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I In this talk we will consider only massless particles, mostly in
space-time dimensions D = 1 + 5 and D = 1 + 3.

I Now in D dimensional Minkowski space-time we parametrize
the momentum pµ(ω, ~x) of a massless particle as,

pµ = ω(1 + ~x2, 2~x , 1− ~x2), ~x ∈ RD−2 = Rn (1)

I The corresponding transformation of energy ω is given by,

ω′ =

∣∣∣∣∂~x ′∂~x

∣∣∣∣− 1
n

ω (2)



Soft-theorem and Soft-operators

I Let (Aa(ω, x)) A†a(ω, x) be the (annihilation) creation
operator of a photon in D dimensions with helicity a. a is a
vector index of SO(D − 2) – the little group of massless
particles in D dimensions.

I Let us now write Weinberg’s soft-photon theorem, say, for an
outgoing soft photon,

〈{ωi , xi , qi , out}|Aout
a (ω, x) |{ωj , xj , qj , in}〉

=

[
γ

ω

( ∑
i∈out

qi
2(x − xi )a
(x − xi )2

−
∑
j∈in

qj
2(x − xj)a
(x − xj)2

)

×〈{ωi , xi , qi , out}|{ωj , xj , qj , in}〉
]

+O(ω0) + O(ω) + ........

(3)

where γ is a numerical constant. The incoming and outgoing
states are charged scalars with charges qi .



I Let us now define the soft-photon operator Sa(x) as,

Sa(x) = lim
ω→0

ωAa(ω, x) (4)

(Strominger; He et al. ; Kapec et al. ; Kapec et al. ;
Campiglia et al. ; Kapec et al.)

I In terms of Sa(x) the soft-theorem simplifies,

〈{ωi , xi , qi , out}|Sout
a (ω, x) |{ωj , xj , qj , in}〉

= γ

( ∑
i∈out

qi
2(x − xi )a
(x − xi )2

−
∑
j∈in

qj
2(x − xj)a
(x − xj)2

)
×〈{ωi , xi , qi , out}|{ωj , xj , qj , in}〉

(5)



Lorentz transformation of soft-operators

I The Lorentz group SO(D − 1, 1) = SO(n + 1, 1) acts on
~x ∈ Rn as conformal transformations.

I The crucial point is that under Lorentz transformation, Sa(x)
transforms like a primary operator of dimension 1 and spin 1,
i.e,

S ′a(x ′) =

∣∣∣∣∂x ′∂x

∣∣∣∣− 1
D−2

Rab(x)Sb(x), x ′ = Λx (6)

where Rab(x) is the local rotation matrix associated with the
conformal transformation.

I This is quite general. In fact, if we formally write down a
Laurent expansion in energy as,

Aa1a2...al (ω, x) =
∞∑

n=−∞

Sn
a1a2...al

(x)

ωn
(7)

then Sn
a1a2...al

(x) is a conformal primary of dimension n and
spin l .



Goal

I We want to study the properties of the conformal
representation with the operators Sn

a1a2...al
(x) as

highest-weight vectors. The ”theory” in which we do this has
infinite-dimensional global symmetries. These symmetries
impose constraints on the representation and vice versa. In
this talk I will not explain the ”vice versa” part.

I The constraints on the representation translate into
constraints on the S-matrix elements with the
insertion of the highest-weight vector, i.e, the soft-operator.

I Let me now say a few things about the symmetries.



Symmetry

I The symmetries are asymptotic symmetries in asymptotically
flat space. The well known example is BMS group which acts
on null-infinity. The standard BMS group is a semi-direct
product of the Lorentz group SO(D − 1, 1) and the
infinite dimensional abelian group of super-translations. The
supertranslations are generalisations of the D global
space-time translations.

I For example, if we write the metric in Bondi coordinates
(r , u, ~x), then at null-infinity (r →∞) supertranslation acts
as,

~x → ~x , u → u + f (~x) (8)

where f (~x) is an arbitrary function on the celestial sphere

SD−2, with (stereographic) coordinates ~x .

I Another important point is that the Lorentz group
SO(D − 1, 1) acts on the celestial sphere SD−2 as conformal
transformations.



I Strominger has shown that these asymptotic symmetries are
also symmetries of quantum-gravity S matrix.

I From a holographic perspective - assuming that such a thing
exists in flat space - then S-matrix is the natural observable
and the asymptotic symmetries are infinite dimensional
global symmetries of the dual theory. The (infinite) global
symmetry acts on the set of S-matrix elements and, hopefully,
constrain their form to some extent.

