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What is nature of spacetime behind the black hole horizon?

-Connection to information paradox (Mathur, AMPS)

-Emergence of space-time in AdS/CFT, do we need new principles to describe black
hole interior?

Review:
-Some reasons why question difficult

-Tomita-Takesaki modular theory and interior reconstruction (work with S.Raju)

-More recent techniques to (indirectly) probe interior:

i) Traversable wormhole protocol: Gao-Jafferis-Wall
ii) State-dependent perturbations of HSYK: Kourkoulou-Maldacena (relevant for
atypical states), see also Spenta’s talk
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More specific question:

What is the bulk dual geometry of a typical black hole microstate in AdS/CFT?

I Black hole information paradox and smoothness of black hole horizon
⇒ Typical state paradox in AdS/CFT

I Typical states represent majority of states counted by S = A
4G

Main points:

1. Conjecture: extended AdS/Schwarzchild geometry, including part of left region

2. Hilbert space of CFT contains states corresponding to excitations of this region

3. Proposal for 1-sided analogue of Gao-Jafferis-Wall traversable wormhole protocol
— allows us to probe this region

4. Analogue of Hayden-Preskill protocol for information recovery from black holes

based on earlier work with S. Raju and more recent work [KP 1708.06328], [J. de
Boer, R. van Breukelen, S. Lokhande, E. Verlinde, 1804.10580, 1901.08527]
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Comments on bulk reconstruction

-large N, large λ

-HKLL construction

(�AdS −m2)φ = 0 lim
z→0

z−∆φ(x, z) = O(x)

φCFT(t, x, z) =

∫
dωdk Oω,ke−iωt+ikxfω,k(z) + h.c.

-On-shell, uses bulk EOMs

-perturbative in 1/N

4



Local analysis near the horizon

Demanding that low-point correlators of local fields at late times look locally like flat
space we find some conditions which must hold at large N

[Oω,O†ω] = 1, [Õω, Õ†ω] = 1

[Oω, Õω′ ] = 0 〈O†ωOω〉 = 〈Õ†ωÕω〉 =
1

eβω − 1

5



Collapsing vs typical black holes

Black holes formed by (simple)
gravitational collapse are a-typical

Typical black hole microstates are defined by “microcanonical measure”

|Ψ〉 =
∑
i

ci|Ei〉

where Ei ∈ E0 ± δE and ci selected randomly by Haar measure
Notice that typical states are almost time-independent

〈Ψ|dA
dt
|Ψ〉 =

∑
ij

c∗i cjAij
d

dt
eiEijt = O(e−S/2)

Typical states are equilibrium states.
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[S.Lloyd]
Define 〈A〉micro = Tr(ρmicroA)

We also define the average over pure states in HE

〈Ψ|A|Ψ〉 ≡
∫

[dµΨ]〈Ψ|A|Ψ〉

where [dµΨ] is the Haar measure. Then for any observable A acting on HE , and
independent of the Hamiltonian, we have

〈Ψ|A|Ψ〉 = 〈A〉micro

and

variance ≡ (〈Ψ|A|Ψ〉2)− (〈Ψ|A|Ψ〉)2 =
1

eS + 1

(
〈A2〉micro − (〈A〉micro)2

)
Observables have the same expectation value in most pure states, up to exponentially
small corrections. Comments on 1) projectors 2) state-dependent observables
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Exterior geometry of typical state in AdS/CFT

-low point functions of single-trace correlators on typical state are close to thermal
correlators

-suggests that the dual exterior geometry is AdS-Schwarzchild

- fuzzball-like proposals are significantly constrained by previous theorem on typicality

8



Geometry of typical state

If future horizon is smooth, we expect interior region to be consistent with
(approximate) Killing isometry.
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Typical state paradox in AdS/CFT

I Large black holes in AdS are holographically dual to QGP states of N = 4 SYM
in deconfined phase

I These black holes are in equilibrium with their Hawking radiation and do not
evaporate

I Nevertheless the analogue of the firewall paradox has been formulated even for
these stable black holes [Almheiri, Marolf, Polchinski, Stanford, Sully], [Marolf, Polchinski]

I It suggests that big AdS black holes may have a singular horizon and no
geometric interior.

