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Dhar-GM-Wadia 1992-94, GM 2005, Dhar-GM-Suryanarayana 2006-07 

GM-Morita 2013, Kulkarni-GM-Morita 2018-19 
based on



Questions of long time dynamics of systems:

1. Does the system equilibrate? (In terms of what variables, 
which states…)

2. Nature of the equilibrium: thermal, GGE, memory (MBL), 
“texture” density (Kibble-Zurek).

3. Rate of approach to equilibrium, exponential, power law: 
relaxation rates.

4. Universality of equilibrium state, of relaxation rates. 

Long time dynamics of non-equilibrium states
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A theoretically as well as experimentally popular method
of creating non-equilibrium states is to do quantum
quench

Quantum quench

H = Jx ∑
i

σx(i)σx(i + 1) + Jy ∑
i

σy(i)σy(i + 1) + h(t)∑
i

σz(i)

S = − ∫ ddx (∂μϕ∂μϕ − m2(t)ϕ2)

Introduction Critical quench: CC Rigorous result: CC Actual quench: gCC Holography

Quantum quench

Consider a quantum system in its ground state. Turn on a

time-dependent coupling g(t) for some time up to t = t1.

e.g. H(t) = −J
L

∑

i=1

[σx
i σ

x
i+1 + g(t)σz

i ]

g0

g(t)

g1

t

The post-quench dynamics is described by a final Hamiltonian

H and an ‘initial state’ |ψ1⟩, which depends on g(t).
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Primary method: numerical

Analytical methods:  

1. Post-quench system= CFT (esp 1+1), free or large N
in d+1 (d=2,3,…).  The thermal or GGE state, as well as
relaxation rate, dictated by universal CFT properties

Calabrese-Cardy 2005-09, Rigol et al 2007, Calabrese, Srednicki, ….
GM-Morita 2013, GM-Sinha-Sorokhaibam 2015, GM-Paranjape-Sorokhaibam 2017, 
Banerjee-Gaikwad-Kaushal-GM 2019, …

Methods

⟨O(t)⟩ → ⟨O⟩GGE + e−γt,  if d=odd

⟨O(t)⟩ → ⟨O⟩GGE +
1
tp

,  if d=even
BGKM 2019
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2. In this talk we will discuss the application of phase 
space hydrodynamics (droplet method) to quantum 
quench in fermi gas (also hard-core Bose gas) in 1+1
as well as (in a limited way) in 2+1 dimensions. 

Kulkarni-GM-Morita 2018, 2019 (in progress)

These problems have experimental significance in cold 
atom systems. The method arose in early applications, 
e.g.  c=1, giant gravitons, SYM on 2D torus, …

Polchinski 1992, Dhar-GM-Wadia 1992-95, GM 2005, Dhar-GM-Suryanaranyana 
2006-2008, GM-Morita 2009-2013

“New” method
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Plan for the rest of the talk

Statement of the problem 

Review of phase space hydrodynamics for large N fermions

Result 1:  Curing deficiencies of conventional hydrodynamics: Treatment of 
shock fronts

Result 2:  Derivation of equilibration to Generalized Gibbs Ensemble

Result 3:  Universal relaxation exponents from shape of the confining potential

2+1 dimensions: Fermions in a rotating trap (restricted to “lowest Landau 
level”) 
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1. Statement of the Problem

Experiments in a number of ultra cold atom systems involve the 
following question: 

Suppose we have a system of non-interacting fermions or infinitely 
repelling bosons (Tonks gas) which are suddenly released from a 
confining potential to free space (typically modelled by a periodic 
box) or to a different confining potential (typically with a different 
value of the shape parameter, e.g.                  ).kx2 → k′�x2
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The problem is to find the subsequent quantum evolution of 
the state of the system if we started, e.g. from the ground 
state, and ask questions mentioned in the introduction, e.g. 
thermalisation (or lack of it), relaxation, chaos, etc.

