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Schwinger Boson Mean Field Theory of
the Quantum Heisenberg Model

We review the Schwinger boson mean field (“large N”’) theory for the
Heisenberg ferromagnet and antiferromagnet. Comparison with exact
solutions, semiclassical field theories and numerical results suggests that
this approximation is valid and quantitatively successful in the regime
where topological Berry-phase terms are unimportant.

|. INTRODUCTION

Much progress has been recently made in understanding the quantum Heisenberg
model (QHM). Since in one and two dimensions, quantum and thermal fluctuations
combine to destroy long range order,’ the use of naive spin wave theory? is strictly
limited to zero temperature and to ground states with broken rotational sym-
metry. For the antiferromagnetic model in one dimension, it can be that the
ground state has no long range order, as shown by Bethe’s solution® of the S =
1/2 chain, and Haldane’s mapping of the large S QHM onto the nonlinear sigma
model (NLSM) in (1 + 1) dimensions® (S is the length of the spin). The field
theoretical approach includes a topological 6 term, which differentiates between
the integer and half-odd-integer S ground states,® in accordance with the Lieb-
Shultz-Mattis theorem.® This approach was recently extended to the two dimen-
sional model, where an ordered ground state exists above a critical value of the
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spin. In the disordered phase (small S and/or large frustration), interference from
topological terms was predicted’ to depend on the value of 2S mod 4.

Here we shall review an alternate asymptotic approach®® based on the func-
tional integral steepest descents approximation to the QHM. The resulting
Schwinger boson mean field theory (SB-MFT) is the large N theory of a particular
generalization of the QHM to SU(N) generators replacing the usual SU(2) spin
operators. Comparisons of our results to exact and numerical calculations for the
physical N = 2 model reveal a surprising success of the low order approxirnation.

Although the SB-MF'T reproduces the effects given by the NLSM field theory
even for small values of S, the aforementioned topological terms are missing.
During this workshop, Nick Read' has provided an illuminating discussion of
how these terms should be properly incorporated in the functional integral.

The generalized SU(N) Hamiltonian is given by

_ 19 cuncen = L
H= N%Sa(l)su(J) =55
,8

(
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d;= Y blby  ferromagnet,
A=, bub,  antiferromagnet,

~ where in each bond (ij) the site j is takén to be in the second sublattice. Here
the generalized spin operators are defined as:
3(4) = blib:, 1.2)
which satisfy the algebra
[Ss(®), 82N = 8§8;S:(5) — 338;SE) (1.3)

and are subject to the constraint 2., S3({) = NS. S must be an integer multiple
of 1/N. For the ferromagnet, S is defined by Eq. (1.2), while for the antiferrom-
agnet,

55) = — biibas, (1.3)

We shall review our theory for the case of the ferromagnet and antiferromagnet
separately,
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ll. THE FERROMAGNETS
The ferromagnetic partition function is given by®

Zy = f b, b; Q, Q; Nexp(—THb, b; Q, @; \)

B
Ir = f , dT{% 2 (uibai = buibe) + N X Q4Qy @1

@

+ D, (Qibaibes + Qibaiba) + O Ni(Baibei ~ S)}.

(i) La
a

Making the static assumption
QM =Q
’ @.2)
N =\,

the Schwinger bosons can be integrated out explicitly, resulting in a free enery
of

d,
F¥F = %zQ2 - S\ + % (ng)d In(1 — ¢, 2.3)

where z is the lattice coordination number, d is the number of spatial dimensions,

N is the total number of sites in the lattice, and the integral is performed over
the first Brillouin zone. The dispersion ; is defined by

WEN-2Q
1 g
ekEEZ (1 - é*?) 2.4)
]

0 =B + 2Qe;.

In Fig. 1, we plot @, in one dimension. The saddle point equations 3F/3Q = 0
and 3F/8\ = 0 are -

d*k ’
S = f '(-2‘;)'; N . 2.5)
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FIGURE 1 Schwinger boson excitation spectrum in the mean field theory for the
ferromagnetic chain. See Eq. (2.4).

d
Q=S - éﬁqm (2.5)

with n, = (¢®* — 1)~'. Thus, we obtain a free energy per spin of

d
FMF — —%ZSZ + %Z(Q - S)Z — Sp - %f(‘;Tk)dln(l + ) (2.6)

Upon addition of the rfeference energy (see Eq. (1.1)) + % 28?%, and taking N =
2, the first term gives the classical ferromagnetic ground state energy per spin,

8= =3 2. We note that the remaining contribution is precisely twice Taka-

hashi’s result for (" — E¢)." This factor of two is easily seen to be an artifact of
the static constraint and is a generic consequence of approximations of this sort.
The SU(N) theory is defined in terms of N bosons and 1 constraint (per site).
Uniformizing the field A amounts to ignoring the nonzero wavelength components
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of the constraint field, enforcing the local restriction 3, bib, = NS only on average,
¢f Eq. (2.5a). Thus, at the mean field level, the number of independent degrees
of freedom is overcounted by a factor g = N/(N — 1). This is partially corrected
by the O(1/N) contribution F*™ arising from integration over the gaussian fluc-
tuations of the constraint field, as was demonstrated in Ref. [8].

