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> In this talk we will consider only massless particles, mostly in
space-time dimensions D =1+5and D =1+ 3.

» Now in D dimensional Minkowski space-time we parametrize
the momentum p#(w, X) of a massless particle as,

pPr=w(l+x2251-%x%), XeRP2=R" (1)

» The corresponding transformation of energy w is given by,
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Soft-theorem and Soft-operators

> Let (As(w,x)) Al(w, x) be the (annihilation) creation
operator of a photon in D dimensions with helicity a. a is a
vector index of SO(D — 2) — the little group of massless
particles in D dimensions.

» Let us now write Weinberg's soft-photon theorem, say, for an
outgoing soft photon,
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where v is a numerical constant. The incoming and outgoing
states are charged scalars with charges g;.




> Let us now define the soft-photon operator S,(x) as,

Sa(x) = lim wAs(w, x) (4)

w—0

(Strominger; He et al. ; Kapec et al. ; Kapec et al. ;
Campiglia et al. ; Kapec et al.)
> In terms of 5,(x) the soft-theorem simplifies,

{({wi, xi, gi, out}| S5 (w, x) |[{wj, x;, qj, in})

ZV(Z"’(X—X =24 x—x)2> (5)
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Lorentz transformation of soft-operators
» The Lorentz group SO(D —1,1) = SO(n+ 1,1) acts on
X € R" as conformal transformations.

» The crucial point is that under Lorentz transformation, S,(x)
transforms like a primary operator of dimension 1 and spin 1,
ie,
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where R,p(x) is the local rotation matrix associated with the
conformal transformation.

Sa(x) =

» This is quite general. In fact, if we formally write down a
Laurent expansion in energy as,

< gn (X)
Aalag...a/(W,X) = Z % (7)
n=-—00
then S! ., (x) is a conformal primary of dimension n and

spin /.



Goal

» We want to study the properties of the conformal

representation with the operators S7 . (x) as
highest-weight vectors. The "theory” in which we do this has
infinite-dimensional global symmetries. These symmetries
impose constraints on the representation and vice versa. In

this talk | will not explain the "vice versa” part.

The constraints on the representation translate into
constraints on the S-matrix elements with the

insertion of the highest-weight vector, i.e, the soft-operator.

» Let me now say a few things about the symmetries.



Symmetry

» The symmetries are asymptotic symmetries in asymptotically
flat space. The well known example is BMS group which acts
on null-infinity. The standard BMS group is a semi-direct
product of the Lorentz group SO(D — 1,1) and the
infinite dimensional abelian group of super-translations. The
supertranslations are generalisations of the D global
space-time translations.

» For example, if we write the metric in Bondi coordinates
(r,u,x), then at null-infinity (r — oo) supertranslation acts
as,

X=X, u—u+f(X) (8)
where f(X) is an arbitrary function on the celestial sphere

SP=2, with (stereographic) coordinates X.

» Another important point is that the Lorentz group
SO(D —1,1) acts on the celestial sphere S°~2 as conformal
transformations.



» Strominger has shown that these asymptotic symmetries are
also symmetries of quantum-gravity S matrix.

» From a holographic perspective - assuming that such a thing
exists in flat space - then S-matrix is the natural observable
and the asymptotic symmetries are infinite dimensional
global symmetries of the dual theory. The (infinite) global
symmetry acts on the set of S-matrix elements and, hopefully,
constrain their form to some extent.

» Remember that this infinite global symmetry is an extra
ingredient on top of the usual unitarity, crossing,
analyticity............ But, how to use it 77



Ward-identities

» Now, like Poincare — BMS, there is a parallel story for
electromagnetic gauge transformation in the bulk. In this

case, the asymptotic symmetries are large U(1) gauge
ief (%)

transformations of the form e , where the rotation angle
f(X) is now an arbitrary function on the celestial sphere. Let
me try to motivative this from a QFT perspective.

> Let us consider a theory of free massless charged scalar fields.

» This theory has a U(1) global symmetry and the conserved
charge can be written as,

Qo = e/du(w,x)(af(w,x)a(w,x) — bf(w, x)b(w,x))  (9)



» We can generalize this by defining Qo(f) as,

Qo(f) = e/du(w,X)f(x)(aT(w,x)a(w,x) — bl (w, x)b(w, x))

where f(x) is an arbitrary function. In free theory Qu(f) is
also conserved and we have an infinite number of them,
corresponding to each function f(x). (Banerjee)

» It acts on the states as,

efQO(f) bJ[(w’ X)e—iQo(f) — e—ief(x) bT(w, X) (10)
We can see that Qp(f) generates a U(1) rotation at every
point x. So the free theory has an infinite-dimensional global
U(1) symmetry.




