c} {\rm due \ to} \\ {\rm due \ to} \\ {\rm dependent} \end{array}$

due to mid-plane and outflow; same for all central mass

___ due to mid-plane; dependent on central mass

Flat column density distribution agrees with X-ray studies

Radiation-driven outflow explains AGN obscuration

Spotting dusty windshields in the wild

How can we measure the physical properties of the outflow?

How can we measure the geometrical thickness of the inflow?

Lessons about torus-scale inflow and outflow

Simulation parameters

Torus as a flow-through system

Constraint from mass

- UV and IR shave off high-latitude dusty gas
- Mass loss rate is 0.1 M_{\odot} yr⁻¹
- But assuming $M = 10^7 M_{\odot}$, $L_{\rm UV}/L_{\rm E} = 0.1$, $\tau_{\rm T} = 1$:

 $\begin{array}{ll} \text{Mass} & \sim 2\pi r_{\rm ds}^2 \tau_{\rm T}/\kappa_{\rm T} & \approx 7 \times 10^3 \, M_\odot \\ \text{Orbital period} & 2\pi \, (GM/r_{\rm ds}^3)^{-1/2} \approx 5 \times 10^3 \, {\rm yr} \end{array}$

Mass must be resupplied from galactic scales

Constraint from angular momentum

- 1. Isotropic pressure demands sub-Keplerian rotation
- 2. UV and IR provide additional radial momentum

Angular momentum must be sub-Keplerian

Constraint from angular momentum

- 3. Accretion toward inner edge requires low angular momentum
 - Inflow timescale due to stresses is ~ $[\alpha (H/R)^2\Omega]^{-1}$
 - Inflow timescale at all radii must be comparable to outflow timescale

Angular momentum must be low or rapidly removed

Constraint from energy

- Radiation does positive work on outflows
- Binding energy of torus decreases
- Torus eventually becomes unbound

Energy must be kept **low**

Constraints on inflow of steady-state torus

- 1. Mass must be resupplied from galactic scales
- 2. Angular momentum must be sub-Keplerian
- 3. Energy must be kept low

How can mass resupply satisfy constraints 2 and 3?

- Stresses in inflow rapidly remove angular momentum and energy
- Mass resupply has inherently low angular momentum and energy

How can we measure the rotational profile of the inflow?

Summary

- Torus in RMHD simulations settles into steady inflow–outflow
- IR in central hole drives high-latitude, wide-angle outflow with expected:
 - kinematics
 - obscuration properties
- Steady-state irradiated tori must:
 - be resupplied with mass
 - have sub-Keplerian rotation

MAE

MAE

References I

- Asmus, D., Hönig, S. F., & Gandhi, P. 2016, ApJ, 822, 109
- Braatz, J. A., Wilson, A. S., Gezari, D. Y., Varosi, F., & Beichman, C. A. 1993, ApJL, 409, L5
- Gnedin, N. Y., & Abel, T. 2001, NewA, 6, 437
- Jiang, Y.-F., Stone, J. M., & Davis, S. W. 2014, ApJS, 213, 7
- Königl, A., & Kartje, J. F. 1994, ApJ, 434, 446
- Krolik, J. H., & Begelman, M. C. 1988, ApJ, 329, 702
- Phinney, E. S. 1989, in NATO Advanced Science Institutes Series C: Mathematical and Physical Science, Theory of Accretion Disks, ed.
 F. Meyer, W. J. Duschl, J. Frank, & E. Meyer-Hofmeister, Vol. 290 (Dordrecht: Kluwer), 457
- Pier, E. A., & Krolik, J. H. 1992, ApJL, 399, L23
- Schartmann, M., Meisenheimer, K., Klahr, H., et al. 2009, MNRAS, 393, 759
- Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B. 2008, ApJS, 178, 137
- Tristram, K. R. W., Burtscher, L., Jaffe, W., et al. 2014, A&A, 563, A82
- Wada, K., & Norman, C. A. 2002, ApJL, 566, L21

References II

Wilson, A. S., Shopbell, P. L., Simpson, C., et al. 2000, AJ, 120, 1325