Quantum intercept of the string with massive endpoints

D. Weissman, Tel Aviv University

Based on work with J. Sonnenschein [1801.00798]

Nazareth, Feb. 2019

Regge intercept

String theory was originally proposed as a theory of hadrons, motivated by the observation of linear Regge trajectories.
A classical rotating string:

$$
J=\alpha^{\prime} M^{2}, \quad \alpha=(2 \pi T)^{-1}
$$

Quantum spectrum of the open string

$$
N=\alpha^{\prime} M^{2}+a
$$

Where for the bosonic critical string,

$$
a=-\frac{D-2}{2} \sum_{n=1}^{\infty} n=-\frac{D-2}{2} \times \frac{-1}{12}=\frac{D-2}{24}=1
$$

Our goal is to generalize this to the string with massive endpoints (in D dimensions).

The intercept determines the spectrum, in particular the mass of the ground state.
Plays an additional role in scattering amplitudes

$$
\begin{gathered}
A(s, t)=\mathrm{B}(-\alpha(s),-\alpha(t)) \\
\alpha(s)=\alpha^{\prime} s+1, \alpha(t)=\alpha^{\prime} s+1
\end{gathered}
$$

Regge limit: $A(s, t) \sim s^{\alpha(t)}$
Total cross section: $\sigma \sim s^{\alpha(0)-1}$

Why sum over n ?

The bulk EoM:

$$
\left(\partial_{\tau}^{2}-\partial_{\sigma}^{2}\right) X^{\mu}=\partial \bar{\partial} X^{\mu}=0 \Rightarrow X^{\mu}=X_{R}^{\mu}+X_{L}^{\mu}
$$

Mode expansion

$$
X^{\mu}=X_{0}^{\mu}+i \sqrt{N} \sum_{n} \frac{1}{\omega_{n}}\left(\alpha_{n}^{\mu} e^{-i \frac{\pi}{\ell} \omega_{n}(\tau-\sigma)}+\tilde{\alpha}_{n}^{\mu} e^{-i \frac{\pi}{\ell} \omega_{n}(\tau+\sigma)}\right)
$$

Boundary conditions at $\sigma=0, \ell$ impose
a) A relation between α_{n}^{μ} and $\tilde{\alpha}_{n}^{\mu}$ (possibly phase, rotation)
b) The set of eigenfrequencies

For example:
Neumann:

$$
\begin{array}{ll}
\tilde{\alpha}_{n}=\alpha_{n} & \omega_{n}=n \\
\tilde{\alpha}_{n}=-\alpha_{n} & \omega_{n}=n \\
\tilde{\alpha}_{n}=\alpha_{n} & \omega_{n}=n-\frac{1}{2}
\end{array}
$$

Dirichlet:
ND:

Strip

UHP

$$
\partial X(z)=\sum a_{n} z^{n}
$$

$$
\operatorname{Im} z=0
$$

$$
\partial X(z)=\sum a_{n} z^{n+\delta_{n}}
$$

$\operatorname{Im} z=0$

N	D
q_{1}	q_{2}
or masses...	

The intercept can be calculated as the normal ordering constant in the Hamiltonian

$$
H=\sum \alpha_{-n} \cdot \alpha_{n}
$$

Given $\left[\alpha_{m}^{\mu}, \alpha_{n}^{v}\right]=\omega_{m} \eta^{\mu \nu} \delta_{m+n}$
We have to sum the eigenfrequencies for each mode:

$$
a \sim \sum_{i} \sum_{n} \omega_{n}^{(i)}
$$

The string with massive endpoints

The string with massive endpoints in flat spacetime is described by the Nambu-Goto action, coupled to massive point particles at the string endpoints

$$
S=-T \int d \tau d \sigma \sqrt{-h}-m \int d \tau \sqrt{-\dot{X}^{2}}
$$

To the usual eqs. of motion in the bulk is added a boundary condition

$$
\begin{gathered}
\partial_{\alpha}\left(\sqrt{-h} h^{\alpha \beta} \partial_{\beta} X^{\mu}\right)=0 \\
T \sqrt{-h} \partial^{\sigma} X^{\mu} \mp m \partial_{\tau}\left(\frac{\dot{X}^{\mu}}{\sqrt{-\dot{X}^{2}}}\right)=0 \quad \sigma= \pm \ell
\end{gathered}
$$

Gauge choice can simplify bulk EoM but not simultaneously the boundary condition.
Instead we will expand the action around classical solution.

$$
X^{0}=\tau, X^{1}=R(\sigma) \cos (\omega \tau), X^{2}=R(\sigma) \sin (\omega \tau)
$$

We can write the energy and angular momentum of the rotating string, in terms of the endpoint velocity β

$$
\begin{gathered}
E=2 \gamma m+T L \frac{\arcsin \beta}{\beta} \\
J=\gamma \beta m L+\frac{1}{4} T L^{2} \frac{\arcsin \beta-\beta \sqrt{1-\beta^{2}}}{\beta^{2}}
\end{gathered}
$$

Here $\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$ and the length is determined from the boundary condition

$$
\frac{T}{\gamma}=\frac{2 \gamma m \beta^{2}}{L}
$$

The three equations define the (classical) relation between J and E, or the classical Regge trajectory.