> Using the Lorentz transformation property of the
creation-annihilation operator it is easy to check that,

UNQo(NUMN) ! = Qo(f'), f'(x)=f(A"x)  (11)
» Now, in the interacting charged scalar theory, with non-trivial
S-matrix, the analog of Qy(f) is not conserved, unless, you

have photon in the theory. In other words, the interacting
theory must be a gauge theory.

> In this case the conserved charge can be written as,

Q(f) = Qu(f) + Qs(f). Qu(f) is called the hard-charge and
is required to generate the U(1) transformation on the
charged particles, i.e,

QI(f) |av, in) = <quf Xk ) v, in)

kea (12)
(5,00t (1) = (5. 0utl (- aur (s
kep

(Strominger; He et al. ; Kapec et al. ; Kapec et al. ;
Campiglia et al. ; Kapec et al.)



But, unlike in the case of free theory, in the interacting theory,

QH(F) # QE"(f)

The statement of conservation is,

Q(F) = QE() + Q¥(F) = QE*(F) + Q3"(F)

This can be written in the form of a Ward-identity as,

(B, out| QE“(f) |av, in) — (B, out| QE(f) |ev, in)
~ (St = X aro)) (3, oula i
iEa iep
This is the Ward-identity for the infinite-dimensional
(asymptotic) global U(1) symmetry.
For the purpose of this talk the Ward-identity is an

assumption. In other words, the theories we study are
partly defined by the ward-identity.

(13)

(14)

(15)



Lorentz transformation of soft-charge Qs(f)

» Now using Lorentz invariance of the S-matrix, one can show,
using the Ward-identity that,

UM QE“(HUN) = Q§“(f)

) N (16)
UNQZ(NHUN = QZ()
where
f'(x) = F(AN"1x) (17)
(Banerjee, Pandey, Paul)
» Let us now write,
as(f) = [ d"xf(x)0(x) (18)

where O(x) is another (local) operator and n = D — 2.



» We can write this because it follows from the Ward-identity
that Qs(f) is a linear (operator-valued) functional of f, i.e,
Qs(af + g) = aQs(f) + Qs(g) for any a € C. Now if we
think of f as a vector |f) in an infinite dimensional Hilbert
space then we can write, Qs(|f)) = Qs(J d"xf(x) |x)) =
[ d"xf(x)Qs(|x)) = [ d"xf(x)O(x). Here we have defined
O(x0) = Qs(|x0)) = Qs(f(x) = 6"(x — xo))-

» Now if we use the Lorentz transformation property of the
soft-charge Qs(f) then one check that,

ox'|»
Xn

UNO(x)UN) ™t = 0'(x) = o

O(X')
where x’ = Ax and A = n.
» Since Lorentz transformation acts on the x € R" coordinates

as conformal transformations, this shows that
O(x) is a scalar conformal primary of weight A = n.




Two assumptions

» There are an infinite number of operators denoted by
SaAlaz“a/(x), not all of which are trivial and which transform
under (Lorentz) conformal transformation as a primary
operator of weight A and spin /. We also add to this list all
the conformal descendants of all the primaries. So each
5532“.3/(x) together with its descendants form a complete
representation of the (Lorentz) conformal group SO(n+ 1,1).
We further assume that the primary operators Sﬁazmal(x) and
their descendants carry zero energy-momentum.

» We can call these operators "soft-operators”, but, they are
not necessarily the same as the ones appearing in the
soft-theorems. This identification is part of the problem.
Showing this is equivalent to
deriving soft-theorem from the Ward-identity.




The second assumption is :

The operator O(x) is either a primary by itself or a (primary)
descendent of another primary S2, . or a sum of (primary)
descendants of more than one S5, 2+ This is a useful
assumption. We will show that the operator O(x), so
constructed, is

almost uniquely determined by conformal invariance.

This assumption is just for the sake of simplicity.

In this approach, one should also prove that hard-operators do
not contribute to the soft-charge. But we do not know how to
do that systematically.

One way may be to go to the Mellin-space. But we will not
discuss this possibility in this talk.



Various possibilities for O(x) when D =6 or n =4

» A potential candidate for O(x) isa (A =n=4,/=0)

(primary) descendant constructed from SaAl‘92 a

» There are an infinite number of possibilities.

» Below we have listed the (A > 0, /) primary operators which
have (A = 4,/ = 0) descendent :

O(x) = (8%)2S%(x), 920206S0(x), D200y STpca(X)
O(x) = 020,51 (x),  92050:5%.(x)
O(x) = 9°5%(x), 020552, (x)
O(x) = 8,53 ()

(19)

Now which of them are primary 7 Let us start with the
operator O(x) = 9%0,SL(x).