The exact treatment requires finding single-particle 
eigenstates before and after the quench, computing the 
Bogoliubov coefficients, and expressing the old Fermi sea in 
terms of the many-body eigenstates of the new Hamiltonian. 
This is complicated and except in certain cases, can only be 
done numerically.
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Conventional hydrodynamics

When the number of particles is large, it is natural to try a 
continuum description in terms of the density and velocity of 
particles: 
 

The evolution of the particle density is assumed to satisfy the
continuity and Euler equations

ρ(x, t) and v(x, t)

Introduction Fermions

Conventional hydrodynamics and attempted modification

Conventional hydrodynamics: ⇢(x , t) fermion density; ⇢(x , t)v(x , t)

@t⇢+ @x(⇢v) = 0 Continuity

@t v + @x(v
2/2 + ⇡2⇢2/2 + V (x)) = 0 Euler equation

These equations fail when, at some time tc and at some point xc , the density

develops a singularity

@⇢
@x

|tc ,xc
= 1.

We will call this a shock wave.

Modified mean field equation with a “Quantum pressure” term

(Kolomeisky-Straley 1992, Damski 2006; see also Kulkarni et al 2013)

(Continuity equation is not modified)

@t v + @x(v
2/2 + ⇡2⇢2/2 + V (x)� 1

2

@2
x

p
⇢

p
⇢

) = 0
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There are several drawbacks of this equation. One is that it 
has spurious singularities when shock fronts appear (because 
of high density regions moving faster), where

Attempts have been made to add ad hoc terms to the Euler
Equation to tame the singularity; e.g. 

However, these do not solve the problem. The time-
development beyond the shock cannot be computed reliably 
from conventional hydrodynamics.

∂ρ/∂x = ∞

Damski, Kulkarni et al 2013

Introduction Fermions

Conventional hydrodynamics and attempted modification

Conventional hydrodynamics: ⇢(x , t) fermion density; ⇢(x , t)v(x , t)
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@t v + @x(v
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2/2 + ⇡2⇢2/2 + V (x)� 1
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⇢
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Introduction Fermions

Shock formation: high compression regions propagate faster, creating a

shock front.

Density of atoms as a function of time. Sequence of profiles corresponds to t

= 41, 82, 131.2. Dashed line is an exact N-body calculation, while the solid

line presents the numerical solution of mean-field equation. Inset shows

details of a density profile at t = 82. Shock characteristics: tc = 81.6 and xs =

118.4.

ρ(x, t)

x

Density at three instants of time (before, at and after the shock). 
Dashed lines are N-body numerical simulations, which show 
regular behaviour even after the shock. Solid lines are analytic 
solutions with conventional hydro + ad hoc terms. These show 
irregular behaviour beyond the shock.

Damski 2006
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We will solve this problem by using an exact large N description of the 
many-fermion systems, which leads to phase space hydrodynamics 
(coming up next). 

Conventional hydro appears as an approximation from this, which 
breaks down at the time of shock formation.

Phase space hydrodynamics remains valid at all times, and can address 
long time evolution and equilibration.

 12
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Consider N non-relativistic free Fermions in one dimension, with single 
particle Hamiltonian 

ĥ = −
1
2

ℏ2∂2
x + V(x)

ψ(x, t) = ∑
n

̂cn χn(x)exp[−iEnt/ℏ], ĥφn(x) = Enφn(x)

Introduce the second quantised fermion field 

iℏ ∂tψ(x, t) = −
1
2

ℏ2 ∂2
xψ(x, t) + V(x)ψ(x, t)

This satisfies EOM and constraint:

∫ dx ψ†(x, t)ψ(x, t) = N

2. Hydrodynamics in fermion phase space



 14

(u ⋆ u)(x, p, t) = u(x, p, t), ∫
dxdp
2πℏ

u(x, p, t) = N

U(x, p, t) = ∫ dη ψ†(x + η/2,t)ψ(x − η/2,t) exp[iηp/ℏ]