I Remember that this infinite global symmetry is an extra
ingredient on top of the usual unitarity, crossing,
analyticity............But, how to use it ??



Ward-identities

I Now, like Poincare → BMS, there is a parallel story for
electromagnetic gauge transformation in the bulk. In this
case, the asymptotic symmetries are large U(1) gauge

transformations of the form e ief (~x), where the rotation angle
f (~x) is now an arbitrary function on the celestial sphere. Let
me try to motivative this from a QFT perspective.

I Let us consider a theory of free massless charged scalar fields.

I This theory has a U(1) global symmetry and the conserved
charge can be written as,

Q0 = e

∫
dµ(ω, x)(a†(ω, x)a(ω, x)− b†(ω, x)b(ω, x)) (9)



I We can generalize this by defining Q0(f ) as ,

Q0(f ) = e

∫
dµ(ω, x)f (x)(a†(ω, x)a(ω, x)− b†(ω, x)b(ω, x))

where f (x) is an arbitrary function. In free theory Q0(f ) is
also conserved and we have an infinite number of them,
corresponding to each function f (x). (Banerjee)

I It acts on the states as,

e iQ0(f )a†(ω, x)e−iQ0(f ) = e ief (x)a†(ω, x)

e iQ0(f )b†(ω, x)e−iQ0(f ) = e−ief (x)b†(ω, x)
(10)

We can see that Q0(f ) generates a U(1) rotation at every
point x . So the free theory has an infinite-dimensional global
U(1) symmetry.



I Using the Lorentz transformation property of the
creation-annihilation operator it is easy to check that,

U(Λ)Q0(f )U(Λ)−1 = Q0(f ′), f ′(x) = f (Λ−1x) (11)

I Now, in the interacting charged scalar theory, with non-trivial
S-matrix, the analog of Q0(f ) is not conserved, unless, you
have photon in the theory. In other words, the interacting
theory must be a gauge theory.

I In this case the conserved charge can be written as,
Q(f ) = QH(f ) + QS(f ). QH(f ) is called the hard-charge and
is required to generate the U(1) transformation on the
charged particles, i.e,

Q in
H (f ) |α, in〉 =

(∑
k∈α

qk f (xk)

)
|α, in〉

〈β, out|Qout
H (f ) = 〈β, out|

(∑
k∈β

qk f (xk)

) (12)

(Strominger; He et al. ; Kapec et al. ; Kapec et al. ;
Campiglia et al. ; Kapec et al.)



I But, unlike in the case of free theory, in the interacting theory,

Q in
H (f ) 6= Qout

H (f ) (13)

I The statement of conservation is,

Q(f ) = Q in
H (f ) + Q in

S (f ) = Qout
H (f ) + Qout

S (f ) (14)

I This can be written in the form of a Ward-identity as,

〈β, out|Qout
S (f ) |α, in〉 − 〈β, out|Q in

S (f ) |α, in〉

=

(∑
i∈α

qi f (xi )−
∑
i∈β

qi f (xi )

)
〈β, out|α, in〉 (15)

This is the Ward-identity for the infinite-dimensional
(asymptotic) global U(1) symmetry.

I For the purpose of this talk the Ward-identity is an
assumption. In other words, the theories we study are
partly defined by the ward-identity.



Lorentz transformation of soft-charge QS(f )

I Now using Lorentz invariance of the S-matrix, one can show,
using the Ward-identity that,

U(Λ)Qout
S (f )U(Λ)† = Qout

S (f ′)

U(Λ)Q in
S (f )U(Λ)† = Q in

S (f ′)
(16)

where
f ′(x) = f (Λ−1x) (17)

(Banerjee, Pandey, Paul)

I Let us now write,

QS(f ) =

∫
dnxf (x)O(x) (18)

where O(x) is another (local) operator and n = D − 2.



I We can write this because it follows from the Ward-identity
that QS(f ) is a linear (operator-valued) functional of f , i.e,
QS(αf + g) = αQS(f ) + QS(g) for any α ∈ C. Now if we
think of f as a vector |f 〉 in an infinite dimensional Hilbert
space then we can write, QS(|f 〉) = QS(

∫
dnxf (x) |x〉) =∫

dnxf (x)QS(|x〉) =
∫
dnxf (x)O(x). Here we have defined

O(x0) = QS(|x0〉) ≡ QS(f (x) = δn(x − x0)).