The mean field equations which determine Q(7', S) and w(7, S) are identical
to those of Takahashi,”? and we have independently verified his solutions (details
may be found in Ref. [11]). From Eq. (3.6), we obtain for the one-dimensional
chain

e _ ey [ 162 (T\" 1 (T
(# E¥F)chain = T{ Voo (zs) + 55 (25) + O(TW)}. 2.7

where EY¥F = FMF(T = 0), which is an expansion in the quantity 7/S, assumed
here to be small. The calculation of " was carried out® in appendix B, where
it was found (Eq. (B.9)):

_116R)
N 2V/=nS

Combining Eqgs. (3.7, 3.8) and setting N = 2 yields, to O(1/N),

F™ = T + O(T**). 2.8)

(F — E¥F) = 2(F¥F — EYF — Fom)
82
- -\ ry =
= \C g(3/2)<zs> + o 0T, 29)

Comparing our expression with that of Takahashi, we see that the 6(1/N) cor-
rections have brought our 0(7*?) term in line with his, but that our coefficient
of the O(T?) term remains a factor of 2 too large. The Takahashi result is in

remarkable agreement with thermodynamic Bethe Ansatz results for S = % One

unfortunate aspect of Takahashi’s variational density matrix is that it is not
rotationally invariant, and therefore the longitudinal and transverse susceptibil-
ities is his model will be unequal. Takahashi calculates the static susceptibility

X = 9B ll\, 2 (Si8) 2.10)

by performing a rotational average of ((S;-A)(S; #)) and finds the corresponding
result to be in good agreement with known S = é— results. That this rotational

averaging produces the ‘correct’ result is interesting, although we wish to em-
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phasize that Takahashi’s underlying theory is not rotationally invariant. Our
model preserves rotational invariance, and we find

Xchain = —9”] —m(l + )

oo E(E) )

which is 8/2 as great as Takahashi’s result. For the two-dimensional square lattice,
we find

2.11)

(F*F — E¥)g = -5 T‘{é(zg + éﬁg (%) + O(Tz)}

(2.12)
A o
Xsq = 2mS exp T + O(Te*"S2r),
The spin-spin correlation function is
3 2
(So'SR) = _lf(R)l
(2.13)

d’k
f(R) f(z )d n R k.

At long distances, one is concerned with the small k¥ behavior of the occupation
funetion n,, and we obtain the following asymptotic expressions:

(So'Se) ~ 5 SR

£~ SYT; d=1) 2.14)
31% ¢ R%
(So-Sg) ~ 8nS* (RD)

£ ~ VIIT exp@wSYT);  (d = 2, square).

As discussed in Ref. [11], Eq. (2.14) differs only in its prefactor from the Ornstein-
Zernike correlation function expected for the two-dimensional classical Heisen-
berg model.*
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lIl. THE ANTIFERROMAGNETS

The bosonic partition function for the spin-S Heisenberg antiferromagnet is given
by:

Zy = [ 90,5 Q, @ Nexp(~ 9.0, 5 @, T \D

Ta = f : dT{% 2 (5'“'6“" = buibu) + N Z QsQs 3.1)

@
+ 2 (-Q-ijbm'bdj + Qﬁzuigqj) + 2 Ai(Buibai — S)}~
[{9] i,a
The mean field theory amounts to a steepest descents approximation, where

Q and \ acquire static uniform values, that are determined by extremizing the
free enery. The mean field (MF) Hamiltonian is given by:

B = 20 = NNSA + 55 INblabue + blacb_u)
k,a

+ 2Q(§kbhb —ka + ‘kazabt_ ka]) (3. 2)

with
1 -
VeES D te v (3.3)
2%

It can easily be verified that the Hamiltonian does not break rotational symmetry.
HYF is readily diagonalized by the quasiparticle operators: a,, = cosh 6yb, +
sinh 6,b! ... Here, tanh(26,) = —2Qvw/\. Thus, the mean field free energy is given
by

lm__.l 1 1 d%
F 2Q* (28+1))\+B Py

L. 1
N 2 In (2 sinh 2 Bwk)

o = VAT = il 3.9

and the steepest descents equations are

dF‘”" 1 1
f @y cosh(20k)<nk -2-), - (s + 5) =0 (3.5)
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1 dF™F
N dQ

