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This paper consists of two main topics.

(i) The path decomposition expansion: a new path integral technique which allows us to
break configuration space into disjoint regions and express the dynamics of the full system in
terms of its parts.

(ii) The application of the PDX and semiclassical methods for solving quantim-mechanical
tunneling problems in multidimensions. The result is a conceptually simple, computationally
straightforward method for calculating tunneling effects in complicated multidimensional poten-
tials, even in cases where the nature of the states in the classically allowed regions is nontrivial.
Algorithms for computing tunneling effects in general classes of problems are obtained.

In addition, we present the detailed solutions to three model problems of a tunneling
coordinate coupled to a phonon. This enables us to define various well-controlled approximation
schemes, which help to reduce the dimensions of complicated tunneling calculations in real
physical systems.

1. Overall introduction

There are many situations in quantum mechanics in which the configuration space
breaks up naturally into different regions, in each of which different approximations
are useful for solving Schrodinger’s equation. While the nature of the quantum states
is largely locally determined, they also depend on certain global properties of the
potential and boundary conditions. Thus there is a need for a “patching up”
scheme, which enables us to use the partial information about each isolated region of
space to obtain solutions of the full problem in the full configuration space. This is
our motivation for introducing the path decomposition expansion (PDX), which is a
new technique in path integration [1].

If we consider a multidimensional configuration space which is divided into two
(or more) distinct regions by a surface (or surfaces), the PDX allows us to express
the full time evolution operator of the system as a time convolution and surface
integrations of products of restricted Green functions, each of which involves the
sum over paths that are limited to different regions of space. We believe that the
PDX will prove to be useful for a variety of applications since it permits us to use
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800 A. Auerbach, S. Kivelson / Multidimensional tunneling

different approximation schemes to evaluate each of the restricted Green functions.
This is certainly the case in the tunneling problems where configuration space breaks
up into classically allowed regions (“wells”) and classically forbidden regions
(“barriers”). Since the PDX could be applied to a wider class of problems we chose
to present the formalism in a separate self-contained part (sect. 2).

In the following parts (sects. 3 and 4) we demonstrate the usefulness of the PDX
formalism for solving multidimensional tunneling problems. In particular, we show
that even for tunneling problems involving rather complicated nonseparable poten-
tials, the qualitative behavior is readily inferred and quantitative solutions can be
obtained from knowledge of the classical dynamics. In cases where the classical
dynamics cannot be solved in closed analytic form, numerical solutions, which are
relatively easy to obtain, can be used to calculate the quantum mechanical tunneling
rates. Sect. 4 of this paper consists of a series of solutions to model problems. These
problems are of generic interest since they exhibit features contained in many
tunneling systems. In particular the separation of time scales and renormalization
effects, which are discussed qualitatively in sect. 3, are here demonstrated in detail.

The paper is organized in the following fashion: each part is independent, and
starts with a separate introduction in which the problems to be studied are defined,
the approximation schemes motivated, and the results are described.

Sect. 2 consists of exact results concerning the PDX for path integrals. The
principal results derived in this part are:

(i) The single surface decomposition formula, with a discussion of the analytic
structure of the restricted Green function.

(ii) The generalization of the PDX to multiple decomposition surfaces.

(iii) The proof of an exact new representation of the full hamiltonian in the direct
sum space of the restricted states.

In sect. 3, a method for solving multidimensional tunneling problems is described
which is based on the PDX and the semiclassical evaluation of the restricted Green
function in the classically forbidden region. Loosely speaking, this is a multidimen-
sional generalization of the WKB method (see e.g. [2]), in which the PDX plays the
role of the connection formula. This is the principal result of sect. 3. In particular we
show that the low-lying states of a system consisting of two or more wells can be
represented by a truncated hamiltonian in which the wells of the original tunneling
problem are replaced by a well-defined set of discrete states, with calculable
tunneling matrix elements connecting the states of different wells. It should be
stressed, however, that in general the nature of the discrete states and the values of
the matrix elements cannot be derived by truncating a one-dimensional hamiltonian;
they involve the solution of the multidimensional tunneling problem as is em-
phasized in the second half of sect. 3. There we discuss how a generic physical
problem can be reduced to a sufficiently simple form that it can be treated sensibly
by our methods. Thus we consider the question: which degrees of freedom must be
explicitly included in the tunneling calculation? We find that if there is a separation
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of time scales then it is possible to identify “fast” modes which can be treated in the
adiabatic approximation (they simply renormalize the effective mass and potential of
the tunneling coordinate [3]), and “slow” modes which can be kept as fixed (frozen)
parameters in the tunneling calculation and considered as residual interactions in the
truncated hamiltonian. Only those “important” degrees of freedom with characteris-
tic frequencies in a limited range need be considered explicitly!

