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Introduction

What can be learned about the interior and horizon of a black hole
from string theory?
@ Observables in string theory (S-Matrix, boundary correlation
functions) correspond to external observers = no access to
interior

@ Low energy effective theory 4 perturbative corrections is
smooth at the horizon

@ Do non-perturbative corrections modify this? Do they render
the horizon singular?

@ Usually can't answer that in string theory. But for the
SL(2,R),/U(1) 2D black hole we know the o/-exact
reflection coefficient of scattering modes.



The Tortoise Coordinate

The tortoise coordinate = or () is related to the Kruskal
e%(aﬂrt).

2m (0
coordinates: U = —¢ 5 t), V =

@ It's a rescaled radial coordinate: The horizon is mapped to
x — —oo and the asymptotic region to x — co.

@ “Switch” between regions by taking z — = +i5/4 (and t
accordingly) — this places the singularity at x = +i3/4

e Everything should be invariant under z — x + i3 (in fact
r—x+if3/2)



Scattering from Black Holes

A massless classical scalar field obeys, U¢ = 0.

In a spherically symmetric background we take,
o= r(:c)_%ng(Q)e_i“tzp(r(x)) and end up with a Schrodinger
like equation for v,

(—(Z; +V(x)— w2> P(z) =0

V(z) is a function of the metric and background fields and
therefore V(z +i8/2) = V(x). It has poles where the background
is singular.



Scattering from Black Holes

Simple QM scattering = We take scattering solutions (p = w —
massless)

() ~ {T(p)e_’px, T — —00,

e~ + R(p)e*, 1 — o0,

T
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At high energies, the reflection coefficient is given by the Born
approximation,

_ 1 > —2ipx
R(p) = 20 /_Ooe V(x)dz,



Calculating the Reflection Coefficient

Rip) = - / ey (p)a
= — (& T X
=5 :

The Born integral is evaluated in the complex x-plane by taking
advantage of the periodicity V' (z +i3/2) = V(x).

X

The bottom line contributes R(p)e PP so it can be omitted. The
vertical lines do not contribute (V(£o00) — 0)
This gives,
m .
R(p) ~ —— Res (V (z)e2P*
(1)~ =5 3 Res (V(2)e27)

poles



Calculating the Reflection Coefficient

The position of the singularities (poles) in the x-plane is encoded
in a simple way in the reflection coeffcient!

R(p) = _% > %P fi(p), with f;(p) a polynomial of p

poles

The position along the imaginary axis gives the rate of exponential
suppression

The position along the real axis gives a phase linear in p



The SL(2,R);/U(1) 2D Black Hole

The SL(2,R);/U(1) 2D Black Hole has a description in terms of
a low energy effective background
The reflection coefficient is known exactly (in &’) on the sphere
(9s — 0),

Rexact (p) = RO (p) Rnon—pert (p)

Ry is accounted for by the effective background.

We want to understand how Ry,;,—pert modifies the effective
background (the potential)



The SL(2,R);/U(1) 2D Black Hole

For high energies,

_B i .
Ro(p) ~ €27, Ryon—pert(p) = P, with 0(p) ~ plog(p)

The phase is not linear in p = as we increase the momentum, the
singularity is pushed further towards the horizon

. . _38 _B
A more careful calculation gives: Viy () ~ e 377 cos (26 4#)

Black Hole Interior
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@ There is a simple relation between the location of the singularity
(in the z-plane) and the reflection coefficient at high energies.

@ Due to non-perturbative effects, the region just behind the
horizon becomes singular.

@ What is the physical reason for this divergence?
Classically: Strings that fill the interior of the black hole.