For small masses/high energies (ultrarelavisitic β)

$$
J=\alpha^{\prime} E^{2}\left(1-\frac{8 \sqrt{\pi}}{3}\left(\frac{m}{E}\right)^{3 / 2}+\cdots\right)
$$

To compute the quantum corrections, we add fluctuations

$$
X^{\mu}=X_{r o t}^{\mu}+\delta X^{\mu}
$$

For very long strings $\left(L \gg \frac{1}{m}, \frac{m}{T}, \frac{1}{\sqrt{T}}\right.$) we can truncate the action to quadratic order in δX and get a solvable theory.
One has to distinguish between $D-3$ transverse modes and single "planar" mode.

We define the intercept as the quantum corrections to the relation between

$$
\mathrm{a} \equiv\left\langle\delta\left(J-J_{c l}(E)\right)\right\rangle=\left\langle\delta J-\frac{\partial J}{\partial E} \delta E\right\rangle=\left\langle\delta J-\frac{1}{\omega} \delta E\right\rangle
$$

By inserting $X=X_{\text {rot }}+\delta X$ into the expressions for J and E, we find that

$$
\delta J-\frac{1}{\omega} \delta E=-\frac{1}{\omega} H_{w s}(\delta X)
$$

Where H is the Hamiltonian for the fluctuations.
So to get the intercept we solve the quadratic theory for the fluctuations and compute $\langle H\rangle$.

For a rotating string with massive endpoints, we have

$$
\begin{aligned}
& a=-\frac{D-3}{2} \sum \omega_{n}^{(t)}-\frac{1}{2} \sum \omega_{n}^{(p)} \\
& \delta X=i \sqrt{N} \sum \frac{\alpha_{n}}{\omega_{n}} e^{-i \omega_{n} \tau} f_{n}(\sigma)
\end{aligned}
$$

The transverse fluctuations, Fourier modes solve

$$
f_{n}^{\prime \prime}+\omega_{n}^{2} f_{n}=\left.0 \quad\left(T f_{n}^{\prime} \pm \gamma m \omega_{n}^{2} f_{n}\right)\right|_{\sigma= \pm \ell}=0
$$

The planar mode

$$
\begin{gathered}
f_{n}^{\prime \prime}+\left(\omega_{n}^{2}-\frac{2 \omega}{\cos ^{2}(\omega \sigma)}\right) f_{n}=0 \\
{\left.\left[T f_{n}^{\prime} \pm\left(\gamma m \omega_{n}^{2}+\cdots\right) f_{n}\right]\right|_{\sigma= \pm \ell}=0}
\end{gathered}
$$

The transverse modes' ω_{n}^{t} are given by the solutions to the equation

$$
\begin{aligned}
& f(x)=2 x \beta^{2} \sqrt{1-\beta^{2}} \cos \left(\frac{2 \arcsin \beta}{\beta} x\right)+ \\
& \left(\beta^{4}-\left(1-\beta^{2}\right) x^{2}\right) \sin \left(\frac{2 \arcsin \beta}{\beta} x\right)=0
\end{aligned}
$$

where $x=\omega_{n} \ell$.
The sum can be converted into a contour integral.

$$
\sum_{n>0} \omega_{n}=\frac{1}{2 \pi i \ell} \oint d z z \frac{f^{\prime}(z)}{f(z)}=\frac{1}{2 \pi i \ell} \oint d z z \frac{d}{d z} \log f(z)
$$

The contour is a semicircle of radius Λ that we eventually take to infinity.

To understand the renormalization, we can look back at the massless string ($\beta=1$)

$$
f(\omega)=\sin (\pi \omega \ell)
$$

We are computing Casimir energy

$$
E_{C}=\frac{1}{2} \sum \omega_{n}=\frac{1}{4 i} \oint \omega \ell \cot (\pi \omega \ell)=\frac{\Lambda^{2} L}{8}-\frac{1}{12 L}
$$

Divergent part proportional to the length of the string $L=2 \ell$, and can be absorbed into string tension.
The finite part is contribution of one mode to the intercept,

$$
E_{C}^{r e n}=-\frac{2 a}{L} \rightarrow a=\frac{1}{24}
$$

We can also think of the subtraction as

$$
E_{C}^{r e n}=\lim _{\Lambda \rightarrow \infty}\left(E_{C}(L, \Lambda)-E_{C}(L \rightarrow \infty, \Lambda)\right)
$$