Sect. 3 concludes with a summary section written in a “cook-book” fashion. It
outlines a strategy for solving a tunneling problem in a general system with many
coupled degrees of freedom.

Sect. 4 is an extensive treatment of the ground state tunnel splitting of the quartic
double well which is coupled to a harmonic oscillator (phonon). Three couplings are
discussed: Linear in both the tunneling and phonon coordinates (“linear”), quadratic
in the tunneling and linear in the phonon coordinate, (“gated”), and quadratic in
both coordinates (“squeezed”). By comparing the results of the PDX computation to
different approximations we are able to chart the parameter spaces of these
problems and bound the regions of validity of the approximation schemes (see figs.
12 and 13). The squeezed double well exhibits the remarkable phenomenon of
quantum (dynamical) induced barrier formation, in which the transverse quantum
fluctuations account for a sizeable renormalization of the barrier height and thus the
tunneling rates in such a problem have an anomalous dependence on the mass.

The paper is concluded with a summary and discussion section. Here, we briefly
compare the present work with some previous work along similar lines. Then we
speculate about the outlook for further applications of the PDX especially to
semiclassical methods in infinite degrees of freedom (field theoretical) models.

Finally, ‘we include a series of appendices (A-D) which provide some technical
details and simple examples that were omitted from the main text but may be useful
to the reader who wishes to familiarize himself with this technique. '

2. The path decomposition expansion

2.1. INTRODUCTION

The Feynman path integral formulation of quantum mechanics allows us to
express the Green function K(x,, x,,T) for Schrodinger’s equation as a sum over
all continuous paths from point x, to point x, in an N-dimensional configuration
space 9. (For a comprehensive review refs [4, 5] are suggested.) The PDX is based
on the observation that if configuration space is divided into two distinct regions by
an (N — 1)-dimensional surface, =, and if x, is in one region (which we call the
“inside”) and x, is in the other (“outside”), then any path from the one point to the
other must cross the surface 2 at least once. (Of course the typical path will cross 2
many times, see fig. 1). We can therefore divide every path into two pieces according
to the last crossing time ¢: a piece that goes from x, to the crossing point x, on 2 in
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a)
outside

b)

Fig. 1. Single surface decomposition. Schematic representation of the path decomposition in Egs. (a)
(2.17) and (b) (2.18) at a surface 2. (a) A typical path in G(x,, x,, E) with x, inside and x, outside .
(b) A typical path in G(x,, x5, E) — G"(x,, x5, E) with both x, and x} outside X.

time #, and a piece that in the remaining time 7 —¢ goes directly from x, to x,
without ever crossing 2 again. This is what is meant by path decomposition. It
results in an expression (eq. 2.13) which equates the full Green function to a
convolution over crossing times ¢ and a surface integration dx, of the full Green
function K(x,, x,,t) and a restricted Green function K*(x,, x,, T —t) which is
equal to the sum over all paths from x, to x, which do not cross 2.

We derive this result in two ways: the first derivation is in terms of the discrete
time step version of the path integral for the Green function analytically continued
to imaginary time. Here a genuine (Wiener) measure exists, and we are on firm
mathematical grounds. In a second, more intuitive, approach, we describe the PDX
as a transformation of integration variables in path space, and the functional
jacobian which is required leads to the same result. It is important to understand the
properties of the restricted Green function G* which is the Laplace transform of K *.
We show that as defined from the path integral formulation, G* is just the usual
Green function in the presence of an infinite hard wall at =. However it is possible
to consider the decomposition formula as a Green function identity, in which case
G' can satisfy a variety of boundary conditions on £ which are still consistent with
this identity. (For examples see appendix A.)

In subsect. 2.2 the single surface PDX is derived for the two cases: (i) the
endpoints lie on either side of 2, (ii) the endpoints are both outside 2. In subsect.
2.3 the PDX is generalized to multiple decomposition surfaces. The full Green
function is expanded as a sum over topologically distinct sets of paths, which is
described by a multiple transition series that involves the different restricted Green
functions. In subsect. 2.4 the series is summed up, and we derive a new representa-
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tion for the full hamiltonian in the direct sum space of the restricted eigenstates.
Thus we formally break up the hamiltonian into separate hamiltonians which are
coupled by energy-dependent transition matrix elements, and literally provide a
construction of the full quantum system from its parts.