I Most precise formulation of the paradox.
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Firewall paradox for large AdS black holes

I [AMPSS, MP] paradox: if typical black hole states have smooth horizon, using
[H, Õ†] = −ωÕ† we find

Tr[e−βHÕ†Õ] < 0

which is inconsistent.
I This suggests that there are no operators Õ in the CFT with the desired

properties, hence the BH has no interior and horizon is singular (?).
11



Using entanglement to go behind the horizon

[KP, S. Raju]

The quantum fields outside the horizon appear to be in an entangled state. They are
entangled with certain CFT d.o.f. which can play the modes of the interior.
There is a natural mathematical construction allowing us to identify those.

12



Tomita-Takesaki modular theory

Consider a state |Ψ〉 and an algebra A with the properties:
1) The state is cyclic wrt the algebra A i.e.

H = spanA|Ψ〉

2)The state is separating wrt the algebra A i.e.

a|Ψ〉 6= 0 ∀a ∈ A, a 6= 0

Then the Tomita-Takesaki theorem says (among other things) that:

The representation of the algebra A on H is reducible, and the algebra has a
non-trivial commutant A′ also acting on H. Moreover A′ is isomorphic to A. Finally,
the algebras A,A′ are entangled in a particular way.

13



Tomita-Takesaki modular theory

We define an antilinear map

Sa|Ψ〉 = a†|Ψ〉 a ∈ A

Consider the polar decomposition

S = J∆1/2 ∆ = S†S

where ∆ = e−K and K=modular Hamiltonian. Then we have:

1. A′ = JAJ : the commutant A′ is isomorphic to A (notice J2 = 1).

2. ∆isA∆−is = A, ∆isA′∆−is = A′ s ∈ R
3. KMS-like condition: F (z) ≡ 〈Ψ|a∆izb∆−iz|Ψ〉, then F (−i) = 〈Ψ|ba|Ψ〉

14



Example:Rindler space

Consider a general, possibly strongly coupled, relativistic QFT in the Minkowski ground
state |0〉. Suppose we have only access to right Rindler wedge. How can we use the
entanglement to recover the rest of space-time?

Reeh-Schlieder theorem: The Minkowski vacuum |0〉 is a cyclic and separating state for
the algebra A:

1. States of form a1...an|0〉 ai ∈ A, span dense subspace of H
2. There is no a ∈ A such that a|0〉 = 0.

15



Example:Rindler space

Consider Lorentz boost U = eiKs on t− x plane

t′ = t cosh s+ x sinh s

x′ = t sinh s+ x cosh s

A complexified Lorentz boost by s = iπ maps (t, x, ~y)→ (−t,−x, ~y)

e−πKφ(t, x, ~y)|0〉 = φ(−t,−x, ~y)|0〉

Combine this with a rotation R1 by π around x which takes ~y → −~y and finally CPT
transformation Θ which maps (−t,−x, ~y) back to (t, x, ~y). All in all we find

ΘR1e
−πKφ(t, x, ~y)|0〉 = φ†(t, x, ~y)|0〉

Generalizing to more operators (Bisognano-Wichmann thm.) it follows that the desired
modular conjugation implementing Sa|0〉 = a†|0〉 is

S = ΘR1e
−πK

16



Example:Rindler space

We have S = ΘR1e
−πK . From this follows that

∆ = S†S = e−2πK

The modular Hamiltonian is the Lorentz boost generator with effective temperature
1

2π . The antiunitary operator J mapping A to A′ and allowing us to recover the left
wedge is

J = ΘR1

The fact that each of the algebras A,A′ remain invariant under conjugation by ∆is is
obvious in this example. The KMS condition implies the Unruh temperature (even at
strong coupling). 17



Tomita-Takesaki and the black hole

We do not have a decomposition of the algebra in physical space, but rather in the
space of operators.
Introduce a “small algebra” A of simple operators (single trace + small products).

We define the small Hilbert space (also called “code-subspace” in later works)

HΨ = A|Ψ〉

The algebra A probes the typical pure state |Ψ〉 as a thermal state

〈Ψ|O(x1)...O(xn)|Ψ〉 = Z−1Tr[e−βHO(x1)...O(xn)] +O(1/N)

No annihiliation operators in A ⇒ |Ψ〉 is a cyclic and separating vector.