I Now if we use the Lorentz transformation property of the
soft-charge QS(f ) then one check that,

U(Λ)O(x)U(Λ)−1 = O ′(x) =

∣∣∣∣∂x ′∂x

∣∣∣∣O(x ′) =

∣∣∣∣∂x ′∂x

∣∣∣∣∆
n

O(x ′)

where x ′ = Λx and ∆ = n.

I Since Lorentz transformation acts on the x ∈ Rn coordinates
as conformal transformations, this shows that
O(x) is a scalar conformal primary of weight ∆ = n.



Two assumptions

I There are an infinite number of operators denoted by
S∆
a1a2...al

(x), not all of which are trivial and which transform
under (Lorentz) conformal transformation as a primary
operator of weight ∆ and spin l . We also add to this list all
the conformal descendants of all the primaries. So each
S∆
a1a2...al

(x) together with its descendants form a complete
representation of the (Lorentz) conformal group SO(n + 1, 1).
We further assume that the primary operators S∆

a1a2...al
(x) and

their descendants carry zero energy-momentum.

I We can call these operators ”soft-operators”, but, they are
not necessarily the same as the ones appearing in the
soft-theorems. This identification is part of the problem.
Showing this is equivalent to
deriving soft-theorem from the Ward-identity.



I The second assumption is :
The operator O(x) is either a primary by itself or a (primary)
descendent of another primary S∆

a1a2···al or a sum of (primary)

descendants of more than one S∆
a1a2.......al

. This is a useful
assumption. We will show that the operator O(x), so
constructed, is
almost uniquely determined by conformal invariance.

I This assumption is just for the sake of simplicity.

I In this approach, one should also prove that hard-operators do
not contribute to the soft-charge. But we do not know how to
do that systematically.

I One way may be to go to the Mellin-space. But we will not
discuss this possibility in this talk.



Various possibilities for O(x) when D = 6 or n = 4

I A potential candidate for O(x) is a (∆ = n = 4, l = 0)
(primary) descendant constructed from S∆

a1a2....al
.

I There are an infinite number of possibilities.

I Below we have listed the (∆ ≥ 0, l) primary operators which
have (∆ = 4, l = 0) descendent :

O(x) = (∂2)2S0(x), ∂2∂a∂bS
0
ab(x), ∂a∂b∂c∂dS

0
abcd(x)

O(x) = ∂2∂aS
1
a (x), ∂a∂b∂cS

1
abc(x)

O(x) = ∂2S2(x), ∂a∂bS
2
ab(x)

O(x) = ∂aS
3
a (x)

(19)

Now which of them are primary ? Let us start with the
operator O(x) = ∂2∂aS

1
a (x).



I Under infinitesimal SCT the operator O(x) = ∂2∂aS
1
a (x)

transforms as :

O ′(x ′) = (1 + 8 ε · x)O(x) + 4 εa ∂bFab(x) (20)

where we have defined,

Fab(x) = ∂aSb(x)− ∂bSa(x) (21)

The first term in (20) gives the standard transformation of a
(∆ = 4, l = 0) primary. So if we want O(x) = ∂2∂aSa(x) to
be primary then we have to set the additional piece ∂aFab(x)
to zero. Now the equation ∂aFab(x) = 0 is consistent or
conformally invariant only if ∂aFab(x) itself is a primary
operator. One can easily check that this is indeed the case.
So we can set,

∂aFab = ∂a(∂aSb − ∂bSa) = 0 (22)

Therefore ∂aFab is a primary descendant or null-state of Sa
which decouples from the S-matrix.



Differential equation for S-matrix element

I Let us now define

Aa(x , {ωα, xα, qα}) = 〈{ωi , xi , qi , out}|Sa(x) |{ωj , xj , qj , in}〉
(23)

I Now using the constraint equation we get,

〈{ωi , xi , qi , out}| ∂a(∂aSb − ∂bSa)(x) |{ωj , xj , qj , in}〉 = 0

(24)
Since there is no ordering between the (x , {xi , out}, {xj , in})
coordinates we can pull the derivates outside the S-matrix
without producing contact-terms. It is also true that x
coordinates are space-like.

I So we can write,

∂a(∂aAb − ∂bAa) = 0 (25)



Solving the equation

I This is Euclidean maxwell’s equation. In order to solve this we
need boundary condition which can be obtained using
inversion.