2.2. THE SINGLE SURFACE PDX

In this section we derive the PDX on a single closed (N — 1)-dimensional sur-
face X in the N-dimensional configuration space, 2. The matrix elements of the
Schrodinger time evolution operator between eigenstates |x) of the position operator
is the Green function, K, also called the “propagator”, which can be expressed in
terms of a Feynman path integral [4]: ‘

K(x,,x,,T)= /:é:sz@[x]exp(igl;] ) (2.1)

where x is a vector in 2, S is the action functional
S[x] =/Tdt [imi?- v(x)], (2.2)
0

m is the mass and V(x) is the potential defined on 2. In order to avoid unnecessary
complications we will actually consider the (Wick-rotated) Green function of imag-
inary time K(x;, x,, —iT). This entails replacing the action S in eq. (2.2) by the
analytically continued action S — iS where

S[x] =fordt [1mi? + v(x)]. (2.3)

Notice that S is the action corresponding to the inverted potential. The imaginary-
time Green function is a simpler quantity to deal with because its path integral
representation has a well-defined measure, the Wiener measure of brownian motion
paths [5]. The real-time Green function can always be obtained by analytic continua-
tion of the imaginary time function.

Let us first treat the PDX in a one-dimensional configuration space where 3 is the
single point x, that lies between the two points x, < x, < x;. The path integral is
defined to be the limit as the number of time steps, M, in the discrete time path
integral K, goes to infinity:

K(xo,xr,—iT)=A}EnwKM(x0,xT,—iT), (24)

where x,,,, = x; and

o S(0, M +1)
f dx;dx,...dx, exp| - ——
e h

m ](M+l)/2

= 5
Ky [27rh£ (2.52)
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Fig. 2. A typical path in &, which contributes to Ky, ,. The arrows indicate the limits of integrations of
x;, j=1,M in eq. (2.6b).

Here S(n,, n,) is the discretized version‘of the action
2
| m(x = xj)

S("l’"2)= Z e

j=m

+V(x,)e |, (2.5b)

K,, is the time discretized version of the path integral and ¢ = T/(M + 1) is the time
step.

If we imagine connecting points x; by straight line segments to x, . ,, then the M
points x,, i =1, M in egs. (2.5) can be seen to specify a path. Since any path from
X, t0 x, must cross x, at least once, the paths can be grouped into M + 1- disjoint
sets 9, labeled by the integer n=0,1,... M so that % consists of all the paths for
which the largest value of j that satisfies x; < x, is j=n. A typical path in 9, is
illustrated in fig. 2. By regrouping in this fashion, K, can be written as

M
Ky (xg, x7, —iT) = 2 K, u(x0, X715 —iT), (2.62)
n=0

where K, , is the sum over all paths which are members of ¥,

m (M+1)/2 00 © 1
Ky = [277;-,5] f_w...f_wdxldxz...dxn_lexp = =S(0.n-1)

Xg © 0 1
xf_wdx,,/; ',;., dx,,+1dx,,+2...dxMexp[—ES(n—l,M+ 1)}

°

(2.6b)‘
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Since S(n —1, M + 1) depends on x,_;, the expression in (2.6b) cannot be written
as a product of independent integrals; however we shall factorize K, , using the
following identity:

[ m ]1/2 'n('xn+1_xn)2
2mwhe P 2he

h d m 172 m(x,,,—x)°
X;Z[(th(s—’i’)) exp{— 2h(e—1) ” > (27)

X=X,

which holds whenever x,, lies between x, and x,, . This identity can be verified by
applying the Laplace convolution (Faltung) theorem, and using .the Laplace trans-
form integral

w1 K\ 1 .
/Odte ﬁexp(—z)— exp(—kvs), k>0. (2.8)
¢

We use this identity in eq. (2.6b) and the symmetry of the integrand under
X, = Xs—>x,—x, to extend the x, integral to + o0, (and thereby obtain a com-
pensating factor of }). The result is the factorized expression for K Mont

KM.n(XO’ Xz, —iT)

=fed'rKn(x0,xu, —i(ne+1))
0

h 0
X5 a—K('M_,,) (x,x7, —i(T—ne—1))|,-.. (1 + O(¢%/?)),

(2.9)

and K, is defined the same way as K, (eq. (2.5)) except that the x ; integrals have a
lower bound at x, instead of —oco. The terms in (2.9) that are indicated by the
O(&’/?) arise from the potential term in S. More specifically, in deriving (2.9) we
ignored terms proportional to the gradient of V(x):

ad
V(x,)e=[V(x,) 7+ V(xo)(e—1)] = 2=V (x,)(x, = x,)(e=7) + .

