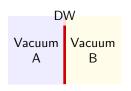
Domain Walls in Super-QCD

Francesco Benini

SISSA (Trieste)


Avant-garde methods for QFT and gravity Nazareth, 17–21 February 2019

in collaboration with Sergio Benvenuti, Matteo Bertolini, Vladimir Bashmakov

Progress in our understanding of 3D and 4D QFT dynamics:

- (Bosonization) dualites in 3D
- Anomalies of 0-form and higher-form symmetries
- Topological sectors
- ...

3D/4D connection:

4D theory with multiple gapped vacua

 \Rightarrow

Domain Walls separating them with 3D worldvolume theory

- Relation between 4D and 3D dynamics, their anomalies, . . .
- ullet Changing "bulk" parameters ullet transitions in the worldvolume theory
 - * 3D transition with no bulk transition
- Different descriptions in the bulk

 \longleftrightarrow

Different phases or dualities in 3D

Beautifully applied to YM and QCD

[Gaiotto, Kapustin, Komargodski, Seiberg 17]

We look at 4D $\mathcal{N}=1$ (massive) SQCD:

- Multiple vacua for generic parameters
- ullet BPS domain walls host a 3D $\mathcal{N}=1$ worldvolume theory
- ullet SUSY $\Rightarrow 2^{\rm nd}$ order phase transitions on DWs
- A missing piece in the SQCD story

A lot has been done, but not complete classification

(e.g. Witten index not saturated)

[Acharya, Armoni, de Carlos, Dvali, Giveon, Hindmarsh, Hollowood, Israel, Kaplunovsky, Kovner, McNair, Moreno, Niarchos, Ritz, Shifman, Smilga, Sonnenshein, Vafa, Vainshtein, Vaselov, Witten, Yankielowicz, . . .]

4D $\mathcal{N}=1$ (massive) Super-QCD

$$SU(N)$$
 SQCD with F flavors Q,\widetilde{Q}

- Restrict to F < N: only mesons (not baryons) are relevant
 - $\rightarrow \quad$ gauge-invariant meson superfields $M = \widetilde{Q} Q$
- Parameters: $\Lambda^{3N-F} = \mu^{3N-F} \; e^{-rac{8\pi^2}{g(\mu)^2} + i \theta}$, mass matrix m_{4d} $(F \times F)$
- Without mass m_{4d} : classical mesonic moduli space [Affleck, Dine, Seiberg 84]
- Dynamically generated superpotential $W_{\text{ADS}} = (N-F) \left(\frac{\Lambda^{3N-F}}{\det M} \right)^{\frac{1}{N-F}}$
 - ightarrow runaway behavior

Add flavor-invariant diagonal mass $m_{ extsf{4d}} \propto \mathbb{1}_F$

4D $\mathcal{N}=1$ (massive) Super-QCD

$$W_{\text{eff}} = m_{4d} \operatorname{Tr} M + (N - F) \left(\frac{\Lambda^{3N-F}}{\det M}\right)^{\frac{1}{N-F}}$$

• Symmetries: $\mathbb{Z}_{2N} \times SU(F) \times U(1)_B$

N gapped vacua from spontaneous R-symmetry breaking $\mathbb{Z}_{2N} o \mathbb{Z}_2$

$$\langle M \rangle = \widetilde{M} \, \mathbb{1}_F \qquad \langle \lambda \lambda \rangle = m_{4d} \, \widetilde{M} \qquad \widetilde{M} = \left(\frac{\Lambda^{3N-F}}{m_{4d}^{N-F}} \right)^{1/N}$$

 \bullet Domain walls from $j^{\rm th}$ vacuum to $(j+k)^{\rm th}$ vacuum

Broken R-symmetry: k-walls are all equivalent

• An (N-k)-wall is parity reversal of a k-wall

• 4D $\mathcal{N}=1$ superalgebra admits a two-brane charge:

[Azcarraga, Gauntlett, Izquierdo, Townsend 89; Dvali, Shifman 96]

$$\{Q_{\alpha},\overline{Q}_{\dot{lpha}}\}=2\sigma^{\mu}_{\alpha\dot{lpha}}\,P_{\mu}$$

$$\{Q_{\alpha},Q_{eta}\}=\sigma^{\mu
u}_{\alphaeta}\,Z_{\mu
u}\qquad {\rm and \ c.c.}$$

- ⇒ BPS domain walls with protected tension
- Write $Z_{\mu\nu} = Z \operatorname{vol}(\Sigma) \, \hat{d} \operatorname{vol}_{\mu\nu}$ in terms of "central charge" Z

[Abraham, Townsend 91; Cecotti, Vafa 92]

$$T = |Z|$$
, $Z = 2 \Delta W$

Tension is controlled by the shift of superpotential

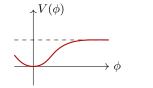
⇒ Parallel multiple walls decay to a bound state