» Under infinitesimal SCT the operator O(x) = 820,52 (x)
transforms as :

O'(xX) = (1+8€-x) O(x) +|4eaOpFan(x) | (20)

where we have defined,
Fap(x) = 02Sp(x) — OpSa(x) (21)

The first term in (20) gives the standard transformation of a
(A = 4,1 =0) primary. So if we want O(x) = §%0,5,(x) to
be primary then we have to set the additional piece 0,F,p(x)
to zero. Now the equation 0,F,,(x) = 0 is consistent or
conformally invariant only if 0,F,5(x) itself is a primary
operator. One can easily check that this is indeed the case.
So we can set,

0aFab = 02(02Sp — 055,) = 0 (22)

Therefore 0,F,p is a primary descendant or null-state of S,
which decouples from the S-matrix.




Differential equation for S-matrix element

» Let us now define

Aa(X> {waa Xas qa}) = ({w,-,x,-, qi, OUt}| SB(X) |{wj7 Xj> qjs in})
(23)

» Now using the constraint equation we get,

({wi, xi, qi, out}| 02(02Sp — 0pSa)(x) {wj, Xj, qj, in}) | =0

(24)
Since there is no ordering between the (x, {x;, out}, {x;, in})
coordinates we can pull the derivates outside the S-matrix
without producing contact-terms. It is also true that x
coordinates are space-like.

» So we can write,

0a(0aAp — OpA;) = 0 (25)



Solving the equation

» This is Euclidean maxwell’s equation. In order to solve this we
need boundary condition which can be obtained using
inversion.

A (X, {was Xas Ga }) = ({wi, Xi, qi, out}| Sa(x) |[{wj, x;, qj, in})
1 1
;Iab(X)Mb({wom Xy qOé}) + O(F)

X — 00

(26)



» Since we are in Euclidean space, instead of the wave equation,
the Electric fields E;(= Fis4), and the magnetic fields
Bi(= %e,-jkl—_jk) now satisfy the
four dimensional Laplace’s equation,

0,0, = 9,0,B; = 0 (27)

This, together with the falloff condition F,p ~ 0(713) as

x — oo — derived from the fall-off condition of A; — implies
that E; = B; = 0. Here we have used the fact that a function
which is

harmonic everywhere and vanishes at infinity is identically zero.

0,Ap — OpA; = 0 = Aa(Xa {Wouxom qa}) = 83/\()(7 {Waaxa, qa}) ‘




» Therefore the four soft S-matrices A, corresponding to
four helicity states of the photon are determined in terms of a
single scalar function A(x, {wa, Xa, Ga })-

» To be more precise, we can write,
<{w,~,X,-, qi, OUt}| S;Ut(x) |{w_]7X_]7 q_/7 In}> - aa/\out(xa {wocv Xavy qa})
and

<{wi,Xi7 ai, OUt}| S;'n(x) |{wja Xj, dj, In}) = 6a/\in(xy {WCY?XDH qa})



Other operators in the list

» We have verified that there are no other operators in the list
except (0%)2S° and 9,53, which can be primary
with or without constraint. These two operators are primary
without any constraint.

» We have also verified using the results of
(Penedones, Trevisani and Yamazaki) that there are no

..... /

with A < 0.

» Therefore the potential candidate for O(x) in the case of
U(1) is,

O(x) = 020,51 (x) + a(9%)?S%(x) + 0.S3(x) (28)

where « and 3 are numbers.



Gravity and Supetranslation

> It works in the same way as the U(1).
» The supertranslation Ward-identity can be written as,

(8, out| Q8“(f) |a, in) — (B, out| QE(f) |, in)

— <Zw;f(xl') - Zw;f(x,-)> (B, out|a, in) (29)

ica ics

» The Lorentz transformation of the soft-charge is given by,

-1 ! / a/\—lx o -1
UN@Qs(f)UT(A) = Qs(F),  F(x)=|—5—| f(A7x)
(30)
» The corresponding transformation of O(x) is given by,
ax' |
U(N)O(x)UN)E = T 0(x), X=MAx, A=n+1

(31)
So, O(x) is a scalar conformal primary of weight A = n+ 1.




Potential candidates for O(x) in D =6 or n =4

» The potential candidates for O(x) are given by :

O(x) = (8%)20:53(x),  0°02060cSape(x); 02050c0dDeSTpede(X)
O(x) = (8%)2SY(x), 920,055k (x), 0200045 .4(x)
O(x) = 020,52(x),  920p0:52%,.(x)

O(x) = 9°S3(x), 020553, (x)

O(x) = 9.5, (x)

Again the requirement that O(x) must be a (A =5,/ =0)

primary rules out most of the above operators except the two,
9%0,0,S1,(x) and 90,0553, (x).