X

(2.10)
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The contribution to K, , from the first derivative term in (2.10) is O(¢*/?) since the
only significant contribution to the x,, integral comes from the region (x,, — x,) ~ €'/,
In the M — co limit, this term can be ignored. Moreover, in this limit K, — KX,
K5,_,— K" and the sum over n with the integral over r are replaced by a single
integral over ¢ = ne + 7, which results in the PDX expression for K:

. T . h 9 r :
K(xo,xT,—tT)=/(; dtK(xO,x,,—tt)E-——K (%, X7, —i(T=1))]=x, »

9,
(2.11)
where the restricted Green function K ' is
- Slx
K'(x,x’,—it)sfx(')_XGD'[x]exp(* [ ]), (2.11)
x(0)=x h

and D[x] is the restricted measure which excludes any path that crosses x,,.

Extending (2.11) to the multidimensional case is straightforward; we merely
sketch the derivation. The paths can be grouped as before into disjoint sets %, based
on the last point x, which is inside . Since |x,— x, |~ €/%, we can treat the
surface as being locally flat over the range of the x, integration. (Again, this ignores
higher-order terms in e.) We parametrize displacements along the surface by the
components x, ;, i =2, N and choose x, ; to be along the unit vector, fi,, normal to
3. This enables us to carry out the same decomposition as in (2.6) for the
1-coordinate. In order to factorize the expression which is analogous to (2.6b) we use
an additional identity of gaussian integrals:

[ m ]l/2 m('xn+l.i—xn.i 2
2mhe] P 2he

= 4 m \172 m(xl,',.—xn‘i)2 m 172
_f.w x“"’(zm) oXP 207 (27rh(£—T))

2
m(xn+l.i— Xa,i

2h(e—1)

(2.12)

Xexp[—

Thus we end up with the generalization of the PDX (2.11) to multidimensions. After
analytically continuing to real time we arrive at the expression

r ih ,
K(xo,xT,T)=j(; dtfzdoK(xO,xa,t)(z—mnl'V)K (x, 07, T = )] emr, -

(2.13)
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where do denotes the integration I'T).,dx, ;, and K is the sum over all paths which
never cross 2. K* is equivalent to the Green function in the presence of V(x) plus
an infinite potential barrier along =. Note that K "(x, x’, T) vanishes for either x or
x’on 2. '

Eq. (2.13) can be obtained as a transformation of integration variables in path
space, since the resummation could be considered as a substitution of one spatial
integration variable, namely x,,, in the path integral by a time integration. If
[x,(7)]} is a path that obeys x,(t)=x,, and x,(t)>x, for 7> ¢, the functional
jacobian § of the change of variables is

ox (7
g[xt("')] = 6(t )

=1[pin 4 pou], (2.14)

=t

where v'™ and v™ are the incoming and outgoing velocities of x(7) at the surface
point. This method of defining the PDX yields a symmetric form for eq. (2.13),

. —ih _
K(xo,xT,T)=j(; dtLdoK(xnyost) W"l'v Kr(xo,xr, T_t)|x=xq,

(2.15a)

where
fve=(vf)g—(vg)f. (2.15b)

Since K vanishes at 2, the first term does not contribute and egs. (2.13) and (2.15)
are identical.

It is often more convenient to deal with the energy Green function G, which is the
Laplace transform of K:

G(x,,x,,E)= ij:odtK(xl, x,,t)eErimi/h (2.16)

where 1 — 07 is an infinitesimal which imposes causal boundary conditions. Since
the PDX involves a convolution of two Green functions, it transforms into a simple
identity for the energy Green functions. Thus for any x, inside X and x, outside 3:

G(x,,x,,E) =/ doG(x,, x, E)[iftl . E]G'(x, x, E),_., (217)
> 2m e

where G” is the Laplace transform of K * as in eq. (2.16) which also obeys vanishing

(Dirichlet) boundary conditions on Z. Since we will be using the PDX extensively in

subsect. 2.3, it is useful to introduce more compact notation. We do this by

expressing the PDX in operator form such that eq. (2.17) is written as

(x1lG(E)Ixz) = (x|G(E)[Z]G™(E)Ix,), (217)
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where [2] is the surface decomposition operator

h _
(5]= lm [do |xo><x|[2—mﬁ1-v]|x'><xa| . (2.177)

’
x, x'—x,

The second single surface PDX expression describes the case where the endpoints
x, and x} are both outside the closed decomposition surface 2. We follow the
analogous steps of the previous proof and arrive at the expression

G(x;, x5, E) = G*(x,, x5, E) = (x,|G[Z]G"|x3), (2.18)

where G' is the same restricted Green function as in eq. (2.17). Evidently eq. (2.13)
follows from the following argument: since all paths in G — G* are the ones that
necessarily cross 2, they all have a “last crossing time” and can be decomposed at 2z
in the same way as the paths contained in the previous expression, eq. (2.17). In fig,
1b a typical path in G — G* is illustrated.

