The Physics, Observational Signatures, and Consequences of AGN-Driven Galactic Winds

Claude-André Faucher-Giguère Northwestern University I CIERA

With Eliot Quataert, Alex Richings, Paul Torrey, Daniel Anglés-Alcázar, Phil Hopkins, Norm Murray, Jonathan Stern, Nadia Zakamska, Joe Hennawi, & Jesse Nims

Wide-angle, galaxy-scale outflows driven by AGN

 Now detected in atomic+molecular (CO, OH, HCN, ..) gas in luminous QSOs at *z*~0-6 (Moe+09, Feruglio+10, Fischer+10, Sturm+11, Rupke & Veilleux 11, Aalto+12, Greene+11, Maiolino+12, ...)

• $R \sim 1-10 \text{ kpc}, v \sim 1,000 \text{ km/s}, dM/dt \sim 1,000$ $M_{sun}/yr, \Rightarrow L_{kin} \sim \text{few }\% L_{AGN}$

 Distinct from radio jets acting in clusters

Outline

• Spherically-symmetric dynamics of AGN-driven galactic winds

• energy-conserving \Rightarrow momentum fluxes $\gg L_{AGN}/c$

• Observational signatures

molecule formation at wind shocks

• Effects on galaxies: 3D simulations with stellar+AGN feedback

AGN outflow momentum fluxes $\gg L_{AGN}/C$

 If all photons scatter once & *P* is conserved,

$$\dot{P} \sim L_{\rm AGN}/c$$

Observations indicate

 $\dot{P} \sim 20 L_{\rm AGN}/c$

FG, Quataert & Murray 12; FG & Quataert 12

Momentum conserving

 $t_{cool} \ll t_{flow}$

No thermal pressure

 $P_{final} \sim P_{start}$

e.g., evolved star wind

Energy conserving

 $t_{\rm cool} \gg t_{\rm flow}$

Shocked gas does pdV work

 $P_{final} \gg P_{start}$

e.g., Sedov-Taylor SN remnant

FG & Quataert 12 (s.a. King 03, Costa+14)

AGN-driven galactic winds are energy-conserving

- Several previous studies predicted AGN-driven outflows to be momentum-conserving because of the short cooling times expected in galactic nuclei (e.g., Silk & Nusser 2010)
- Important heating and cooling physics missed in most simulations

FG & Quataert 12 (s.a. Zubovas & King 12)

Wind shock structure evolution

Cooling dominated by inverse Compton scattering with BH radiation, but slowed by factor ~50 due to weak p^+ , e^- coupling

FG & Quataert 12

Dynamical models for spherical galactic nuclei

⇒ Black hole-driven galactic winds are in energy-conserving

FG & Quataert 12

Energy conservation naturally explains measured QSO outflow momentum boosts

Outline

• Spherically-symmetric dynamics of AGN-driven galactic winds

• energy-conserving \Rightarrow momentum fluxes $\gg L_{AGN}/c$

• Observational signatures

molecule formation at wind shocks

• Effects on galaxies: 3D simulations with stellar+AGN feedback

Cooling of the forward shock

- Shocked wind properties set by jump conditions at (inner) wind shock (v~0.1c)
- Shocked ambient medium
 properties set by jump
 conditions at forward (outer)
 shock (v≤1,000 km/s):

$$t_{\rm cool} \approx 2 \times 10^4 \text{ yr} \left(\frac{n_{\rm ambient}}{10 \text{ cm}^{-3}}\right)^{-} \\ \times \left(\frac{v_{\rm outer \ shock}}{500 \text{ km s}^{-1}}\right)^2$$

FG & Quataert 12 (s.a. Zubovas & King 14, Costa+15)

Time-dependent chemistry in forward shock cooling layer

- 3D hydro
 - illuminated by QSO
 - confined by pressure of wind bubble
- Time-dependent chemistry including:
 - standard cooling/heating
 + Compton from AGN +
 cosmic rays
 - 11 atoms, 20 molecules
 - dust-mediated reactions (assume constant dust)
 - self-shielding

Richings & FG, in prep. (using CHIMES chemical network from Richings+14ab)

Example hydro-chemical simulation

 $L_{AGN}=10^{45} \text{ erg s}^{-1}, v_{in}=0.1c, P_{in}=L_{AGN}/c,$ $n_{ambient}=10 \text{ cm}^{-3}, Z_{\odot}, \text{MW dust-to-metals}, \sigma=200 \text{ km/s potential}$

Richings & FG, in prep.

Molecule formation in cooling forward shock

- As post-shock layer cools
 - pressure from wind
 bubble compresses it
 - density increases
 - molecules form quickly
 - (stars form in wind?)
- Molecular abundances increase with metallicity, AGN power, dust-tometals ratio

All other parameters as on previous slide

Richings & FG, in prep.