Define the Wigner phase space distribution operator

The fermion path integral can be rewritten in terms of a phase 
density variable u(x,p,t) which is an expectation value of U(x,p,t) in a 
W-infinity coherent state.  This satisfies the EOM 

and constraints that reflect Pauli exclusion principle and the 
conserved total fermion number:

Here the star product and Moyal bracket are defined by

( f ⋆ g)(x, p) ≡ [cos
ℏ
2

(∂p∂x′� − ∂p′�∂x)( f(x, p, t)g(p′�, x′ �, t))]p′�=p,x′�=x

∂
∂t

u(x, p, t) + {h(x, p), u(x, p, t)}
MB

= 0,

{f, g}MB = f ⋆ g − g ⋆ f
Dhar-GM-Wadia 1992-1994
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N → ∞, ℏ → 0, Nℏ = 1

Let us now assume that we have a large number of fermions. We 
further assume that highest occupied states (at low energies, this 
means states near the Fermi level) are describable by WKB. This 
leads us to the following large N limit

Large N limit

∂
∂t

u(x, p, t) + {h(x, p), u(x, p, t)}
PB

= 0,

u2 = u, ∫
dpdx

2π
u(x, p, t) = Nℏ = 1.

In this limit the EOM and constraints become

The first constraint has solutions u(x,p)=0 or 1. Thus the 
entire configuration space of fermions is described by 
droplets in phase space:
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A Hydrodynamics of one-dimensional Fermi fluid and its break-
down

We will now consider an example of a droplet, which, in the standard (x, p) coordinate system of
the phase space, is a single, connected, “quadratic droplet” (with no folds) (defined in Figure 8).

Figure 8: Single connected droplets. We call it a “quadratic droplet” if any x= constant line
intersects the droplet boundary only at two points, p+(x) and p−(x). We call it a “fold” if there
is a region in which any x= constant line intersects the droplet boundary more than two points.
An example of a quadratic droplet is the ground state (the Fermi sea) for N Fermions trapped
in a potential V = x2m (35). More complicated examples of quadratic droplets can include small
fluctuations of such a droplet, the Fermi sea for a deformed trap, etc.

For “quadratic droplets”, the phase space density is given by

u(x, p, t) = θ
(

p+(x, t)− p
)

θ
(

p− p−(x, t)
)

. (62)

With this, the number density ρ(x, t) and the specific momentum density v(x, t), defined in (10),
are given by

ρ(x, t) =
1

2π!
(p+(x, t)− p−(x, t)), v(x, t) =

1

2
(p+(x, t) + p−(x, t)). (63)

The variables p±(x, t) are, therefore, related to the more physical variables, the densities

p±(x, t) = v(x, t) ± π!ρ(x, t).

It is easy to compute the total energy of a quadratic droplet (we drop the t-dependence since it
is a conserved quantity)

H =

∫

dxdp

2π!
h(x, p)u(x, p)

=

∫

dx

2π!

[

1

6

(

p+(x, t)
3 − p−(x, t)

3
)

+ V (x) (p+(x, t)− p−(x, t))

]

=

∫

dx ρ(x)

(

1

2
v(x)2 +

1

6
π2!2ρ(x)2 + V (x)

)

. (64)

23

Phase space droplets
Shock

The cartesian (x,p) parameterisation  of fluid profiles works for “quadratic 
droplets ”:  The quantities                    get simply related to  to              , 
and the EOM of u(x,p) lead to the Euler equation of conventional hydro.  

However,  this description turns  singular when the droplet develops a fold. 
This happens often, since the higher fluid elements are faster.  This is the 
place where the real space density develops a shock. However, such 
singularities are a coordinate artefact. 

p+(x), p−(x) ρ(x), v(x)
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t = 0 t = 0.5t1 t = t1 t = 1.5t1 t = 2.0t1

Figure 9: Development of a shock front (a single fold) in the V = 0 case. The five panels represent
snapshots at times t = 0, 0.5t1, t1, 1.5t1, 2.0t1, respectively, where t1 is the instant of time the
overhang (fold) develops. The blue dashed curve represents the fluid boundary p+ in the phase
space, while the red curve represents the Fermion density 2π!ρ(x, t). We have taken p− = 0. The
horizontal axis represents x. The x-turning points lead to ∂ρ/∂x = ∞ which characterize shock
fronts.

