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String theory 
compactifications  

with sources



Introduction
Internal space of string theory: often smooth, but sometimes sources are present

• in AdS/CFT they realize flavor symmetries

• necessary for de Sitter and for Minkowski beyond CY

[Acharya, Benini, Valandro ’05,
Graña, Minasian, Petrini, AT ’06,

Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann ’08,
Andriot, Goi, Minasian, Petrini ’10…]

• They are hard to localize [in curved spaces, or with intersections]
However

Introduction

String theory compactifications = vacuum solutions
AdSd
Minkd
dSd

⇥Mk

• until recently, focus on geometry of Mk
Calabi–Yau, Sasaki–Einstein and generalizations

• but sources [exp. O-planes] necessary for de Sitter and for Minkowski beyond CY 

• until recently, most solutions with sources 
relied on smearing

O-planes should sit at fixed 
points of involutions…

… but they get  
spread everywhere

[Acharya, Benini, Valandro ’05,
Graña, Minasian, Petrini, AT ’06,

Caviezel, Koerber, Körs, Lüst, Wrase, Zagermann ’08,
Andriot, Goi, Minasian, Petrini ’10…]

so sometimes people resort to smearing

• They create funny singularities where supergravity breaks down
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beyond a critical distance
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[not a problem for compact solutions] 
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inside this ‘hole’ the solution doesn’t make sense

curvature and string coupling become large earlier
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• the only case without a hole

p = 8 : H = a+ |z/z0|•  

• dilaton stays finite, unless a = 0

e� = gsH
�5/4



This talk: review on progress on solutions with sources

•AdS: many such solutions appear naturally
and can be checked using holography 
especially in the supersymmetric case

• perhaps we can use this progress for dS as well?



AdS solutions
• near horizon limit

around single source:
angular directions 

around brane 
become

internal sphere

D3 dissolve; no source remains after near-horizon

N D3

AdS5 ⇥ S5

• but near intersections:
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rare explicit example:

ds

2
10 ⇠ x9

�1/2(ds2AdS6 + ds

2
S3) + x9

1/2
dx

2
9

[Brandhuber, Oz ’99]near-horizon:

D4 have dissolved, but O8 at the equator remains 
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Let us also show how the metric looks like in the coordinate z we just introduced:9
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The dilaton reads
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Notice that (2.25) implies ↵̈ < 0. We also have
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The expression for B is now valid both in the massless and massive regions. In the

latter we have that F2 � F0B is a closed form, as it should be.

2.2.4 Holographic limit

Finally we will identify the conditions under which the solutions of this section have

small curvature and string coupling. Usually one tends to take large ranks. However,

in our case it seems more appropriate to scale the number of gauge groups. Intuitively,

the idea is that our solutions came from a near-horizon limit of NS5-branes, and the

curvature is small when the number N of fivebranes is large. This is even clearer for

the massless solution (2.10), which is a reduction of N M5-branes.

Indeed one sees from (A.5) that making N very large makes the range of y become

large too. This looks promising, but one also sees from (2.19) that the �y
i

for i  L

and i � R are staying constant. This can be seen even more clearly in the z coordinate

introduced in section 2.2.3: the total range of the z coordinate is N , but (2.23) shows

that only the massless region is expanding; the massive regions stay the same size. In

terms of figure 2(c), the central region between the two Young diagrams is expanding

more and more. A more careful analysis indeed concludes that the D8’s are becoming

smaller and smaller with respect to the internal volume: the massless region is expand-

ing, pushing the D8’s closer and closer to the poles. Thus in this limit we are getting

back to the massless solution (2.10) and the details of the tail of the quiver associated

to the massive regions are washed out.

9The fact that we managed to write the metric in terms of a piecewise linear function is reminiscent

of [7]. The ultimate reason is that the combinatorial data are formally the same, but it might be

interesting to explore this relationship further.
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• AdS7 in IIA

[Apruzzi, Fazzi, Rosa, AT ’13
Apruzzi, Fazzi, Passias, Rota, AT ‘15; 

Cremonesi, AT ‘15]

...
↵ = F0 ↵ piecewise cubic

interval
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↵, ↵̇, ↵̈ continuous

what happens with other boundary conditions?