I

Aa(x , {ωα, xα, qα}) = 〈{ωi , xi , qi , out}|Sa(x) |{ωj , xj , qj , in}〉
x →∞−−−−→ 1

x2
Iab(x)Mb({ωα, xα, qα}) + O(

1

x3
)

(26)



I Since we are in Euclidean space, instead of the wave equation,
the Electric fields Ei (= Fi4), and the magnetic fields
Bi (= 1

2εijkFjk) now satisfy the
four dimensional Laplace’s equation,

∂a∂aEi = ∂a∂aBi = 0 (27)

This, together with the falloff condition Fab ∼ O( 1
x3 ) as

x →∞ – derived from the fall-off condition of Aa – implies
that Ei = Bi = 0. Here we have used the fact that a function
which is
harmonic everywhere and vanishes at infinity is identically zero.

I

∂aAb − ∂bAa = 0⇐⇒ Aa(x , {ωα, xα, qα}) = ∂aΛ(x , {ωα, xα, qα})



I Therefore the four soft S-matrices Aa corresponding to
four helicity states of the photon are determined in terms of a
single scalar function Λ(x , {ωα, xα, qα}).

I To be more precise, we can write,

〈{ωi , xi , qi , out}|Sout
a (x) |{ωj , xj , qj , in}〉 = ∂aΛout(x , {ωα, xα, qα})

and

〈{ωi , xi , qi , out}|S in
a (x) |{ωj , xj , qj , in}〉 = ∂aΛin(x , {ωα, xα, qα})



Other operators in the list

I We have verified that there are no other operators in the list
except (∂2)2S0 and ∂aS

3
a , which can be primary

with or without constraint. These two operators are primary
without any constraint.

I We have also verified using the results of
(Penedones,Trevisani and Yamazaki) that there are no
potential candidate for O(x) which is a descendant of S∆

a1.....al
with ∆ < 0.

I Therefore the potential candidate for O(x) in the case of
U(1) is,

O(x) = ∂2∂aS
1
a (x) + α(∂2)2S0(x) + β∂aS

3
a (x) (28)

where α and β are numbers.



Gravity and Supetranslation
I It works in the same way as the U(1).
I The supertranslation Ward-identity can be written as,

〈β, out|Qout
S (f ) |α, in〉 − 〈β, out|Q in

S (f ) |α, in〉

=

(∑
i∈α

ωi f (xi )−
∑
i∈β

ωi f (xi )

)
〈β, out|α, in〉 (29)

I The Lorentz transformation of the soft-charge is given by,

U(Λ)QS(f )U−1(Λ) = QS(f ′), f ′(x) =

∣∣∣∣∂Λ−1x

∂x

∣∣∣∣− 1
n

f (Λ−1x)

(30)
I The corresponding transformation of O(x) is given by,

U(Λ)O(x)U(Λ)−1 =

∣∣∣∣∂x ′∂x

∣∣∣∣∆
n

O(x ′), x ′ = Λx , ∆ = n + 1

(31)
So, O(x) is a scalar conformal primary of weight ∆ = n + 1.



Potential candidates for O(x) in D = 6 or n = 4

I The potential candidates for O(x) are given by :

O(x) = (∂2)2∂aS
0
a (x), ∂2∂a∂b∂cS

0
abc(x), ∂a∂b∂c∂d∂eS

0
abcde(x)

O(x) = (∂2)2S1(x), ∂2∂a∂bS
1
ab(x), ∂a∂b∂c∂dS

1
abcd(x)

O(x) = ∂2∂aS
2
a (x), ∂a∂b∂cS

2
abc(x)

O(x) = ∂2S3(x), ∂a∂bS
3
ab(x)

O(x) = ∂aS
4
a (x)

Again the requirement that O(x) must be a (∆ = 5, l = 0)
primary rules out most of the above operators except the two,
∂2∂a∂bS

1
ab(x) and ∂a∂bS

3
ab(x).

I If we consider operators with ∆ < 0, then one can show that
there is one more operator given by (∂2)3S−1.



Constraint
I The operators ∂a∂bS

3
ab(x) and (∂2)3S−1 are primary

without any constraint.

I Now in case of ∂2∂a∂bS
1
ab(x), one can check by applying

SCTs, that S1
ab(= hab) has to satisfy the constraint,

∂2hab −
2

3

(
∂a∂chcb + ∂b∂chca

)
+

1

3
δab∂c∂dhcd = 0 (32)

I Incidentally, like in the case of U(1), this is also an equation
of a gauge theory with gauge transformation law,

hab(x)→ h̃ab(x) = hab(x) +

(
∂a∂b −

1

4
δab∂

2

)
φ(x) (33)

(Erdmenger, Osborn ; Dolan, Nappi, Witten ; Beccaria,
Tseytlin )

I Remember, that in large U(1) gauge-transformation and
supertranslation, the transformation parameter is a
scalar field.