The analytic structure of the energy Green function can be described by

¥a(x)y,(x)

G(x,x", E)= —hL —p—p

n

, (2.19)

where ¥, and E, are the eigenstates and their energies respectively. In a range of
energies in which the spectrum consists of only normalizable states, G(E) is real.
When E lies in a region of continuous density of states, p(E),G(E) has an
‘imaginary part proportional to p( E), and the sum in eq. (2.19) becomes an integral.
Since G* obeys different boundary conditions, it can be described analogously to eq.
(2.19) but with different eigenstates and energies.

The PDX expression (egs. (2.17), (2.18)), can be also viewed as a Green function
identity that actually defines the restricted Green function. Using Green’s theorem
one can show that for x and x’ outside X, G* must satisfy

hz 2
+V(x)-E|G'(x,x',E)=h8(x—x'), (2.20)

2m
(x|G"[Z]G"|x"y =0. (2.21)

Thus we find that we are allowed to use different G"’s which satisfy boundary
conditions other than Dirichlet on =. (In appendix A we provide two simple
examples in one dimension where eq. (2.17) is demonstrated with different restricted
Green functions.)
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2.3. THE MULTI-SURFACE DECOMPOSITION

The PDX expressions, eqgs. (2.17), (2.18), can readily be extended to multiple
decomposition surfaces. However, with multiple surfaces, the decomposition can be
done in many ways, depending on what restricted Green functions we use, that is,
depending on how we wish to regroup the paths. One way of doing this, which is
particularly useful, is what we call the “sum over transitions”, which is in effect a
multiple scattering expansion of the full Green function.

Suppose we wish to break up 2 into p + 1 regions, such that there are p isolated
“site” regions, labeled by an index a=1,2,... p, each surrounded by a closed
surface 2 (as shown in fig. 3 for the case p = 3). For instance each site might be a

(b)
(2) (3) (2,3),(3,2)
/2 2 Y
s <>
i 3 | >—3 i~
ne
{2,3,2) (3,2,3) (2,1,3),(3,1,2)
I 3 3 I 3
— J
n=3

Fig. 3. The multiple surface decompositions p =3. The terms of eq. (2.22) are labelled by integers

(ay,4a;,..., a,) denoting the sequence of the sites that are visited. (a) A typical path contained in the term

(2,3). The path is allowed to cross a surface X; many times before making a transition to site j # i. (b)

The different topology of the terms in eq. (2.22) is described by triple-vertex graphs. The vertices

represent the sites, and the lines represent the transitions. All the terms up to 4 transitions (n = 3) are
drawn.
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well of a multiwell potential. We can then define a restricted Green function G(©
associated with each site. G® is defined to be the sum over all paths which never
enter any site region other than a, and hence never cross any surface 2, a’ # a.
These functions will be called the “site” restricted Green functions. In addition, we
define a restricted Green function over the “transition” region, G, which is the sum
over paths that never cross any of the surfaces. In the multiwell example G is
associated with the tunneling through the barrier. The sum over all paths in the full
Green function can now be expressed as the sum over a multiple scattering series
whose elements are labeled by an n-tuple of numbers specifying in sequential order
the site regions that were visited. For instance, if x and x’ are both in site 1,

G(x,x’,E)'——-G“)(x,x’,E)+§ Y (xGV[z]6¢[Z,]6[z,]

n=1a,a,...q,
xG*[2,]6“...¢ (=, |6"[2,]167 %), (2.22)

where (n + 1) specifies the number of transitions, and the n-tuples (a,, a,,...,a,)
specify the order in which sites are visited, hence the sum over a; run from 1 to p
subject to the restrictions a;# a;,, @, # 1 and a, # 1. Eq. (2.22) can be derived by
expanding eq. (2.18) using eq. (2.17) iteratively. Each factor of G'® represents the
path segments that pass through region a and can cross its surface £, many times,
while G represents the direct (no surface crossings) segments from one surface to
another. Eq. (2.22) is therefore a path decomposition expansion of the full Green
function into a sum of terms that contain topologically distinct classes of paths. We
illustrate some of the first few terms of this series by their typical paths in fig. 3 for
the triple-site ( p = 3) case. '

2.4. DIRECT SUM REPRESENTATION OF THE HAMILTONIAN

We begin this section by considering the double site problem p =2. The results
will be extended to the multiple site case at the end of this section. We first pick x,;
and x/ to be both in region 1, and define the composite operator called the
“bounce”, G°(E), which is the sum over all single return trips to region 2 (two
transitions) which begin and end on X, but never enter region 1:

G*=[2,16"[2,]6?[2,]6"[2,]. (223)

In fig. 4 a typical path in G® is drawn. Now eq. (2.22) can be written as the
geometric sum over bounces, which can be formally summed:

G(xy, x{, E) = (x|]GV+ GPG*GPV + GVG*GVG GP + - - - |x{)

= (xl[(6®) 7 = 6®] ixp). (2.24)
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Xg, Transition

Region

Fig. 4. The “bounce” in the 2-site problem. A typical path contained in the “bounce” Green function
G®(x}.xY, E) of eq. (2.23) is drawn. The dashed segments contribute to the two factors of G', and the
dotted segments to the factor of G®.