The equation of motion (13) now splits into two independent equations for each variable p±(x)
(after some straightforward manipulation of the θ-functions), 17

∂tp+ + ∂x(p
2
+/2 + V (x)) = 0, ∂tp− + ∂x(p

2
−/2 + V (x)) = 0. (66)

Translated to densities and velocity fields, these become

∂tρ+ ∂x(ρv) = 0,

∂tv + ∂x(v
2/2 + π2!2ρ2/2 + V (x)) = 0.

(67a)

(67b)

The first equation is the continuity equation, while the second equation is the Euler equation.
These are equations of conventional hydrodynamics.

The Poisson bracket that leads to these equations of motion from (64) is

{ρ(x, t), v(y, t)}PB = ∂xδ(x − y).

Now it is obvious that for a droplet of a general shape, e.g. for one with folds, the quadratic
form (62) does not hold. See Figure 8. Furthermore, it is easy to see that a droplet can develop
folds in time even when it does not have it initially. See Figure 9. For a phase space droplet
which develops a fold at some time, the real space density ρ(x) develops a shock (diverging slope)
at that time and the equations of conventional hydrodynamics (67) break down. The phase
space hydrodynamics description of Section 2.1, however, does not develop any pathologies since
folds are smooth configurations in phase space. Indeed, Figure 9 is obtained via the phase space
hydrodynamic calculations.

Similar analyses of shock fronts, although less extensive than the treatment above, have been
performed in Refs.[23].

17 The solutions of (66) are given as the following parametric set of equations,

p±(x) =
√

2(E − V (x)), t =

∫ x

s

dy
√

2(E − V (y))
, E =

pinitial
± (s)2

2
+ V (s) (65)

where pinitial
± (s) is the initial condition. See, for example, Ref. [19].

24

Result 1:  Shock treatment

Kulkarni, GM, Morita 2018

The u(x,p,t) EOM is equivalent to the statement that motion of the 
droplet can be tracked by following fluid particles at each phase 
space point (x,p). In other words,                                 , where 
(x’,p’) denotes the location of a fluid particle at (x,p) in time t.

u(x, p, t) = u0(x′�, p′�)
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Lx0 Lx0 Lx0

Figure 2: Cartoon of the time evolution of a droplet on a circle in the V = 0 case. The speed of
the particle increases as p increases and the droplet will be tilted as time evolves. Finally it will
be smeared uniformly on the circle and reach a steady state.

2.2 u(x, p, t) in V = 0 case

In the case of V = 0, the solution u(x, p, t) to Eqs. (13) and (14) is very simple. The solution of
the constraint u2 = u is given by using step function

u(x, p, t) = θ(x+(p, t)− x)θ(x− x−(p, t)), (15)

where x±(p, t) describe the boundaries of the droplet as functions of p at time t. See Figure 1.
If the droplet has multiple boundaries for a given p, for example see Figure 3, the corresponding
step functions should be added. Then Eq. (13) is satisfied if

x±(p, t) = x0±(p) + pt. (16)

Here x0±(p) ≡ x±(p, 0) are the boundaries of the droplet at t = 0. This is because the Fermions
move obeying the classical equations ẋ = p and ṗ = 0. Thus the Fermions with p > 0 move
towards the right and those with p < 0 move towards the left as sketched in Figure 1.

We need to choose this initial profile satisfying the second constraint of (14)
∫

dxdp

2π
u(x, p, t = 0) =

∫

dp

2π
(x0+(p)− x0−(p)) = 1. (17)

Once we impose this constraint at t = 0, Liouville’s theorem ensures that u(x, p, t) satisfies the
constraint for any t.