An analogue of the Tomita-Takesaki construction applies.
Using large N factorization and the KMS condition, we find the modular Hamiltonian
for the small algebra

∆ ≡ S†S = e−β(H−E0) +O(1/N)

18
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The mirror operators

This leads to the “mirror operators”

Õω|Ψ〉 = e−
βH
2 O†ωe

βH
2 |Ψ〉

ÕωO....O|Ψ〉 = O...OÕω|Ψ〉

[H, Õω]O....O|Ψ〉 = ωÕωO....O|Ψ〉

These equations define the operators Õ on the code-subspace HΨ ⊂ HCFT, which is
relevant for EFT experiments around BH microstate |Ψ〉

I Operators defined only on HΨ, not on full CFT Hilbert space - they are
state-dependent operators.

I [O, Õ] = 0 only inside HΨ, not as operator equation

I Due to Boltzman factors 〈O†ωOω〉 ∝ e−βω, we define these operators for ω < ω∗,
where ω∗ does not grow too fast with N
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These equations define the operators Õ on the code-subspace HΨ ⊂ HCFT, which is
relevant for EFT experiments around BH microstate |Ψ〉

I Operators defined only on HΨ, not on full CFT Hilbert space - they are
state-dependent operators.
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The mirror operators

The small algebra A is not an exact algebra, hence the Tomita-Takesaki theorem can
not be applied exactly. Hence A′ is not an exact commutant.

From a physical point of view this is a desirable feature of the construction. It
realizes the idea of black hole complementarity in a precise setting.

It also naturally implies that there is some non-locality in the construction of the
interior.

Finally, notice the operators Õ defined by the Tomita-Takesaki constrcution are
state-dependent, since they are “defined by the enganglement”.

20



Infalling observer

φ(t, r,Ω) =

∫ ∞
0

dω
[
Oω fω(t,Ω, r) + Õωgω(t,Ω, r) + h.c.

]

21



Extended geometry

The cutoff on the left is determined by ω∗.

Since Õ do not fundamentally commute with O, left region should not be though as a
fundamentally independent part of the Hilbert space (BH complementarity)
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Summary

Conjecture: typical state should be associated to the following geometry:

In general we can characterize the geometry of a state by classifying possible ways to
excite it.

We will identify perturbations of the CFT state corresponding to excitations of left
region

23



Standard non-equilibrium states

t=0.

Excited (somewhat a-typical) state

|Ψ〉 = U(O)|Ψ0〉 = eiθO(0)|Ψ0〉

Correlators
〈Ψ|O(t)|Ψ〉

are t-dependent

State prepared to undergo a spontaneous fluctuation out of equilibrium at t ≈ 0.

24



Exciting the left region
[KP 1708.06328]

t=0.

U(Õ)|Ψ〉

But we can also write this as

U(Õ)|Ψ〉 = e−
βH
2 U(O)†e

βH
2 |Ψ〉

25
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Exciting the left region
[KP 1708.06328]

t=0.

e−
βH
2 U(O)†e

βH
2 |Ψ〉

Existence and properties of these states independent of Õ-operator construction

Unusual type of non-equilibrium state, excitation not visible in single-trace correlators

Acting with e−
βH
2 U(O)†e

βH
2 lowers CFT energy

26



Properties of the states

At large N state

|Ψ〉 = e−
βH
2 U(O)e

βH
2 |Ψ0〉

seems to be in equilibrium wrt algebra A

〈Ψ|A|Ψ〉 = 〈Ψ0|e
βH
2 U(O)†e−

βH
2 Ae−

βH
2 U(O)e

βH
2 |Ψ0〉

=
1

Z
Tr[e−βHe

βH
2 U(O)†e−

βH
2 Ae−

βH
2 U(O)e

βH
2 ] +O(1/S)

=
1

Z
Tr[e−βHA] +O(1/S)
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Properties of the states
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Including H in correlators. We define Ĥ = H − E0 and to be concrete consider the
state

|Ψ〉 = e−
βH
2 eiθO(t0)e

βH
2 |Ψ0〉 (1)

and compute

〈Ψ|O(t)Ĥ|Ψ〉 = iθ

[
〈Ψ0|O(t)ĤO(t0 + i

β

2
)|Ψ0〉 − 〈Ψ0|O(t0 − i

β

2
)O(t)Ĥ|Ψ0〉

]
+O(θ2)

〈Ψ|{O(t), Ĥ}|Ψ〉 ≈ θ〈Ψ0|O(t)
dO
dt

(t0 + i
β

2
)|Ψ0〉 (2)

This correlator decays exponentially as |t− t0| becomes very large, but it is nonzero
and O(1) around the time t = t0.
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Properties of the states

t=0.

