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Long time dynamics of non-equilibrium states

Questions of long time dynamics of systems:

|. Does the system equilibrate? (In terms of what variables,
which states...)

2. Nature of the equilibrium: thermal, GGE, memory (MBL),
“texture” density (Kibble-Zurek).

3. Rate of approach to equilibrium, exponential, power law:
relaxation rates.

4. Universality of equilibrium state, of relaxation rates.



Quantum quench

A theoretically as well as experimentally popular method
of creating non-equilibrium states is to do quantum
quench
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Methods

Primary method: humerical

Analytical methods:

|. Post-quench system= CFT (esp |+1),free or large N
in d+| (d=2,3,...). The thermal or GGE state, as well as

relaxation rate, dictated by universal CFT properties

Calabrese-Cardy 2005-09, Rigol et al 2007, Calabrese, Srednicki, ....
GM-Morita 2013, GM-Sinha-Sorokhaibam 2015, GM-Paranjape-Sorokhaibam 2017,

Banerjee-Gaikwad-Kaushal-GM 2019, ...

(O(1)) = (O)gag + €77, if d=odd
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“New’”’ method

2. In this talk we will discuss the application of phase
space hydrodynamics (droplet method) to quantum
quench in fermi gas (also hard-core Bose gas) in |+
as well as (in a limited way) in 2+| dimensions.

Kulkarni-GM-Morita 2018,2019 (in progress)

These problems have experimental significance in cold
atom systems. The method arose in early applications,
e.g. c=1,giant gravitons, SYM on 2D torus, ...

Polchinski 1992, Dhar-GM-Wadia 1992-95, GM 2005, Dhar-GM-Suryanaranyana
2006-2008, GM-Morita 2009-2013



Plan for the rest of the talk

Statement of the problem

Review of phase space hydrodynamics for large N fermions

Result |: Curing deficiencies of conventional hydrodynamics: Treatment of
shock fronts

Result 2: Derivation of equilibration to Generalized Gibbs Ensemble
Result 3: Universal relaxation exponents from shape of the confining potential

2+| dimensions: Fermions in a rotating trap (restricted to “lowest Landau
level”)



| . Statement of the Problem

Experiments in a number of ultra cold atom systems involve the
following question:

Suppose we have a system of non-interacting fermions or infinitely
repelling bosons (Tonks gas) which are suddenly released from a
confining potential to free space (typically modelled by a periodic
box) or to a different confining potential (typically with a different
value of the shape parameter, e.g. kx* — k'x?).



The problem is to find the subsequent quantum evolution of
the state of the system if we started, e.g. from the ground
state, and ask questions mentioned in the introduction, e.g.
thermalisation (or lack of it), relaxation, chaos, etc.

The exact treatment requires finding single-particle
eigenstates before and after the quench, computing the
Bogoliubov coefficients, and expressing the old Fermi sea in
terms of the many-body eigenstates of the new Hamiltonian.
This is complicated and except in certain cases, can only be
done numerically.



Conventional hydrodynamics

When the number of particles is large, it is natural to try a

continuum description in terms of the density and velocity of
particles: p(x,f) and v(x, 1)

The evolution of the particle density is assumed to satisfy the
continuity and Euler equations

Oip + Ox(pv) = 0 Continuity
Orv + Ox(v° /2 + °p° /2 + V(x)) = 0 Euler equation



There are several drawbacks of this equation. One is that it
has spurious singularities when shock fronts appear (because
of high density regions moving faster), where dp/dx = oo

Attempts have been made to add ad hoc terms to the Euler
Equation to tame the singularity; e.g.
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VOV 24 70 24 V() - 5
However, these do not solve the problem. The time-

development beyond the shock cannot be computed reliably

from conventional hydrodynamics. Damski. Kulkarni et al 2013
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p(x, 1)

Density at three instants of time (before, at and after the shock).
Dashed lines are N-body numerical simulations, which show
regular behaviour even after the shock. Solid lines are analytic
solutions with conventional hydro + ad hoc terms. These show
irregular behaviour beyond the shock.