We can solve Eqs. (13) and (14) in the V ≠ 0 case similarly, but the solution is a bit complicated.
Hence we first consider the time evolution problem in the V = 0 case and argue the V ≠ 0 case
later.

3 Time evolution of particles on a circle in the V = 0 case

We consider the time evolution of the particles in the V = 0 case. To make the Fermions confined,
we put the Fermions on a circle with a period L and investigate how the particles settle down

6

Result 2: Equilibration to GGE

The basic idea: filamentation  and equilibration through 
long time average: 

GM-Morita 2013, Kulkarni-GM-Morita 2018
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Some details in a simple case

x0+(p)x0−(p)

x

p
u0(x, p) = θ(x0+(p) − x) θ(x − x0−(p))

u(x, p, t) = θ(x0+(p) − x − pt) θ(x + pt − x0−(p))

Circle (length L)

u(x, p, t) = ∑
m

θ(x0+(p) − x − mL − pt) θ(x + mL + pt − x0−(p))

= ∑
k

1
L ∫ dz e2πikz/L (, , )m→z/L Poisson summation

At long times, only the k=0 term survives: 

u(x, p, t) →
1
L (x0+(p) − x0−(p))

which is the initial number of fermions with momentum p.
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Relation to GGE

⟨u(x, p)⟩GGE = ∑
k

⟨Nk⟩GGE uk(x, p) − − − ( * )

The Fermi gas (or infinitely repelling Bose gas) has an infinite 
number of conserved charges, e.g. the occupation numbers. 
These are given by the initial values. In the present example

⟨Nk⟩GGE =
1
L (x0+(k) − x0−(p))

            is the single-state Wigner phase space distribution: uk(x, p)

uk(x, p) = ∫ dη ψ*k (x + η/2)ψk(x − η/2)eiηp, ψk(x) = eikx

= δ(k − p)
Putting in eq (*), we recover the asymptotic u(x,p) from last page 

u(x, p, t) → ⟨u(x, p)⟩GGE, t → ∞
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expression (33), the latter being derived using the large N semiclassical limit of the fermion

theory (4). From these plots, the evidence of equilibration is quite clear; while for finite N ,

there appears to be relaxation followed by a recurrence (with the recurrence time increasing

with N as shown in Fig. 1 (b)), at large N , ρ1(t) appears to relax to a certain value.

0 20 40 60 80 100 120 140
0.25

0.30

0.35

0.40

0.45

(a) ρ1(t) and GGE vs. Gibbs ensemble

0 100 200 300 400

(b) Poincaré recurrence

Figure 1: The time evolution of the first moment |⟨ρ1(t)⟩| (defined in (9)) for a quantum quench is shown. We
take ai = 0.8ac initially and change it to af = 1.2ac instantaneously at t = 0. (a) The (red) dashed line shows
the result for N = 120, which appears to show Poincare cycles. The Poincare cycles seem to grow linearly with
N as shown in (b). The (blue) solid line in (a) is for N = ∞ (computed using the droplet formalism, see Section
A and E); it shows equilibration and absence of Poincare cycles. The mean value of |⟨ρ1(t)⟩| for finite N and its
asymptotic value for N = ∞ are seen to have excellent agreement with each other and, in turn, with |⟨ρ1⟩GGE|
as computed in GGE, (see Section B for details of the computation), whereas these values all differ significantly
from the ensemble average in the standard Gibbs ensemble. We have verified that the N dependence of the
⟨ρ1⟩GGE is small.

Understanding of the equilibration in terms of GGE: Since in view of the discussion

around Eqn. (8), the above equilibration is surprising, it is useful to look for similar phenomena

in other examples. Fortunately, in recent years several examples of selective equilibration have

been found in integrable systems (see [1] for a review), in which a certain class of observables

has been shown to equilibrate in such integrable systems (which include the hard core bosonic

lattice and the transverse field Ising model), and the equilibrium configuration is characterized

not in terms of the standard thermal (Gibbs) ensemble, but by a Generalized Gibbs Ensemble

(GGE) which keeps track of the infinite number of conserved quantities by means of an infinite

number of chemical potentials.7 In our present model, the GGE is defined by the density matrix

ϱGGE =
1

ZGGE
exp

(

−
∑

m

µmNm

)

,

7The infinite number of chemical potentials can sometimes be thought of as a separate ‘temperature’ for
every mode, see, e.g. [10].