= f @i smh(26k)(nk ;) + 2Q/J = 0. 3.6)

Here, n, is the Bose occupation [exp(a/T) — 1]°'. We have shown® that the
stable mean field solution has t; = 1. The structure factor for the SU(2) model
(two Schwinger boson flavors) is defined as: S = (S%(q, »)S*(—q, —w)), and in the
mean field level is given by:

B
$7@,ig) = 3 [ dre 3 (TOL@besa@bra OO, @D
kk

where ¢, is a Matsubara frequency. Here it is convenient to measure the reduced
momentum with respect to the antiferromagnetic vector =; i.e. §=q — . In
(8.7) we have exploited the decoupling of the different Schwinger bosons at the
mean field level.

It is convement to parametrize the dispersion w, in terms of the spin wave
velocity ¢ = V8 Q, and a parameter k such that ck = VB(\Z — (4Q)). The
dispersion is then given by vy, = ¢V(k/2)° + 2(1 — vi). We note that x/2 serves
as a cut-off in the momenta integrations in Egs. (3.5, 3.6). Our spin waves are
therefore “massive” when «k is finite. In Fig. 2, we plot wy in one dimension. It
is possible to write down the (unrenormalized) projected variational ground state
corresponding to the mean field approximation:

o) = @ eXp< > u(n).*..,c.b.’m,.,)]O) 3.8)

m,n,a

where

d
u(n) = f ((zi X tanh Qe

tanh O = (Vl - mn ;k - 1)/1]'\/.(.

Here, @ is the projector of the constraint, which eliminates all components with
the wrong number of Schwinger bosons at any site. It is easy to see that u(n)
vanishes unless ¢™ " = —1, i.e. n connects one sublattice to the other. Now if
we consider the N = 2 model and reverse our sublattice rotation, we find

3.9

[¥) = @ exp (2 > un) (@b — bI.aI..+.))I0), (3.10)

mesd
m+nER

where the sum on m is over the s{ sublattice only. Thus |¥) is a sum of states
each of which is constructed by successive application of the (rotationally invar-
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FIGURE 2 Schwinger boson excitation spectrum in the mean field theory for the
antiferromagnetic chain. See Eq. (2.4). Gapless spin waves of the naive spin wave
theory (SWT) are marked with dashed lines.

iant) composite operator Gl min = (@Lbhin — bahss) between sites on alternate
sublattices, the amplitude for each configuration in the sum given by the product
of the associated u(n)’s. The presence of ® means that only configurations where
2§ such “bonds” emanate from each site are present. If we consider the S = 1
chain and take n — 0, ignoring for the moment the fact that m is a function of S
through Egs. (3.5, 3.6) (one could imagine adding terms to H which would lead
to an S-independent variation of m), then from Eq. (3.9) we obtain

_ 1 1. _ Ll
u(n) = 41,(1 + 161,)5”,:1 of Ones + 3.11)

which says, to lowest order in v, that the projected mean field state contains only
those configurations in which the composite operators 4, .., connect nearest
neighbor sites. For an even length chain, there are three such configurations:
two Majumdar-Ghosh-like alternating singlet states (these are absent for odd
length chains), and the recently studied AKLT state!™** This observation adds
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support to the belief that the AKLT model has similar properties to the Heisen-
berg model which does not have the AKLT biquadratic term.

The mean field equations (3.5) and (3.6) lead to the following results for ¢
and x:

One dimension.—At T = 0, we expand the solution to leading powers of 1/
S. Restoring the unit of energy which is given by the Heisenberg exchange
coupling J, we obtain:

o
il

((S +1- %) V2JIH(1 + O(1/8)]
(3.12)

=
I

16 exp [ —'rr(S + %)][1 + 0(1/8)].