Damski 2006



We will solve this problem by using an exact large N description of the

many-fermion systems, which leads to phase space hydrodynamics
(coming up next).

Conventional hydro appears as an approximation from this, which
breaks down at the time of shock formation.

Phase space hydrodynamics remains valid at all times, and can address
long time evolution and equilibration.
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2. Hydrodynamics in fermion phase space

Consider N non-relativistic free Fermions in one dimension, with single
particle Hamiltonian

bow Hd ey
= — 5 S (x)
Introduce the second quantised fermion field

U= Z C, x,(x)exp[—iE, t/h], izqon(x) — i)

n

This satisfies EOM and constraint;

|
i o(x, )= Ehz a)%W(X, 1)+ Vx)w(x,t)

de W' (x, Dw(x, ) = N
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Define the Wigner phase space distribution operator

Ux,p,t) = Jdn wi(x + /2,0y (x — n/2,t) explinp/h]

The fermion path integral can be rewritten in terms of a phase
density variable u(x,p,t) which is an expectation value of U(x,p,t) in a
W-infinity coherent state. This satisfies the EOM

0
Eu(x,p, )+ {h(x, p), u(x,p, t)}MB =i

and constraints that reflect Pauli exclusion principle and the
conserved total fermion number:

dxdp
(u * u)(x,p,t) = u(x,p, 1),
27h

Here the star product and Moyal bracket are defined by
h
(f * g)(x9 p) = [COS E(apax/ 8 ap’ax)(f(xa P> t)g(p,a x,9 t))]p

Bl = X8 gk

u(x,p,t) =N

T

Dhar-GM-Wadia 1992-1994 5



Large N limit

Let us now assume that we have a large number of fermions.VVe
further assume that highest occupied states (at low energies, this
means states near the Fermi level) are describable by WKB. This

leads us to the following large N limit

N—->oo, h—-0, Nha=1
In this limit the EOM and constraints become

0
—u(ep.) + (h(x.p).u(x.p.1)},,, = 0

5 dpdx

e e s =N =1
2

The first constraint has solutions u(x,p)=0 or |.Thus the

entire configuration space of fermions is described by

droplets in phase space:
|5



Phase space droplets

p

Shock

A quadratic droplet A droplet with a fold

The cartesian (x,p) parameterisation of fluid profiles works for “quadratic
droplets ”: The quantities P, (x),p_(x) get simply related to to p(x), v(x),
and the EOM of u(x,p) lead to the Euler equation of conventional hydro.

However, this description turns singular when the droplet develops a fold.
This happens often, since the higher fluid elements are faster. This is the
place where the real space density develops a shock. However, such
singularities are a coordinate artefact.

|6



Result |: Shock treatment

The u(x,p,t) EOM is equivalent to the statement that motion of the
droplet can be tracked by following fluid particles at each phase

space point (x,p). In other words, u(x, p, ) = uy(x’, p’), where
(x’,p’) denotes the location of a fluid particle at (x,p) in time t.
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Figure 9: Development of a shock front (a single fold) in the V' = 0 case. The five panels represent
snapshots at times t = 0,0.5¢1,t1,1.5¢1,2.0t1, respectively, where ¢ is the instant of time the
overhang (fold) develops. The blue dashed curve represents the fluid boundary p. in the phase
space, while the red curve represents the Fermion density 2whp(x,t). We have taken p_ = 0. The

horizontal axis represents x. The z-turning points lead to dp/dx = oo which characterize shock
fronts.

Kulkarni, GM, Morita 2018
| 7



Result 2: Equilibration to GGE

The basic idea: filamentation and equilibration through

long time average:
GM-Morita 201 3, Kulkarni-GM-Morita 2018

p bie=] p PR a=tae
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Figure 2: Cartoon of the time evolution of a droplet on a circle in the V' = 0 case. The speed of
the particle increases as p increases and the droplet will be tilted as time evolves. Finally it will
be smeared uniformly on the circle and reach a steady state.

|18



pm Some details in a simple case
T

Xo_(p) Xo+(P) Uy(x, p) = 9(x0+(l9) == D))
u(x, p,t) = 0(xg,(p) — x — pt) 0(x + pt — xy_(p))
X Circle (length L)l

u(x,p, 1) = ) 0(xy,(p) — x — mL — pt) O(x + mL + pt — x,_(p))

m
1 .
i 2mikz/L . ;
= ZZ dz e (+5)y—-1. Poisson summation
k

At long times, only the k=0 term survives:

1
U, p 1) = — (%04 (P) — x0_(P))

which is the initial number of fermions with momentum p.