• At endpoint, smoothness: S2 should shrink, ↵
↵̈ finite

↵ ⇠ z + F0z3
↵ ! 0, ↵̈ ! 0

in several other cases, solutions are thought to arise from near-horizon
of unknown intersecting-brane solutions
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• say only ↵ ! 0

↵ ⇠ a1z + a2z2 + F0z3

ds2 ⇠ z1/2ds2AdS7 + z�1/2(dz2 + z2ds2S2)

transverse R3

H ⇠ 1/z D6

ds210 ⇠ z�1/2ds2AdS7 + z1/2(dz2 + ds2S2)

transverse R3

O6

• or say only ↵̈ ! 0

↵ ⇠ a0 + a1z + F0z3

H ⇠ z
near the boundary 

of its hole

↵ ⇠ a2z2 + F0z3

ds210 ⇠ z�1/2(ds2AdS7 + ds2S2) + z1/2dz2

O8H ⇠ z

• or ↵ ! 0, ↵̇ ! 0

•finally inside interval, when F0 jumps D8 perhaps with D6 charge 



We can mix & match these singularities in many types of solutions 

… and many others

which again engineer 
dual field theories

. . . . . .ri ri+1

fi+1fi

10 1010 10 10 10 109 98 874 46 2

1 1 1 12

. . .2 3 NN � 11

. . .2 3 N1 N + 1

[Gaiotto, AT ’14; Hanany, Zaffaroni ‘96]

smooth 
endpoint

D8/D6

N = 17

D8

D6 N NS5

⇠=

expected to come 
from near-horizon of

D6

O8
expected to come 

from near-horizon of D6
O8

N NS5

application of the standard string theory techniques [15,16]. As usual in six dimensions,

the field theory one reads o↵ this way is an e↵ective description of the tensor moduli

space of a SCFT. The conformal point is really obtained at the origin of this tensor

moduli space, which corresponds in the brane diagram to putting all the NS5-branes

on top of each other and on top of the O8-plane.

Having said this, the e↵ective theory is as follows. It consists of a chain of gauge

groups SU(i·n
0

), i = 1, 2, . . . , (N�1), coupled to hypermultiplets and tensor multiplets.

At the end of the chain there is an SU(Nn
0

) flavor symmetry. (For details, see [15, 16]

or the summary given in [23, Sec. 2.1].) The tensor multiplets couple to the gauge

fields via a Green–Schwarz–Sagnotti–West mechanism, and via a term of the type (�
i

�
�
i+1

)Tr(F 2

i

), where �
i

is the real scalar in the i-th tensor multiplet and F
i

is the i-th

gauge field strength.

. . .

E9�n0
(N � 1)n0 Nn02n0n0

2 4 6E7

(a)

E
7

2 4 6

(b)

Figure 5: In figure (a), the brane diagram whose near-horizon limit produces the solution (5.3)
for n

0

= 2 and N = 3 is depicted. The vertical line represents an O8-plane with n

8

= 8 � n

0

(= 6, in this case) D8-brane pairs. The nodes denote NS5-branes, and the horizontal lines D6-
branes. In figure (b), the quiver diagram of the corresponding field theory for this particular
case is depicted. The empty node represents the E-string theory, as explained in the main
text.

All this is like in the theory corresponding to the NS5–D6 system, shown for example

in [23, Fig. 6], whose gravity dual is the tear-drop shaped, “simple massive” solution

of [22] and [20, Sec. 5.2]. There is, however, an additional subtlety here, due to the

presence of the O8-plane. (This was discussed in section [15, Sec. 5.1], although the

theories we need are a “piece” of the ones in that reference. The theory we are describing

appeared recently in [49].) Via a chain of dualities, the O8–D8 system can be mapped

to the E
8

wall in M-theory [50]. An unbroken E
8

corresponds to a situation where there

are 7 D8-brane pairs on the O8-plane; notice that in this situation n
0

= 2⇡`
s

F
0

is equal

to 1. When there are fewer D8-brane pairs, n
8

= 8 � n
0

, the flavor group is broken to

E
n8+1

= E
9�n0 . For n0

= 6, 5 this gives E
7

and E
6

respectively. For n
8

smaller still, the

sequence was determined in [51] in the context of the five-dimensional CFTs obtained

by putting D4-branes next to an O8–D8 system (whose gravity dual [39] was mentioned