3D phase transitions

- Large mass $m_{4d}\gg \Lambda$: SU(N) Super-Yang-Mills
- Small mass $m_{4d} \ll \Lambda$: almost-weakly-coupled Wess-Zumino description on mesonic space
- \bullet In the two regimes we will find different walls: phase transition at $m_{4d}=m_{\ast}$

We seek a 3D $\mathcal{N}=1$ worldvolume description

Domain walls in Super-Yang-Mills


SU(N) SYM

N gapped vacua with superpotential

$$W_{\text{SYM}} = N(\Lambda^{3N})^{1/N} = N \Lambda^3 e^{\frac{2\pi i}{N}k}$$
 $k = 0, ..., N-1$

Gaugino condensate $\langle \lambda \lambda \rangle = \Lambda^3 \, e^{\frac{2\pi i}{N} k}$ breaks R-symmetry $\mathbb{Z}_{2N} o \mathbb{Z}_2$

3D $\mathcal{N}=1$ $U(k)_N$ with (traceless) adjoint Φ + singlet Φ_0

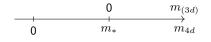
 Φ has "negative" mass

[Armoni, Hollowood 05; ibid. 06] [Bashmakov, Gomis, Komargodski, Sharon 18]

$$\mathcal{N} = 1 \quad U(k)_{N - \frac{k}{2}, N}$$

$$\downarrow$$

$$U(k)_{N - k, N}$$


parity reversal (N-k)-wall from level-rank duality k-wall

Domain walls in Super-QCD

SU(N) massive SQCD with ${\cal F}$ flavors

Our proposal for 3D worldvolume theory:

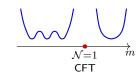
3D
$$\mathcal{N}=1$$
 $U(k)_{N-\frac{k}{2}-\frac{F}{2},N-\frac{F}{2}}$ with F flavors of X 's
$$\mathcal{W}=\operatorname{Tr} X^{\dagger}XX^{\dagger}X+\alpha \left(\operatorname{Tr} X^{\dagger}X\right)^{2}+m\operatorname{Tr} X^{\dagger}X$$

(From adding flavors to AV brane construction, and integrating adjoint Φ out)

 \star k-walls and (N-k)-walls related by parity reversal: [Choi, Roček, Sharon 18]

 $U(k)_{N-\frac{k+F}{2},N-\frac{F}{2}} \text{ with } F \text{ flavors} \quad \leftrightarrow \quad U(N-k)_{-\frac{N+k-F}{2},-N+\frac{F}{2}} \text{ with } F \text{ flavors}$

Analysis of vacua


- m>0: unique vacuum at $X^{\dagger}X=0$ \rightarrow $\mathcal{N}=1$ $U(k)_{N-\frac{k}{2},N}$ (AV)
- ullet m < 0: multiple vacua $X^\dagger X \propto \begin{pmatrix} \mathbb{1}_J & \\ & 0 \end{pmatrix}$ flavor symmety breaking

$$\mathcal{N}=1 \qquad U(k-J)_{N-\frac{k}{2}-F+\frac{J}{2},\,N-F} \quad \times \quad \text{NLSM} \quad \frac{U(F)}{U(J)\times U(F-J)}$$
 with
$$\max(0,F+k-N) \leq J \leq \min(k,F)$$

★ Some of the classical vacua are lifted non-perturbatively, because

$$\mathcal{N} = 1$$
 $U(n)_{j-\frac{n}{2},j}$ breaks SUSY $(V > 0)$ for $0 < j < n$

SUSY ⇒ 2nd order phase transition (CFT)
 Multiple vacua coalesce into one at a single point

ullet Enhanced 3D $\mathcal{N}=2$ SUSY (SCFT) for special values

$$F=1$$
 or $k=1$: only one quartic superpotential term

At large CS level can be seen perturbatively

Duality
$$\Rightarrow$$
 also for $k = N - 1$

[Avdeev, Grigorev, Kazakov 92]

 $[\mathsf{Avdeed},\ \mathsf{Kazakov},\ \mathsf{Kondrashuk}\ 93]$

[Benini, Closset, Cremonesi 11]

$$ullet$$
 Enhanced 3D ${\cal N}=4$ SUSY for $SU(2)$, $F=1$, $k=1$ [Gang, Yamazaki 18]

$$\mathcal{N}=1$$
 $U(1)_{\pm \frac{3}{2}}$ with 1 flavor \longleftrightarrow $\mathcal{N}=1$ $SU(2)_{\pm \frac{3}{2}}$ with 1 flavor

Checks

- ullet Reproduces Acharya-Vafa for m>0
- $\bullet \ \ {\sf Reproduces} \ \underline{\sf 4D} \ \underline{\sf constructions} \ {\sf for} \ m < 0 \\$