We can write the site restricted Green function G® as in eq. (2.19):

Y*(x) ¢ ()

225
E-E®+in (225)

GY(x,x’,E)=—hY.

n

In the following discussion we assume G® has a discrete real spectrum E,

n=1,2,.... The states [¢) form a basis set in the restricted Hilbert space. The
following operators can be represented as matrices:

GO (E) = (WPIGD(E) YD) = —h[E= HD], 08, o, (2.26)
Hrf})n' = Erfl)sn,n’ » (227)
G, (E)=(¥PIG°(E) Q). (2.28)

Hence a matrix representation of G is obtained from

G(x,, x5, E)= —h ¥ 4®O*(x,)[E— HO+hGP(E)],  4P(x{). (2.29)

n,n

From eq. (2.29) we can see that the poles, E,, of the full Green function G, which
have nonvanishing residues in region 1, obey the determinant condition

det|E — H® + hG*(E)||g-£,= 0. (2.30)

Since eq. (2.30) does not assume G® has a discrete spectrum, we will be able to use
it to calculate the decay rates of metastable states in sect. 3. For now, let us consider
the case in which G® has only discrete poles. Thus when x and x’ are not in region
1, G@(x, x’, E) can be expressed analogously to G:

Y (x) ¥R (')
E—-EP+iny

GO(x,x',E)=—h), (2.31)

n
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It is convenient at this point to define an additional discrete representation using the
states |¢?), such that

GO (E)=~h[E-H®], .8

H®,=E®S, . (232)
and define the transition matrix M(E) which couples the two spaces:
M, . (E)=YPIZ1G [ Z,]142) . (2.33)
G® can be written as the matrix product
| G°(E)=M(E)GP®(E)M'(E). (2.34)

So far, we have considered only the situation in which x and x’ are both in region 1.
It is straightforward to extend the analysis to the cases where one or both the
endpoints lie outside of region 1. We can unify these expressions by constructing the
direct sum representation, [¢P) @ |¢?). The result is an identity for G(x, x’, E)
which holds for arbitrary x and x’:

G(x,x',E)=~h ¥ ¥P*(x)[E~H(E)wirds(x),  (235)

ni; n'i’

where i, i’ are the site indices, and ¢{”(x) is the nth restricted eigenfunction which
is defined to vanish inside the site j, j #i. JC(E) is the “super-matrix” representa-
tion of the full hamiltonian

H® rM(E)
JH(E)= 2.36
(E) (hMT(E) H® (236)
The poles E, of the full Green function obey the determinant condition
det|E—‘JC(E)||E=Ek=0, (237)

and the residues of eq. (2.35) at E,, which are the eigenfunctions, are obtained as a
linear combination of the restricted wave functions. Neither of the restricted basis
sets YV nor Y@ alone span the full Hilbert space, however their direct sum does.
(Note: in cases of accidental degeneracies, when M(E) has a pole at E,, special care
has to be taken in solving eq. (2.37), as in the example of appendix A.)

In eq. (2.35) the PDX provides us with a representation for the full hamiltonian of
a system in terms of the restricted hamiltonians that have different boundary
conditions in the different regions of space, and which are coupled by an energy-
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dependent transition matrix M(E). The direct sum space has an overcomplete basis
of restricted wave functions, because their support overlaps in the transition regions
between the sites. This accounts for the energy dependence of J((E) in this
representation. In appendix A the 1D infinite square well example of the 2-site PDX
is worked out and eq. (2.37) is used to find the poles of G.