The antiferromagnetic correlations were shown to decay as exp(—«R). Since true
magnon excitations carry spin 1, they are bound states of pairs of Schwinger
boson excitations. Thus we expect their gap to be A = cx, at the zone edge. This
assignment is confirmed in the position of the peaks of the structure factor.’ It
is also a manifestation of the underlying Lorentz symmetry of the quantum an-
tiferromagnet. The gap has the asymptotic form A ~ S exp(—S), which should
be compared with the result A ~ S? exp(—S), obtained from the two loop order
calculation of the (1 + 1) dimensional sigma model.* It is remarkable that our
simple mean field theory reproduces the asymptotic S-dependence of the Haldane
gap. All is not well, however, because our mean field theory is unable to discern
the topological terms responsible for the gaplessness of all half-odd-integer an-
tiferromagnetic chains. Alternatively stated, the Lieb-Schultz-Mattis theorem,®
which exploits the differing properties of integer and half-odd-integer spins under
SU(2) rotations is violated at the mean field level, since it requires that all half-
odd-integer Heisenberg antiferromagnetic chains must have either degenerate
ground states or gapless excitations in the thermodynamic limit. We stress that
the bosonic mean field theory is applicable to any model in which the ground state
is ordered. In particular, this applies to the S = 1/2 model in two dimensions,
as argued in the following discussion.

Two dimensions.—For T < JS(S + 1) the solutions of Egs. (3.5, 3.6) yield:

c = Z\38JISIh 3.13)
and,
k = exp[—Z2.2wS(S + 1)J/T]. 3.14)

The solutions to the renormalization factors Z(T, S), and Z (T, S) are obtained
numerically for small values of S in Table I. It was also previously shown® that
Eq. (3.5) ensures that Z, has a finite 7 = 0 limit for all S > S. ~ 0.2, and is only
weakly T dependence for T < JS(S + 1). For large S, lims .. Z. =1, and Eq.
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TABLE |
“
Theory Coefficient S=12 S=1
SB-MFT Z. 1.159 1.079

SWT Z. =1 + 0.158/28 1.158 1.079
SB-MFT Z, 0.53 = 0.01 0.73 + 0.01
SWT Z, =1 — 0.552/28 0.448 0.724
SB-MFT JS(S + 1)XdZ,/dy) 0.22 + 0.01 0.27 + 0.01
SB-MFT Z, 0.232 0.442
RG-SWT Z, = heZ Z JaVEES + 1) 0.200 0.421
SB-MFT 8 = C.[T/SS + 1)J]2 1.3 + 0.05 1.2 = 0.05
“

Resuls of the Schwinger boson mean field theory (SB-MFT) compared to spin wave theory® (SWT),
and to the sigma model calculation® (CHN)) Z,, Z, and Z,, are the T — 0 limit of the renormalization
constants of the spin wave velocity, susceptibility and correlation length exponent respectively. (See
Eqs. (3.13, 3.14)).

(3.12) agrees, to one loop order, with the renormalization group calculation of the
classical Heisenberg model.™*" Since Z (S = 1/2) = 0.246, it is apparent that
quantum fluctuations drastically reduce the correlation length at finite temper-
atures from its classical value. On the other hand k! still diverges at 7' = 0,
which implies that this system has a Neel ordered ground state, in agreement
with numerical results for finite size systems.'"” Hirsch and Tang'® have recently
shown that by taking T'— 0 limit on a finite system, for S > S, Bose condensation
occurs, since the k = (0, 0), (w, w) modes get macroscopically occupied in order
to satisfy Eq. (3.5). S(w, w) was shown to agree with Anderson’s spin wave
calculation® of the ground state staggered magnetization squared. For T > JS(S
+ 1), a breakdown of the mean field theory occurs, and no solution for k and ¢
is found. This upper temperature does not correspond to a true phase transition
(except perhaps for the large N SU(N) model), but to the breakdown of coherence
between neighboring antiferromagnetically aligned spins.

Since, in effect, spin wave theory is a continuation of the SB-MFT to the
broken symmetry phase, it is interesting to compare our N = 2 results to those
obtained by the Hartree-Fock approximation of SWT.* 1) The values of the spin
wave velocity renormalization Z., Eq. (3.13), agree well for S = 12and S = 1,
as shown in Table 1. Since « vanishes at T = 0, our quasiparticle dispersion
matches the spin wave result. 2) The expression for FF — E, (where E, is the
classical energy) is twice that of SWT. This is the same situation we have pre-
viously encountered in our results for the ferromagnetic chain in section 2. Here,
however, we have not yet attempted to compute the gaussian correetions. 3) The
spin correlation function S*¥ (3.7) is exactly 3/2 times the rotationally averaged
expression of SWT. It can be easily verified that the susceptibility sum rule yields
2o S = S(S + 1)/2 which is also 3/2 too large.
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Therefore, in order to obey the condition that our theory for N = 2 should
match SWT at T = 0, for large S, and also obey the sum rule, we correct our

free energy and correlation functions by F = %F‘”’ , and S(q, w) = g SYF. We

suggest without proof that this normalization partly compensates for the fluc-
tuation effecs, missed by the static mean field theory.