I They seem to be in equilibrium in terms of single-trace correlators

d

dt
〈Ψ|O(t)|Ψ〉 = 0

I It can be seen that they are out of equilibrium by incuding H in the correlator

d

dt
〈Ψ|{O(t), H}|Ψ〉 6= 0
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Example

t=0.
- 1.0 - 0.5 0.5 1.0

- 400

- 200

200

400

Consider a 2d CFT on S1 ×R on a state |Ψ〉 = e−
βH
2 U(O)e

βH
2 |Ψ0〉, with

U = eiθO(t0). Then at large c we find

〈Ψ|{O(t), Ĥ}|Ψ〉 = θ 2∆

(
2π

β

)2∆+1 +∞∑
m=−∞

sinh
(

2π(t−t0)
β

)
[
2 cosh

(
4π2m
β

)
+ 2 cosh

(
2π(t−t0)

β

)]∆+1
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Notice that
e−

βH
2 U(O)e

βH
2

is not a unitary, however the state e−
βH
2 U(O)e

βH
2 |Ψ0〉 has norm 1 up to 1/S

corrections.
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Also notice that
e−

βH
2 U(O)e

βH
2

lowers the energy for typical states. How is this possible given that this is an invertible
operator and that there are fewer states at lower energies?

Yes. This operator only lowers the expectation value of the energy. The states

e−
βH
2 U(O)e

βH
2 |Ψ0〉

have spread in energy, and are borrowing “phase space” from higher energies.
However their low energy components are enhanced, thus decreasing the expectation
value of the energy.
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Non-equilibrium states in SYK

Distribution of |〈Ei|Ψ〉|2 in SYK for

a) left: typical state |Ψ0〉
b) middle: usual non-equilibrium state U(O)|Ψ0〉

c) right: non-equilibrium state of form e−
βH
2 U(O)†e

βH
2 |Ψ0〉
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I We identified a class of non-equilibrium states present in any statistical system. In
holographic CFTs these states may correspond to excitations behind the black
hole horizon.

I The number of such states is in correspondence with possible ways to excite the
region behind the horizon in EFT assuming the conjectured geometry for a typical
state

I The existence of these states is motivated by, but logically independent from
state-dependent operators Õ.

I This shows that the CFT contains in its Hilbert space a class of states which can
be naturally identified with excitations of the left region

Can we find more evidence for the interpretation of these states?
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t=0.
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t=0.
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Extracting the particle

Following Gao-Jafferis-Wall we will try to create a negative energy shockwave by
perturbing the CFT with

H = H0 + gOÕ

t=0.

see also [Kourkoulou, Maldacena],[Almheiri, Mousatov, Shyani] for somewhat related constructions
37



Comments on using state-dependent operators on the
boundary

1. The use of state-dependent operators on the boundary fits within the standard
framework of quantum mechanics

2. We can imagine many identically prepared systems all in state |Ψ〉.

3. The boundary observer can use these systems to perform many measurements and
identify the state |Ψ〉

4. Then the observer can prepare a device acting with Õ on one of the remaining
(un-measured) systems which is still in the state |Ψ〉.

It remains a non-trivial question to understand better how the infalling bulk observer
can use state-dependent operators to perform quantum measurements.
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Eternal AdS black hole

Two identical non-interacting CFTs

H = HL +HR

in an entangled state

|TFD〉 =
1√
Z

∑
E

e−
βE
2 |E〉L ⊗ |E〉R
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Eternal AdS black hole

In the bulk they are connected by a wormhole (Einstein-Rosen bridge).