6

GM-Morita 2013

V(θ) = a cos θ → b cos θ

ρ1(t) = ∫
2π

0
dθ ρ(θ, t)cos θ

Example
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Result 3: Universal relaxation rates

Quench Protocol Power Law Exponent Section

released from a potential x2m to a periodic circle t−
2m+1
2m 3.2

released from a box potential to a periodic circle t−1 3.3

introduction of a cosine potential from V = 0 t−3/2 4.2

Table 1: Examples of power law relaxation of one point functions, e.g. particle densities, at late
times. The results may work for arbitrary local observables defined by (32).

approach is quite powerful and makes it possible to reveal the general nature of the late time
behaviour of the time evolution. Particularly we show that the local observables exhibit power
law relaxation where the exponent is fixed through a simple universal rule. This rule works
for arbitrary quench procedures and external potentials (except the harmonic one in which the
relaxation does not occur). We demonstrate it in several examples which are summarized in Table
1. We will also find the entropy formula for the late time GGE state.

It is worth mentioning that the two main ingredients of our setup, namely external potentials
and quenches are both experimentally realistic. Potentials and confinements of various kinds such
as harmonic trap, quartic traps [37, 38, 39], ring-shaped traps [40, 41], box-like traps [42, 43,
44, 45, 46, 47], and sinusoidal potentials have been realized. Various quench protocols have been
successfully demonstrated [48, 49, 48]. Besides, quantum quanches can be applied to the so-called
“shortcut to adiabaticity” in cooling atoms [50, 51, 52, 53, 54, 55].

The summary and organization of our paper are as follows. In Section 2, the phase space hydrody-
namics method is introduced in the limit of large number (N) of Fermions. A simple parametric
solution of the phase space density is presented in case where the confining potential V vanishes.
In Section 3, we continue the case of V = 0 for motion of Fermions on a circle. In Subsection
3.1 we find explicit formulae for the Fermion density and exhibit power law relaxation where the
exponent depends on the initial profile. In Subsection 3.1 we consider free motion after releasing
the Fermi gas from a confining potential of the form V = x2m. In this case the Fermion density
approaches equilibrium according a power law determined by m. In Subsection 3.3, the Fermions
are released from a box, and the power law is now universal, viz. ∼ 1/t. In Section 4, we consider
motion of Fermions in a potential at the post-quench stage. We find in Subsection 4.1 that there
is power law relaxation even in this case. An explicit example of quenching from V = 0 to a
cosine potential is shown in Subsection 4.2. As claimed in the beginning, the post-quench reduced
density matrix is expected to relax to that of a thermal or a GGE state. We explicitly verify this
in Section 5 by comparing the time-evolving phase space density after a long time with that in
a GGE; we also compute, in Subsection 5.1, the relevant entropy production. A discussion on
conventional hydrodynamics and its breakdown is given in the Appendix A.

3
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motion of Fermions in a potential at the post-quench stage. We find in Subsection 4.1 that there
is power law relaxation even in this case. An explicit example of quenching from V = 0 to a
cosine potential is shown in Subsection 4.2. As claimed in the beginning, the post-quench reduced
density matrix is expected to relax to that of a thermal or a GGE state. We explicitly verify this
in Section 5 by comparing the time-evolving phase space density after a long time with that in
a GGE; we also compute, in Subsection 5.1, the relevant entropy production. A discussion on
conventional hydrodynamics and its breakdown is given in the Appendix A.