19



Relation to GGE

The Fermi gas (or infinitely repelling Bose gas) has an infinite
number of conserved charges, e.g. the occupation numbers.
These are given by the initial values. In the present example

1
(N Goe = 3 (x0,.(K) — x_(p))

(P ooe = D, (Nodoer (% p) (*)
k

(X, p) is the single-state Wigner phase space distribution:
(X, p) = Jdn W + /2y (x — n/2)e™,  y(x) = e

= o(k — p)
Putting in eq (*), we recover the asymptotic u(x,p) from last page
u(xapa t) 3 <u(x9p)>GGE9 [ — o0 20
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297
p(f) = J dl p(0, t)cos b
0

045! N\ |p1(t)] GM-Morita 2013
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(a) p1(t) and GGE vs. Gibbs ensemble
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Result 3: Universal relaxation rates

Quench Protocol

Power Law Exponent

released from a potential °™ to a periodic circle oy
released from a box potential to a periodic circle | t=1
introduction of a cosine potential from V = 0 i

Table 1: Examples of power law relaxation of one point functions, e.g. particle densities, at late
times. The results may work for arbitrary local observables defined by (32).

Kulkarni,GM,Morita 2018
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Figure 1: (Left) Fermion droplet in the phase space. The red-blue curve describes the boundary
of the droplet at t = 0. x(p,t) and z_(p,t) denote the boundaries of the droplet for a given p at
time ¢, and xgy(p) (red) and xo_(p) (blue) are those at time ¢t = 0. At (x1,p1) and (z2,p2), the
curves zo+(p) and xzo—(p) meet each other. (Right Top) Plot of zg4(p). (Right Bottom) Integral
contour (24) on the complex p-plane.

Suppose the initial droplet (blue-red) has two extrema. The final
shape is given by the solid blob. The density at time t is given by

&d

p(x,t) = dp u(x,p,t) = N/L+ O
blob

t1+a

(&
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Example

Consider a quantum quench where fermions are released
¢ 5) ; g
from a potential V(x) = x*" to free motion on a circle.

In this case, the initial droplet is given by the Fermi sea
P2 MOy — 1 o s () =PI e S — (D)

Hence, the asymptotic density is given by

|
p(x,t) =N/L+ O (t”“)

More generally, the expectation value of an operator O, corresponding to a
phase space quantity O(x,p), has the asymptotic form

: 1
<O(t)> _— dp O(X,p)M(X,p, t) = <0>GGE 0 (tl+a>
Jblob

Thus, various local quantities like density, velocity, even two-point
functions have the same relaxation exponent. o




2+ | dimensional fermions

: e NG s e
Rotating trap: H = 0 (Px +Py> 53 Ly (O (xp, — yp,)

Lacroix-Majumdar-Schehr 2018
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Lowest Landau Level assumption: Py = eBy, ke eBx

Yo = 16 Vg — X 11 Ciotfh, ) = eB

Hyr = eGc it y)i= et £po)

Higher Landau Level

e
Kulkarni,GM,Morita 2019 T LEL

Effective one dimensional fermi fluid in the LLL sector. We can introduce
a droplet description as before and discuss long time behaviour of the

Fermi fluid.
25



Conclusions

Quantum quench dynamics studied in | and 2 dimensional fermi gas.

Large N limit leads to phase space hydrodynamics (“‘droplets™), which is
exact and does not suffer from spurious singularities of real space
hydrodynamics at shock fronts.

This allows study of long time dynamics and approach to equilibrium.

We described how universal relaxation rates can be obtained using this
method.

Outlook: I/N corrections, double scaling, criticality.
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