It is not traversable, consistent with the fact that CFTs are non-interacting
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Gao-Jafferis-Wall protocol

at t = 0 we briefly couple the CTFs by a double-trace interaction

H = HL +HR + gf(t)OLOR

For given sign of g this creates negative energy shockwaves in the bulk. Probe
undergoes time advance when crossing shockwaves

Wormhole becomes traversable
41



Gao-Jafferis-Wall protocol

Change of CFT energy
δ〈HR〉 ∝ g〈OLOR〉+O(g2)

Black hole horizon shrinks somewhat, probe can cross the wormhole
CFTs briefly interacted via OLOR at t = 0, so information can be exchanged
Notice φ vs O
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Quantum Teleportation Interpretation

A B

Quantum

Measurement

Classical

information

Measure OL on CFTL, then apply

eigoLOR

on CFTR. The probe φ is teleported.
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Gao-Jafferis-Wall protocol
analysis by [Maldacena-Stanford-Yang]

We create the probe on the left by

eiεφL(−t)|TFD〉

At t = 0 we apply double-trace
perturbation coupling the two CFTs

eigOLOR(0)eiεφL(−t)|TFD〉

We measure the operator φR(t) on this state. To leading order in ε we need

〈TFD|[φL(−t), e−igOLOR(0)φR(t)eigOLOR(0)]|TFD〉

Expanding in g
〈TFD|[φL(−t), OL(0)][φR(t), OR(0)]|TFD〉
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Traversable wormholes and quantum chaos

Growth of out-of-time-order-correlators (OTOC) due to quantum chaos

〈TFD|[φL(−t), OL(0)][φR(t), OR(0)]|TFD〉 ∼ 1

N2
e

2π
β
t

Including higher orders in g, we find that the commutator is zero up to scrambling
time t ≈ β logS, when it becomes nonzero and we get a nontrivial signal,
corresponding to the probe appearing in the right CFT. 45



I Gao-Jafferis-Wall identified an S-matrix-like experiment which probes the interior
of eternal black hole

I CFT correlators contain information about geometry inside horizon

I Computations provide evidence for smoothness of horizon of eternal black hole,
dual to the TFD state, and ER/EPR proposal

I However, the real difficulty in reconciling unitarity with the smoothness of the
black hole horizon is not for the TFD (which is a very special, atypical state), but
rather for typical black hole microstates.

I Can we find a way of applying a similar protocol to (1-sided) typical black hole
microstates, which will allow us to probe their interior?
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Exciting the left region

Mirror quench: we perturb the CFT Hamiltonian by Õ at −t

Excitation is invisible by simple CFT operators
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Creating negative energy shockwaves for 1-sided black hole
[J. de Boer, R. van Breukelen, S. Lokhande, KP, E. Verlinde, arXiv: 1804.10580, 1901.08527]

At t = 0 we perturb CFT Hamiltonian by

gf(t)OÕ(0)

Compute effect on bulk correlators ⇒ generates negative energy shockwaves for
appropriate choice of g
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Some subtleties

Operators Õ are gravitationally dressed wrt the right ⇒ Wilson lines extending across
geometry

Backreaction and Einstein equations at subleading order?
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The experiment

We create a probe in the left region of the black hole by acting with φ̃(−t).

Then at t = 0 we perturb the CFT by gf(t)O(0)Õ(0). Finally we detect the probe by
measuring φ(t).

The postulated Penrose diagram makes a prediction about CFT correlators
(singal around t = β logS)

〈Ψ0|[φ̃(−t), e−igÕO(0)φ(t)eigÕO(0)]|Ψ0〉 50



Comparison
Eternal BH

C =
1

Z
Tr[e−βHX (φ,O)]

1-sided BH

C ′ = 〈Ψ0|X (φ,O)|Ψ0〉

Using properties of the TFD state and the mirror operators we find that both
experiments are governed by the expectation value of exactly the same string of
ordinary CFT operators χ(φ,O). Moreover, in stat-mech we have

C ′ = Tr[ρmX (φ,O)] +O(e−S)
51



Condition for CFT correlators

C =
1

Z
Tr[e−βHX (φ,O)] C ′′ = Tr[ρmX (φ,O)]

A necessary condition for horizon of typical BH mircostate to be smooth is

lim
N→∞

C = lim
N→∞

C ′′

keeping frequencies ω < ω∗.

I Not obvious, trace-distance ||ρβ − ρm|| between ensembles is almost maximal.

I X (φ,O) is a complicated observable, product of operators at time separation
∆t ∼ β logS

I Condition is related to whether X (φ,O) obeys Eigenstate Thermalization
Hypothesis (ETH)

〈Ei|X |Ej〉 = f(Ei)δij +Rije
−S/2 (3)

with df
dE ∼ O(1/S) 52



Condition for CFT correlators

I Interesting effect comes from subleading corrections of the form

1

N2
e

2πt
β

At scrambling time they become O(1).