3

Kulkarni,GM,Morita 2018
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ρ(x, t) = ∫blob
dp u(x, p, t) = N/L + O ( 1

t1+α )

Figure 1: (Left) Fermion droplet in the phase space. The red-blue curve describes the boundary
of the droplet at t = 0. x+(p, t) and x�(p, t) denote the boundaries of the droplet for a given p at
time t, and x0+(p) (red) and x0�(p) (blue) are those at time t = 0. At (x1, p1) and (x2, p2), the
curves x0+(p) and x0�(p) meet each other. (Right Top) Plot of x0+(p). (Right Bottom) Integral
contour (24) on the complex p-plane.

It is easy to see that in this limit the star product in (8) becomes an ordinary product and the
Moyal bracket (9) becomes a Poisson bracket. Thus, the phase space density in the large N limit
satisfies the equation of motion

@

@t
u(x, p, t) + {h(x, p), u(x, p, t)}PB = 0, (12)

which is simply Liouville’s equation for the classical phase space density. With h(x, p) = p2/2 +
V (x), this becomes 5

@tu+ p@xu� V 0(x)@pu = 0. (13)

The constraints (6) become

u2 = u,

Z
dpdx

2⇡
u(x, p, t) = N~ = 1. (14)

The first constraint implies that at any given phase space point (x, p) the phase space density can
either be =0 or =1. The regions where u = 1 are called droplets, representing regions occupied
by Fermions, 1 each in every small cell, of area ~. u = 0 represents regions without Fermions
(see Figure 1). The second constraint implies that the area of a droplet (or in case of multiple
disconnected droplets, combined area of all droplets) is N . As an example, the Fermi sea for a
harmonic trap V = x2/2 is represented by a circular droplet centred at the origin and of area 1.

5
If we substitute u(x, p, t) = 2⇡~

PN
i=1 �(x�xi(t))�(p�pi(t)) into (13), we obtain the classical Hamilton equation

ẋi = pi and ṗi = �V 0
(xi). Thus the points inside the droplet correspond to the single Fermions.

5

Suppose the initial droplet (blue-red) has two extrema.  The final
shape is given by the solid blob. The density at time t is given by
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V(x) = x2m
Consider a quantum quench where  fermions are  released 
from a potential                  to free motion on a circle.

p2/2 + V(x) = EF, x0,±(p) = 2(EF − p2)1/2m, α = 1/(2m)

In this case, the initial droplet is given by the Fermi sea

Example

Hence, the asymptotic density is given by

ρ(x, t) = N/L + O ( 1
t1+α )

More generally, the expectation value of an operator O,  corresponding to a 
phase space quantity  O(x,p), has the asymptotic form

⟨O(t)⟩ = ∫blob
dp O(x, p)u(x, p, t) = ⟨O⟩GGE + O ( 1

t1+α )
Thus, various local quantities like density, velocity, even two-point 
functions have the same relaxation exponent.
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2+1 dimensional fermions

H =
1

2m (p2
x + p2

y ) +
1
2

mω2 (x2 + y2) + Ω (xpy − ypx)

Lowest Landau Level assumption:  px = eBy, py = − eBx

{x, y}DB = {x, y}PB − {x, f1}C12{f2, y} = eB

HLLL = ϵ̃(x2 + y2) = ϵ̃(x2 + p2
x )

LLL

Higher Landau Level

Effective one dimensional fermi fluid in the LLL sector.  We can introduce
a droplet description as before and discuss long time behaviour of the 
Fermi fluid.

Kulkarni,GM,Morita 2019
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H =
1

2m ((px −
eB
2

y)
2

+ (py +
eB
2

x)
2

) − ϵ(xpy − ypx), eB = 2mω,
eB
m

− ϵ = Ω

Rotating trap:
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Conclusions

Quantum quench dynamics studied in 1 and 2 dimensional fermi gas.

Large N limit leads to phase space hydrodynamics (“droplets”), which is 
exact and does not suffer from spurious singularities of real space 
hydrodynamics at shock fronts. 

This allows study of long time dynamics and approach to equilibrium.

We described how universal relaxation rates can be obtained using this 
method. 

Outlook: 1/N corrections, double scaling, criticality.  