This subtraction can be done before computing the full contour integral:

$$
E_{C}=\frac{1}{2 \pi} \int_{0}^{\infty} \log \left(1-e^{\pi L y}\right) d y=-\frac{1}{12 L}
$$

For the rotating string with masses, the divergent part of the contour integral

$$
\frac{\Lambda^{2} L \arcsin \beta}{\pi \beta}+\frac{T}{2 \gamma m} \log \frac{2 \gamma m \Lambda}{T}
$$

Compare with $E=2 \gamma m+T L \frac{\arcsin \beta}{\beta}$

Subtracting the divergent part directly as before leaves

$$
a_{t}=-\frac{1}{2 \pi \beta} \int_{0}^{\infty} \log \left[1-e^{-4 \frac{\arcsin \beta}{\beta} y}\left(\frac{y-\gamma \beta^{2}}{y+\gamma \beta^{2}}\right)^{2}\right] d y
$$

The leading order correction at large $\frac{T L}{2 m_{3}}=\gamma^{2}-1$,

$$
a_{t}=\frac{1}{24}-\frac{11}{360 \pi}\left(\frac{2 m}{T L}\right)^{\frac{3}{2}}+\cdots
$$

The leading order result could have been obtained through Zeta function regularization, using an approximate solution for ω_{n}

$$
\approx n-1+\frac{2}{\pi} \arctan \left(\frac{2 \gamma \beta \arcsin \beta+2}{n \pi}\right)
$$

Which we can expand in γ^{-1}

$$
a_{t} \approx \sum\left(-\frac{1}{2} n+\frac{n-n^{3}}{3 \pi} \gamma^{-3}\right)
$$

The coefficient of γ^{-3} is in fact $\frac{1}{3 \pi}(\zeta(-1)-\zeta(-3))=\frac{-11}{360 \pi}$.
A similar, but more complicated calculation yields

$$
a_{p}=\frac{1}{24}+\frac{11}{720 \pi}\left(\frac{2 m}{T L}\right)^{\frac{3}{2}}+\cdots
$$

for the planar intercept.

Non-critical string

For $D<26$, we can work in effective string theory. In EFT, the next term added to the NG action is the Polchinski-Strominger term (PS, 1991)

$$
S_{P S}=\frac{B}{2 \pi} \int d \tau d \sigma \frac{\left(\partial_{+}^{2} X \cdot \partial_{-} X\right)\left(\partial_{-}^{2} X \cdot \partial_{+} X\right)}{\left(\partial_{-} X \cdot \partial_{+} X\right)^{2}}
$$

This is related to the Liouville action one finds in the Polyakov formulation when identifying $\gamma_{a b}=e^{\phi} \eta_{a b}$ with the induced metric.

The PS term is inserted in order to maintain conformal symmetry on the world sheet for any D. This fixes $B=\frac{D-26}{12}$.

Without masses, it was found by Hellerman-Swanson (2013) that the PS term cancels the D dependence in

$$
a=\frac{D-2}{24}+\frac{26-D}{24}=1
$$

The leading order correction from the PS term to the intercept is $a_{P S}=-\frac{1}{\omega} E_{P S}, \quad E_{P S}=-\int \mathcal{L}_{-} P S\left(X_{r o t}\right) d \sigma$
The massive endpoints in this case act as a regulator to a divergence,

$$
E_{P S}=\frac{B}{\pi} \frac{T}{\gamma m}-\omega \frac{26-D}{12 \pi} \arcsin \beta
$$

If we subtract the part that diverges when the mass is taken to zero (and expand near $\beta \rightarrow 1$), we are left with

$$
a_{P S}=\frac{26-D}{24}\left(1-\frac{2}{\pi}\left(\frac{2 m}{T L}\right)^{\frac{1}{2}}+\frac{2}{3 \pi}\left(\frac{2 m}{T L}\right)^{\frac{3}{2}}\right)
$$

The total intercept intercept, $a_{1}=(D-3) a_{t}+a_{p}+a_{3 S}$, is

$$
a=1-\frac{26-D}{12 \pi}\left(\frac{2 m}{T L}\right)^{\frac{1}{2}}+\frac{199-14 D}{240 \pi}\left(\frac{2 m}{T L}\right)^{\frac{3}{2}}
$$

We can generalize to different masses

Summary

We computed the intercept $a=\left\langle J-J_{c l}(E)\right\rangle$ for high energy/spin with endpoint masses for any D.
The result is a correction to the $a=1$ from the bosonic critical string, which is still far from the phenomenological intercept of e.g. $a_{\rho}=-0.5$.
Future directions: more general boundary conditions, scattering amplitudes.

Thank you!