Are these “chaos-enhanced” 1/N2 corrections the same in typical pure states and
thermal ensemble?

I Our condition requires that correlators agree even after analytic continuation by
t→ t− iβ2 (keeping frequencies up to ω∗)
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Evidence

1. ETH holds for products of operators at small time separation. We can show that
it also holds for very large time separations (when chaos saturates). It is natural
to expect that it holds for intermediate times of order β logS

2. In 2d CFTs with large c and sparse spectrum correlators are dominated by
Virasoro identity block. In this case the conjecture is true.

3. Numerical evidence in SYK model
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The SYK model

N -Majorana fermions in 0 + 1d

{ψi, ψj} = δij

H =
∑
ijkl

Jijklψ
iψjψkψl

where Jijkl random couplings

dimH = 2
N
2

Flows to strongly coupled CFT in IR

Model of black hole in AdS2

[figure from Maldacena, Stanford]
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The mirror operators in the SYK model

Typical state in SYK

|Ψ〉 =
∑
i

ci|Ei〉

Introduce the spin operators [Kourkoulou,Maldacena]

Sk = 2i ψ2k−1ψ2k
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The mirror operators in the SYK model

|1〉 = |Ψ0〉 ,
|2〉 = S1,ω1 |Ψ0〉 ,
|3〉 = S1,ω2 |Ψ0〉 ,

...

|n〉 = S2,ω1 |Ψ0〉 ,
|n+ 1〉 = S2,ω2 |Ψ0〉 ,

...

|l〉 = S2,ω2S1,ω1 |Ψ0〉 ,
...

(4)
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The mirror operators in the SYK model

To simplify the notation, we denote these states as

|I〉 ≡ OI |Ψ0〉, (5)

where OI is a combination of the spin operators introduced above. We define

GIJ ≡ 〈I|J〉

and
BIJ,kω ≡ 〈I| S̃k,ω |J〉 , (6)

or using the equations for the mirror operators

BIJ,kω = 〈Ψ0|O†IOJe
−βH

2 Sk,ωe
βH
2 |Ψ0〉. (7)

Finally we can represent the mirror operators explicitly as

S̃k,ω = GIJBJK,kωG
KL |I〉 〈L| . (8)
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Extracting particle from behind the horizon
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Relation to Kourkoulou-Maldacena

They consider a class of a-typical, non-equilibrium states in the SYK model

e−
βH
2 |Bs〉 where Sk|Bs〉 = sk|Bs〉

On these states they consider the (state-dependent) perturbation of the form

δH = g
∑
k

skSk

and they argue that this exposes part of the region behind the horizon.
In fact, this thought experiment is closely related to the perturbations

δH = gOÕ

that we discussed earlier.
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Pure vs thermal state OTOC in SYK

Time

〈{ψi(t), ψi(0)}2〉

on thermal state (red) vs typical pure state (blue).
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ETH for chaotic observables in SYK

Matrix elements in SYK of
{ψi(t), ψi(0)}2

for t ≈ β logS 62



Recovering information from a black hole

We throw a qubit into black hole. How long do we need to wait to recover the
information from Hawking radiation?

tevap ∼ G2M3

Hayden Preskill (2007): if we have access to more than half of Hawking radiation we
only need to wait scrambling time

tS ∼ GM logS

to recover information. For the protocol to work we need to know the initial state of
the black hole.
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Hayden-Preskill protocol

Reformulated by Maldacena-Stanford-Yang in terms of traversable wormholes
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A realization of Hayden-Preskill

x

We throw qubit φ(−ts) into black hole

At t = 0 we act with OÕ
After scrambling time we can extract the quantum information of the qubit my
measuring operator φ̃(ts).

This provides an explicit decoding Hayden-Preskill protocol

Knowledge of the quantum state related to state-dependent Õ. 65



Summary

I The nature of space-time behind the horizon remains mysterious

I This question becomes particularly sharp for typical black hole microstates in AdS

I Presented a proposal for their geometry, by making use of state-dependent
operators.

I Developments related to traversable wormholes: new calculational tools to probe
BH interior

I Interesting connections with quantum teleportation, thermalization and quantum
chaos in pure states.
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