31

again exceptional flavor symmetry



•Holographic checks: [Cremonesi, AT ’15]
[Apruzzi, Fazzi ‘17]

Weyl anomaly a can be computed both from field theory and gravity

It agrees rather nontrivially.

an integral over 
internal dimensions

[Henningson, Skenderis ’98]

for example:

 using susy, grav. & 
R-symmetry anomalies

[Ohmori, Shimizu,
 Tachikawa, Yonekura ’14]

[Cordova, Dumitrescu, Intriligator ’15] a = 16
7 k2(N3 � 4Nk2 + 16

5 k3)

•This works also when O-planes are present
[Bah, Passias, AT ’16]
[Apruzzi, Fazzi ‘17]



NS5

D3

D5expected to come 
from near-horizon of

• Similar AdS6 ⇥M4

S2 ,! M4!
(p, q)-fivebranes

[d’Hoker, Gutperle, Karch, Uhlemann ’16]

• AdS4 ⇥M6 in IIB with N = 4 supersymmetry

S2 ⇥ S2 ,! M6!fibred
NS5

D5

[Assel, Bachas, Estes, Gomis ’11]
building on [d’Hoker, Estes, Gutperle ’07]

• AdS5, AdS4: many cases from ‘compactifying’ AdS7 [Apruzzi, Fazzi, Passias, Rota, AT ’15]
[Rota, AT’15], [Bah, Passias, AT ’16]

[Dibitetto, Lo Monaco, Petri, Passias, AT ’18]• AdS3 with O8 and N = (0, 8) from O8-D2 near-horizon



dS

In examples seen so far: helped by
• Supersymmetry

• Conjectural near-horizon origin

Let’s try to go further…

Bianchi: no D8s necessary
Z2• A simple Ansatz

ds2 = e2W ds2dS4
+ e�2W (dz2 + e2�ds2M5

)

“cohomogeneity one”: W , �i, � only depend on z

[Córdova, De Luca, AT ’18]

• The functions won’t be diff. at the O8+

z

e�4W

Jump in first derivatives can be determined: 

• by comparing with O8+ in flat space, or

• by paying attention again to � terms in EoM

W 0 = 1
5�

0 = 1
2�

0 = �e��W

[right side]



• For an open set of initial conditions, we then get attracted to the behavior

eW ⇠ e
1
5� ⇠ e

1
2�i/2 ⇠ |z � z0|�1/4 same as O8_

[even the coefficients work]

eW

0 5 10 15
z

10

20

30

e�
e�

3

FIG. 2. A numerical solution with ⇤ = 1. The functions are
e� (solid), eW (dashed), ↵ (dotted, rescaled). At the right
endpoint, it behaves as an O8� with diverging dilaton.

Near the O8� one can also perform a perturbative
analysis like that resulting in (6). This is done by im-
posing that the leading power behavior for the dilaton
and metric coe�cients is the one inferred from (7). On
the resulting local solution (which matches with our nu-
merical one in near the O8�) all the conditions in (4) are
automatically satisfied, with the correct tension.

The simple class of de Sitter solutions presented above
can be enlarged by including additional fluxes. For in-
stance, we can generalize our metric ansatz to

ds2
10 = e2W ds2

dS4
+ e�2W

�
dz2 + e2�2ds2

M2
+ e2�3ds2

M3

�
.

(8)
Compared to our previous example, we have split the
five-manifold M5 into M2 and M3 which are two Einstein
spaces with Ricci scalars 22 and 33; below we see that
at least one of them must be negative. Again we take W,
�i, � to only depend on z, and in addition to F0 we allow

F4 = f4e
�6W+3�3�2�2dz ^ volM3 . (9)

Here f4 is a constant, and the z dependence has been
chosen such that the equation of motion d ? F4 = 0 is
automatically satisfied.