> If we consider operators with A < 0, then one can show that
there is one more operator given by (92)3571.



Constraint

» The operators 9,0,53,(x) and (8%)3S~! are primary
without any constraint.

» Now in case of 20,0551, (x), one can check by applying
SCTs, that S1,(= hap) has to satisfy the constraint,

2 1
82hab - § <8aachcb + 8bachca> + géabacadhcd =0 (32)

> Incidentally, like in the case of U(1), this is also an equation
of a gauge theory with gauge transformation law,

hab(x) = hap(x) = hap(x) + <aaab — 1531762) B(x)  (33)

(Erdmenger, Osborn ; Dolan, Nappi, Witten ; Beccaria,
Tseytlin )

» Remember, that in large U(1) gauge-transformation and
supertranslation, the transformation parameter is a
scalar field.




Change of operator basis

> In the case of U(1) the operator O(x) was finally written as,

O(x) = 020,51 (x) + a(8%)2S%(x) + 80,53(x) (34)

» Now the constrint satisfied by S1(x) is
02(05S5 — 95;) =0 (35)
» So we can redefine our S}(x) as,

S1(x) = S}(x) = S}(x) + ad,S%(x) (36)

With this redefinition we can write,
O(x) = 828,51 (x) + 89,S3(x) (37)

This is a pure spin-1 contribution.

» This is a valid redefinition because 5!(x)isa (A =1,/=1)
primary which also satisfies Maxwell's equation.
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We can do the same thing in case of gravity. In this case, the
final form of O(x) is given by,

O(x) = 020,051, (x) + a(9%)3S7H(x) + 80,053, (x) (38)
So we make the redefinition,

Sap(x) = Sky(x) = Shp(x) + ag (aaab - iaaba2> S7H(x)

(39)
Remember that this is a symmetry of the constraint equation,

2 1
9%S}, — 3 (aaacsgb + abacscla) + gaabacadsgd =0 (40)
With redefinition O(x) becomes,

O(x) = 820,055, (x) + 80,0553, (x) (41)

which is a pure spin-2 contribution.



Can the Ward-identity be solved 7

» For concreteness let us focus on the U(1) symmetry.

» Now let us write the U(1) Ward-identity in the unintegrated
form,

(B, out| O°“*(x) |av, in) — (B, out| O™ (x) |a, in)

= (Zqi54(x — Xi) qu X — Xj ) (B, out|cv, in) (42)

iCa JeB

» Now this is a differential equation for the S-matrix elements
with the insertion of soft-operators. This may or may not be
solvable depending on the structure of O(x). For example, if
we take O(x) = 9,53(x) then there is no way to solve this
equation because there is one differential equation and four
(or eight) unknown functions corresponding to four helicities.



» The simplest theory corresponds to the choice
O(x) = 920,S5(x). In this case we know, from the decoupling
of null-states, that the following relations hold,

(B, out| Sz 0ut(x) |, in) = 0al\oye(x)

(B, out| S5.in(x) |, in) = 0aN\ijn(x) (43)

» Now Substituting these in the Ward-identity we get,

CRRES <Zq, X— X")_Z qj54(x—)<j)> (B, out|cv, in)
i€ JEB
(44)
where
A= 5/\out - 6/Ain (45)



» This equation can be easily solved subject to the boundary
condition,

0.N(x) —— ;Iab(x)/\/lb + O(;) (46)

where M, is some constant vector dependent only on the
coordinates of the hard particles.

» The solution for 0,A is given by Weinberg's soft-photon
theorem, upto undetermined normalisation.

» Now Aoy and A;n are related by crossing, although we are not
able to completely determine the relation.

» But in any case the additional equations coming from the
decoupling of primary descendants allow us to solve the
Ward-identity and the solution must be Weinberg's
soft-photon theorem.




Some similarities to string quantization

» Think of S;(x) as the "vertex operator” for a (soft) photon.
One can do the same with graviton.

Sa(x) ~ ie,(p)d, XHePX
02(02Sp — 0pSs) =0~ p> =0, p'eu(p)=0
0,5%(x) ~ L_1ePX
Sa— S5 =S5,+.5° ~ eu(p) = &.(p) = eu(p) + ap,
83(835[, — 8b53) =0~ p‘ué,u(p) =0
> In string theory there is one-one correspondence between
null-states in the world-sheet CFT and space-time gauge
transformation.
» We now understand that a similar thing may be at play here,
i.e, : Null-states in the soft-sector ~ large gauge
transformations at null-infinity.

> At this stage this is a rule of thumb. But this seems to work
and may be a better starting point than Ward-identity.