Predictions for molecular tracers: CO conversion

- Radiative transfer with RADMC-3D
 - line transfer
 - thermal dust emission, absorption, and scattering

Simulation	$lpha_{ m CO} = M_{ m H_2}/L_{ m CO} a$		
	(1-0)	(2-1)	(3-2)
<i>L</i> =10 ⁴⁶ , <i>Z</i> _☉	0.15	0.08	0.06
10 ⁴⁵ , <i>Z</i> ₀	0.15	0.09	0.07
10 ⁴⁶ , 0.1 <i>Z</i> _☉	1.88	0.88	0.88
	$a_{ m M_{\odot}(Kkms^{-1}pc^2)^{-1}}$		

- Standard ULIRG value: $\alpha_{CO(1-0)}=0.8$
 - observed outflow rates could be biased high by factor ~5 (additional factor ~5 if using standard MW value)

0.8 kpc

Comparison with observed outflows

- Seyfert 1 and 2 CO observations compiled in Cicone+14
- To compare fairly with simulations, apply observational a_{CO} to simulated CO spectra
 - → reasonable agreement with observed molecular outflow rates for Z_{\odot} sims

Richings & FG, in prep.

Warm H₂: mapping AGN winds with JWST era

- >70% of H_2 is warm (~10²-10⁴ K) in sims
- Emits in NIR and MIR rovibrational lines
- Existing AGN wind detections by Spitzer, ground-based
 IFUS (e.g., Ogle+07, Rupke & Veilleux 13, Hill & Zakamska 14)
- JWST MIRI and NIRSPEC
 will observe with IFU
 capability out to cosmic
 noon (*z*~1-3)

Preview: dust+H₂ in M82's star formation-driven wind

Dust (Spitzer IRAS)

Outline

• Spherically-symmetric dynamics of AGN-driven galactic winds

• energy-conserving \Rightarrow momentum fluxes $\gg L_{AGN}/c$

• Observational signatures

molecule formation at wind shocks

• Effects on galaxies: 3D simulations with stellar+AGN feedback

To capture effects of AGN feedback on galaxies, need realistic ISM and stellar feedback

- AGN winds
 - often launched at center of disk
 - expand in multiphase ISM
- We use the GIZMO (FIRE) code:
 - dark matter, gas + stars
 - cooling to $T \sim 10$ K
 - SNe, photoionization, stellar winds, radiation pressure

~0.01 pc res. gas-rich nucleus, SF only

Blue ≈1,000 K, pink ~10⁴-10⁵ K, yellow ≈10⁶ K

Hopkins, Torrey, FG+16

Turning on the AGN

- BAL wind feedback
 - ▶ outflow rate ∝ accretion rate
 - parameterized by initial wind velocity, momentum loading

 Shocked wind expands along paths of least resistance

• Origin of the torus?

Hopkins, Torrey, FG+16

Blue ≈1,000 K, pink ~10⁴-10⁵ K, yellow ≈10⁶ K

BAL wind-induced torus may explain observed column density distribution

Hopkins, Torrey, FG+16

Larger scales: full galaxy simulations

 $L_{AGN}=10^{45}$ erg s⁻¹, $v_{in}=0.1c$, $P_{in}=L_{AGN}/c$ (time steady)

Torrey, FG+, in prep.

Effects of moderate-luminosity AGN on disk galaxies

- Hot wind vents out normal to disk plane once nuclear cavity is opened
- Steady-state SFR negligibly affected by BAL wind
- Effects could be larger in luminous QSOs, especially those with messy inner regions obstructing wind escape

*v*_{in}=0.1c BAL

Torrey, FG+, in prep.

Galaxy-scale feedback hypothesis

For significant direct AGN wind feedback on galactic SFR, need energetic wind (~ galaxy binding energy) <u>and</u> quasi-isotropic covering of the nucleus for efficient coupling, e.g. in major mergers that concentrate gas in galaxy centers.

E.g., if/when a luminous AGN turns on...

is likely to be strongly affected.

is unlikely to have its SFR significantly changed.

Note: Early galaxies ($z \ge 2$) have thicker disks & messier gas morphologies, so they may be in general more affected by AGN feedback than local galaxies.

Summary

- Energy-conserving AGN outflows \Rightarrow momentum fluxes $\gg L_{AGN}/c$
- Forward shocks can cool and form molecules
- Realistic ISM, stellar feedback, and large-scale gas geometry needed to capture effects of AGN-driven winds on galaxies
 - BAL winds from moderate-luminosity AGN have weak effect on the SFR of disk galaxies
 - effects of AGN winds likely enhanced in galaxies with messy nuclear geometries, e.g. in galaxy mergers or high-redshift galaxies