In this more general setup, the equations of motion
away from sources read:
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e2(W+�) ,

(10b)

0 = �↵00

↵
+ 22

e3�3�2�

↵
+ 5⇤e�4W (10c)

+
f2
4 e6�3�6W�2�

2↵2
+ 33e

�2�3 ,

0 = �↵00

↵
+ 22

e3�3�2�

↵
� 2⇤e�4W (10d)

+
↵0

↵
(3�3 + 4W � 2�)0 + (3�3 + 4W � 2�)00

,

where now ↵ ⌘ e2�2+3�3�2�, and at the sources we must
also provide the discontinuity equation 1

2��0
3 = �W 0.

Solutions can now be constructed as above. We begin
with a finite coupling O8+ at z = 0 and evolve to an
infinite coupling O8� at z = z0. Note that F4 in (9) is
odd under the orientifold as expected. In this case, the
analog of the constraint (5) is

⇤ = �1

2
2e

�2�2+4W � 3

4
3e

�2�3+4W � f2
4

8
e�4�2�2W+2� ,

(11)
where the right-hand-side is evaluated at the O8+. From
this we see in particular that at least one of i must be
negative. The resulting solutions depend on two contin-
uous parameters, which can be thought of as the remain-
ing initial conditions of the solution near the O8+ after
tuning to hit the O8�.4

Let us now comment on the properties of these de Sit-
ter solutions. The first significant feature is that all our
examples have classical moduli; i.e. the solutions come
in continuous families. The number of moduli apparent
from our construction is easily seen by parameter count-
ing. The local solutions (2) depend on two continuous
parameters and require a one-parameter tuning to reach
a physical O8�, resulting in one modulus. The more
general solutions (8) have two moduli.

One way to understand some of these moduli is that
the equations of motion are invariant under the rescaling

gMN ! e2cgMN , � ! � � c , F4 ! e4cF4 . (12)

This rescaling can be used to make the coupling and cur-
vature as small as one wants, and in particular to para-
metrically reduce the region around the O8� where su-
pergravity breaks down.

In the simplest solutions of type (1), the four-form flux
vanishes and the single modulus is the parameter c above.
In the more general solutions (8) with non-zero F4, flux
quantization implies that the rescaling parameter c is dis-
cretized. The two continuous moduli of these solutions
do not admit such a simple presentation.

In the full string theory, one expects that quantum cor-
rections will generate a potential on these moduli. In the

4 As another consistency check of these equations, we can see that
they admit a solution AdS4⇥H2⇥S4, which is a simple variation
on the AdS6 ⇥ S4 of [21]. This is most easily seen by going to a
gauge where dz2 in (8) is replaced by e2Qdz2. Then the solution
is obtained by setting Q = 2W , �2 = 2W , �3 = 2W + log(sin z),
� = 5W+const., W = � 1

6 log(F0 cos z)+const., 2 = ⇤, and
3 = 2. This results in a negative cosmological constant.

• Rescaling
makes the solution weakly-coupled and weakly-curved… except at the O8_ 

• Presumably these moduli get lifted by stringy corrections. 
Will a vacuum survive after this?



• Near the O8_ the supergravity action is completely irrelevant!

The singularity near the O8_ is similar to the O8_ in flat space, 
which should exist in full string theory.

Are they similar enough?

The O8_ in AdS solutions worked well [holography] 

• Are there tachyons?

KK reduction: hard but doable.

•in a similar way we also found an AdS8 solution in IIA

if  a corresponding CFT is found [eg with conformal bootstrap]
our methods would be vindicated.



Conclusions

•Localized sources are by now commonplace in AdS solutions

•Maybe time to look for de Sitter?

•Often they have origin in near-horizon limits of brane intersections

•They seem to work fine with holography, in spite of singularities

Using numerics, we find dS solutions with O8-planes
in relatively simple setup