4D construction of domain walls

Vacua:
$$M = \left(\frac{\Lambda^{3N-F}}{m_{4d}^{N-F}}\right)^{1/N} \mathbb{1}_F$$

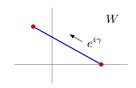
• For $m_{4d} \ll \Lambda$: vacua lie in the weakly-coupled Higgsed phase

Low energy effective theory: Wess-Zumino (WZ) model on mesonic space

$$\mathcal{K} = 2 \operatorname{Tr} \sqrt{\overline{M}M}$$
 $W = m_{4d} \operatorname{Tr} M + W_{\mathsf{ADS}}(M)$

⇒ Construct WZ-type walls

Valid as long as we remain in the Higgsed phase throughout the wall


 \star Caveat: unbroken SU(N-F) SYM theory on mesonic space

BPS domain wall equation (central charge $Z=2\Delta W=e^{i\gamma}|Z|$):

$$\mathcal{K}_{a\bar{b}} \,\partial_x \Phi^a = e^{i\gamma} \,\frac{\partial \overline{W}}{\partial \overline{\Phi}^{\bar{b}}}$$

Orbit in W-space is a straight line:

$$\mathbb{I}\mathrm{m}\left(e^{-i\gamma}W(\Phi(x))\right)=\mathrm{const}$$

Interested in orbit $\Phi^a(x)$

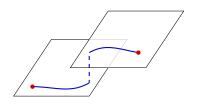
- ullet Single variable: solve by inverting $W(\Phi)$
- Multiple variables: solve the ODEs

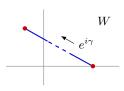
$$W = m \operatorname{Tr} M + (N - F) \left(\frac{\Lambda^{3N - F}}{\det M} \right)^{\frac{1}{N - F}}$$

- F = N 1: WZ model on mesonic space (no SYM sector)
- F < N-1: unbroken SU(N-F) SYM on mesonic space

$$\Lambda_{\rm unbroken}^{3(N-F)} = \frac{\Lambda^{3N-F}}{\det M} \qquad \qquad W_{\rm unbroken} = (N-F) \big(\Lambda_{\rm unbroken}^{3(N-F)}\big)^{1/(N-F)}$$

Multivaluedness of $W_{\rm ADS}$ from N-F vacua of unbroken gauge theory


$$\Rightarrow$$
 $N-F$ sheets over each point on mesonic space


Size of walls:
$$\ell_{\rm WZ} \sim \frac{M}{\partial_x M} \sim \frac{1}{m_{4d}} \quad \gg \quad \ell_{SYM} \sim \frac{1}{\Lambda_{\rm unbroken}} \sim \frac{1}{m_{4d}^{F/3N} \Lambda^{1-F/3N}}$$

"Hybrid" SQCD walls

Hybrid walls: WZ type + "instantaneous" jumps from one sheet to another

Χ

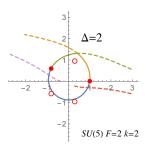
★ 3D theory:

AV topological sector associated to jump Δ in unbroken SYM

$$\mathcal{N} = 1$$
 $U(\Delta)_{N-F-\frac{\Delta}{2},N-F}$

Goldstone bosons for broken flavor symmetry NLSM

Symmetry preserving walls


Restrict to

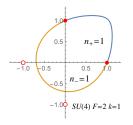
$$M(x) = \widetilde{M}(x) \, \mathbb{1}_F$$

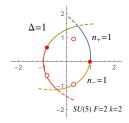
Automatic for F=1

• Solved by inverting W(M)

3D theory: trival or TQFT
$$\mathcal{N}=1$$
 $U(\Delta)_{N-F-\frac{\Delta}{2},N-F}$ (no Goldstone bosons)

All cases analyzed match with 3D prediction


Symmetry breaking walls


Analyzed by numerically solving ODEs

3D predictions:

- eigenvalues form at most two groups
- at most one jump on a domain wall

$$\mathcal{N} = 1 \quad U(\Delta)_{N-F-\frac{\Delta}{2},\,N-F} \quad \times \quad \text{NLSM} \quad \frac{U(F)}{U(n_+)\times U(n_-)}$$

★ All cases analyzed match with 3D prediction

Summary

- ullet Proposed 3D description of DWs in 4D SU(N) SQCD with F < N flavors
- ullet Predicts $2^{
 m nd}$ order phase transition for $m_{4d}=m_*$ and intricate zoo of walls
- Predicts supersymmetry enhancement
- ullet Large and small m_{4d} limits reproduced by 4D QFT arguments

Some open questions

- More flavors: $F \geq N$ (baryons, Seiberg duality, ...)
- Other gauge groups
- Domain wall junctions: 2D $\mathcal{N} = (0,1)$