We conclude this section by generalizing the treatment of the 2-site to the p-site
problem ( p > 2). The full hamiltonian can be written in a second-quantized notation
as :

Y(E)=HO+H®+ -« +HP + HY(E),

HO?=YEWa! a

n,i%n,i*
n

: 14
HY(E)=h ¥ ¥ [Mi(E)a} a, +he], (238)

i,i'=1n,n

where af ; (a,,) is the creation (annihilation) operator of the restricted state |¢{),
and M is the multiple site transition matrix

M} (E)= P26 (21100 (2.39)

The full Green function G(x, x’, E) can be constructed in terms of restricted states
in a fashion analogous to eq. (2.34):

P 1
’ - _ (H)* Gy ()] N X (]
G(x,x,E)=~h X L ()0 ()W g5y ¥ )

ii'=1n,n

(2.40)

3. Multidimensional tunneling

3.1. INTRODUCTION

Tunneling is a phenomenon which involves the leakage of a wave function
through a classically forbidden (“barrier”) region of the potential separating two or
more classically allowed (“well”) regions. The notion of the forbidden and allowed
regions is dependent on the energy E of the system. Thus we are led in this part of
the paper to study the energy Green function, G(x, x’, E), at energies which are
(much) less than the barrier heights.

Tunneling is one of the most obviously non-classical manifestations of quantum
mechanics; there is an entirely non-classical energy scale which is dynamically
generated by it. To be more explicit, let us consider a simple problem of the sort
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Fig. 5. Characteristic scales in a generic symmetric double well problem. The low-lying poles of the two

“well” Green functions are marked as dashed lines. The solid lines represent the poles of the full Green

function. ¥(x) is the potential projected on the x-coordinate, /_, I3, @, and A are defined in the text
(egs. (3.1), (3.2)).

shown in fig. 5 in which the potential energy can be characterized by a single
magnitude ¥, say the barrier height, and a single spatial length scale 1., which might
be the separation between wells. In addition to these, there is one more independent
dimensional quantity which characterizes the classical dynamics, a frequency w,
which can be a characteristic small oscillation frequency in the inverted barrier, i.e.

Ve
w, ~ W . (31)

In the corresponding quantum problem, non-tunneling phenomena can be char-
acterized by two energy scales, ¥, and Aw_, which are simply related to the classical
motion. However tunneling produces effects with energies of order

A=Ahoexp[-B(V,/he.)], (3.2)

where 4 and B are numbers of order 1. In the interesting regime of parameter space,
where the barrier height is large compared to the quantum zero-point energy,
V.> hw., A is much smaller than the other characteristic energies and any ap-
proximation used in solving the non-tunneling part of the problem will almost
certainly result in errors that are large compared to A. Thus we must employ a
non-perturbative technique to solve the problem, and we must think carefully to
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determine which of the results we obtain are meaningful despite the presence of
other errors that are large compared to A. (Note: the fact that A is so small
compared to all other energy scales presents difficulties in the direct numerical
integration of the Schrodinger equation.)

To focus our thinking we start by rescaling the potential, energy, coordinates, and
time to express the path integral in terms of convenient dimensionless variables:

V(x)/ V.~ V(x),
E/V.—~E,
x/l.— x,
wl—t, (3.3)

and hence the action will be rescaled as
Slxl/n=(1/m) [Tde [ime2 = V()] = (1/g) [Tde [12 - v(2)], (3.4)
0 (i
where g is the dimensionless quantum parameter given by

g=ho/V,=(1/1.), (3.9)

and /, is the quantum length scale |4/mw,. g is a dimensionless measure of the
importance of h. In the simple case where the classical potential has only one
characteristic magnitude and length scale, they are all of order 1. Al small
amplitude oscillation frequencies are also of order 1. (The case in which there are
many very different frequency scales in the classical problem is treated explicitly in
subsect. 3.4 and in sect. 4.)

Our approach to the tunneling problem, which can be called a semiclassical or
small-# approximation, is to obtain an asymptotic expansion for G(x,, x,, E) for
small g < 1. This implies the well-known result that the path integral

G(xl,xz,E)=ij(;wdt‘/:ZGD[x]exp[é(S[x]+Et)] (3.6)

can be evaluated by the method of steepest descents, which in turn implies that it is
dominated by paths in the neighborhood of the classical path with energy E (the
saddle points). There are three difficulties with this approach:

(i) There are, by definition, no classical paths in the classically forbidden region.
This difficulty is easily surmounted since by “classical” paths we merely mean paths
which satisfy the Euler-Lagrange equations S =0 and dS/d¢ = E. Thus, we search
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for solutions evolving in imaginary time, or equivalently for solutions of the real
equations of motion with energy — E in the inverted potential — V'(x).

(i) The classical paths in the classically allowed region are very complicated.
There are an infinite number of them, and generally they are chaotic. Note, however,
that the classical paths in the forbidden region are very simple since in the inverted
potential any path which wanders too far in any direction typically falls off to
infinity. Moreover, since in the forbidden region the argument of the exponent in eq.
(3.6) is real and negative, any long meandering classical paths which do occur make
almost no contribution to the path integral since they will have a very large action.