In Fig. 8, we plot the dynamical structure factor’ in the positive (v, §)
quadrant, where § =|d|. For (0, §) < (T, T/c) here is a reflection symmet6ry on
both energy and momentum axis. Two distinct regimes are observed: (a) (v, §)
=< (ck, k), and (b) (w, §)<(cx, k). Region (a) is a quasielasic peak, which increases,
and narrows with decreasing k. This peak turns into the magnetic Bragg peak
at T = 0, and its width reflects the overdamped nature of the spin-waves with
wavelength longer than the coherence length. In region (b), the structure factor
becomes asymptotically proportional to the naive spin wave theory result, which
predicts spin wave peaks at energy c|g. We note that there is a gap between the

(orb)
lorb)

ZGP.Q

2000.0
"
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s\lructure factor
1000.0

1o 2.0
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FIGURE 3 Two views of the structure factor of the square lattice antiferromagnet
at T<JS(S + 1). g is the distance from the antiferromagnetic wave vector (,
7). k is the inverse correlation length given in Eq. (3.14), and c is the spin wave
velocity Eq. (3.13). For low frequencies o < T, the structure factor is symmetric
under reflection on both § and o axis.
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normal (@ < ¢§) and the anomalous (w > ¢Vk% + ¢ contributions of the Schwin-
ger boson scattering. We suspect, however, that this structure is an artifact of
the static mean field approximation, and that it might be washed out by fluctua-
tions in A and Q. Nevertheless, it would be interesting to see whether any double-
peak features could be experimentally resolved.

It is easy to compute the uniform susceptibility,® which is given by

1

X = —S(q =0) = k M + 1)..le 3.13)

d?

@m)*? 8J

In Fig. 4, we plot out x(7) (for the applicable range of T) and show how it
inerpolates between the rotationally averaged SWT result and the high tem-
perature series (HTS) expansion of Rushbrooke and Wood.? It is also important

to note slight discrepancies for the value of Z, between our result and that of
Oguchi as seen in Table I. The disagreement, probably arises from the order of

0.2 : :

SQUARE LATTICE
AFM

_____ MOLECULAR
- ™~ Q

é‘o

S=1/2
SPIN WAVE HTS
THEORY (T=0)
0 | | 1
0 u 2 3 4

T/S(S+1)(J)

FIGURE 4 The uniform magnetic susceptibility for different spin value S. High
temperature series (HTS) and the molecular field theory are given in Ref. [20].
The spin wave theory'® susceptibility is rotationally averaged. The Schwinger boson
mean field theory (SB-MFT) interpolates between two regimes.
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limits in Eq. (3.13). If the zero temperature limit is taken first (say on a finite
lattice), the first term of the integrand will be dropped. In the correct thermo-
dyanmic limit, however, that integral contributes an additive constant to x, be-
cause of it’s logarithmic dependence on the correlation length. Monte-Carlo
calculations? of x on finite lattices have found our theory in good agreement with
the numerical results. We also present our result for the specific heat T coefficient
8 in Table I.

Chakravarty Halperin and Nelson® (CHN) have evaluated the temperature
dependent correlation length k! of the 2-d Heisenberg model by studying the
non-linear sigma model in a slab of finite thickness. They applied Oguchi’s spin
wave theory® (SWT) to determine the appropriate value of the sigma model
coupling g for the nearest neighbor model of S = 1/2. They found that g < g,
and that the correlation length has renormalized classical behavior which agrees
to the one loop order with our result Eq. (3.14). In table I, we compare CHN’s
renormalization constant to ours. The discrepancy in its numerical value could
be traced back to their use of the Z, from spin wave theory. CHN have dem-
onstrated the consistency of their x(T) with the experimentally determined cor-
relation.? The regime of validity of this field theory, without the Berry phases
measuring the hedgehog configurations, is identical to that of the SB-MFT. This
was shown by Read and Sachdev'® who generalized the mapping into the contin-
uum theories for all SU(N) antiferromagnetic models. These terms were shown
to which lead to destructive interference between different topological sectors,
and thus to quasidegeneracy of the disordered ground states.” Incorporating these
effects in the SB-MFT is essential for the understanding of the ground state of
the frustrated 2-d S = 1/2 antiferromagnet.

We thank the authors of Ref. [18,10,21] for sending us their manuscripts
prior to publication. A. A. was supported by the Division of Material Sciences,
U.S. Department of Energy, under contract No. DE-AC02-76H00016. D. P. A.
was supported in part by grant No. DMR-MRL-85-19460.
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