Change of operator basis

I In the case of U(1) the operator O(x) was finally written as,

O(x) = ∂2∂aS
1
a (x) + α(∂2)2S0(x) + β∂aS

3
a (x) (34)

I Now the constrint satisfied by S1
a (x) is

∂a(∂aS
1
b − ∂bS1

a ) = 0 (35)

I So we can redefine our S1
a (x) as,

S1
a (x)→ S̃1

a (x) = S1
a (x) + α∂aS

0(x) (36)

With this redefinition we can write,

O(x) = ∂2∂aS̃
1
a (x) + β∂aS

3
a (x) (37)

This is a pure spin-1 contribution.

I This is a valid redefinition because S̃1
a (x) is a (∆ = 1, l = 1)

primary which also satisfies Maxwell’s equation.



I We can do the same thing in case of gravity. In this case, the
final form of O(x) is given by,

O(x) = ∂2∂a∂bS
1
ab(x) + α(∂2)3S−1(x) + β∂a∂bS

3
ab(x) (38)

I So we make the redefinition,

S1
ab(x)→ S̃1

ab(x) = S1
ab(x) + α

4

3

(
∂a∂b −

1

4
δab∂

2

)
S−1(x)

(39)
I Remember that this is a symmetry of the constraint equation,

∂2S1
ab −

2

3

(
∂a∂cS

1
cb + ∂b∂cS

1
ca

)
+

1

3
δab∂c∂dS

1
cd = 0 (40)

I With redefinition O(x) becomes,

O(x) = ∂2∂a∂bS̃
1
ab(x) + β∂a∂bS

3
ab(x) (41)

which is a pure spin-2 contribution.



Can the Ward-identity be solved ?

I For concreteness let us focus on the U(1) symmetry.

I Now let us write the U(1) Ward-identity in the unintegrated
form,

〈β, out|Oout(x) |α, in〉 − 〈β, out|O in(x) |α, in〉

=

(∑
i∈α

qiδ
4(x − xi )−

∑
j∈β

qjδ
4(x − xj)

)
〈β, out|α, in〉 (42)

I Now this is a differential equation for the S-matrix elements
with the insertion of soft-operators. This may or may not be
solvable depending on the structure of O(x). For example, if
we take O(x) = ∂aS

3
a (x) then there is no way to solve this

equation because there is one differential equation and four
(or eight) unknown functions corresponding to four helicities.



I The simplest theory corresponds to the choice
O(x) = ∂2∂aSa(x). In this case we know, from the decoupling
of null-states, that the following relations hold,

〈β, out| Sa,out(x) |α, in〉 = ∂aΛout(x)

〈β, out| Sa,in(x) |α, in〉 = ∂aΛin(x)
(43)

I Now Substituting these in the Ward-identity we get,

(∂2)2Λ(x) =

(∑
i∈α

qiδ
4(x−xi )−

∑
j∈β

qjδ
4(x−xj)

)
〈β, out|α, in〉

(44)
where

Λ = δΛout − δ′Λin (45)



I This equation can be easily solved subject to the boundary
condition,

∂aΛ(x)
x →∞−−−−→ 1

x2
Iab(x)Mb + O(

1

x3
) (46)

where Ma is some constant vector dependent only on the
coordinates of the hard particles.

I The solution for ∂aΛ is given by Weinberg’s soft-photon
theorem, upto undetermined normalisation.

I Now Λout and Λin are related by crossing, although we are not
able to completely determine the relation.

I But in any case the additional equations coming from the
decoupling of primary descendants allow us to solve the
Ward-identity and the solution must be Weinberg’s
soft-photon theorem.



Some similarities to string quantization
I Think of Sa(x) as the ”vertex operator” for a (soft) photon.

One can do the same with graviton.
I

Sa(x) ∼ ieµ(p)∂zX
µe ip.X

∂a(∂aSb − ∂bSa) = 0 ∼ p2 = 0, pµeµ(p) = 0

∂aS
0(x) ∼ L−1e

ip.X

Sa → S̃a = Sa + ∂aS
0 ∼ eµ(p)→ ẽµ(p) = eµ(p) + αpµ

∂a(∂aS̃b − ∂bS̃a) = 0 ∼ pµẽµ(p) = 0

I In string theory there is one-one correspondence between
null-states in the world-sheet CFT and space-time gauge
transformation.

I We now understand that a similar thing may be at play here,
i.e, : Null-states in the soft-sector ∼ large gauge
transformations at null-infinity.

I At this stage this is a rule of thumb. But this seems to work
and may be a better starting point than Ward-identity.