(iii) There is no obvious way to connect the classical path contributions in the

allowed and forbidden regions, in more than one dimension.
Problems (ii) and (iii) can be neatly avoided using the PDX. We define a decomposi-
tion surface that encloses each well. The restricted Green function G* associated
with a well can typically be computed in some other way. It does not involve
tunneling, and so there is no reason to treat it in the same way as we treat a
tunneling problem. Often, at low energies a well is approximately harmonic and
hence G*!' can be computed quite accurately by perturbation theory. (In the model
problems solved in sect. 4 this will be the case.) Alternatively, the well might be
associated with an atom, and G**" could be computed using some version of the
quantum defect method. If nothing else avails, one could compute it by direct
numerical integration of the Schrédinger equation. The important point is that G“!!
does not have to be computed using classical paths and so problem (ii) is finessed.
The PDX itself is a connection formula, and is the solution to problem (iii). One
technical point that is worth mentioning at the outset concerns the choice of
decomposition surface. Since we wish to include only imaginary-time paths in the
restricted Green function of the barrier region, the surfaces should lie in the
classically forbidden region. An obvious choice of the surfaces are the surfaces of
energy E, V(x)= E, which separate the allowed from forbidden regions. This turns
out not to be a convenient choice since the semiclassical approximation breaks down
when the endpoints lie on such a surface as reflected in the divergence of the
prefactor [5] (which is proportional to the square root of the inverse classical velocity
at the endpoint). However, since by assumption /, </, we can choose the decom-
position surface 2 to be many quantum length scales /, outside the allowed region,
while still having a good approximation for G**! evaluated at =.

We shall show that the surface integration, too, can usually be performed by
steepest descents. As a result, the entire tunneling process is dominated by paths in
the vicinity of a single classical path of energy —E (the “instanton path”), which
originates and terminates at uniquely determined points on the two decomposition
surfaces of the neighbouring wells. (We call them the “instanton points™.)

In subsect. 3.2 the direct-sum representation of the hamiltonian of eq. (2.36) is
truncated so that we can better study the low-lying states of two wells coupled by the
tunneling matrix elements. In subsect. 3.3 we show explicitly how to compute a PDX
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expression in the semiclassical approximation. Specifically the wave functions in the
forbidden region and the tunneling matrix elements of the truncated hamiltonian are
computed. In subsect. 3.4 we discuss the separation of time scales, which enables us
to simplify a given problem by reducing a many-dimensional tunneling calculation
to one involving fewer, important degrees of freedom. Subsect. 3.5 is a summary and
outline of the strategy for solving a multidimensional tunneling problem in a real
physical system which has been developed in this part of the paper.

3.2. THE TRUNCATED HAMILTONIAN OF THE MULTIDIMENSIONAL DOUBLE WELL

In this section we consider only the double well problem although, as with the
two-site PDX which was discussed in subsect. 2.3, its generalization to multiple wells
is straightforward. We wish to calculate the properties of the system at energies small
compared to the height of the barriers between wells. (In the rescaled units of
subsect. 3.1 this means E < 1.) We define two decomposition surfaces 2, and 2,
which each enclose one well, thus breaking configuration space into three disjoint
regions. Three restricted Green functions are thus defined: G restricted outside
well 2, G® outside well 1, and G* outside both wells. We first consider the case in
which the spectrum in both wells is discrete, so we can use eq. (2.38) to obtain the
representation of the full hamiltonian in the direct sum space of the restricted
eigenstates of the two wells:

Y(E)=YE®ata,+ Y E®blb, + Y [M, ,(E)atb,+hc], (3.7)

n,n’

where a, (b,) is the annihilation operator of state ¢V (), and

M, (E)= P2 1G(E)Z,]1v0) (38)

is the tunneling matrix which couples the two wells. If the wells have quadratic
minima, for example, one would use harmonic oscillator wave functions as the states
of the wells, and improve on them by perturbation theory in the anharmonic terms
of the potential. Thus we can generally find the low-lying energies E{’ and wave
functions at the surface ¢{(x,) i=1,2 up to errors of order g’, »>2. In the
following subsection, subsect. 3.3, M, ,. will be explicitly evaluated and shown to be
of order

M, (E)y~ge "B <xg <1, »>2, (3.9

since W(E)~ 1 at low energies. Let us examine the low-lying spectrum of JC(E).
The level spacings in each well (for the non-continuum case) is of order Aw = g.
Any coupling between two states which have energy difference larger or of order g
will produce a negligibly small shift in their energies since by perturbation theory in
M the shifts are of order ge 2"(£)/2 and thus smaller than the initial errors in the
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restricted states. Thus we can usually ignore all the tunneling matrix elements which
connect two such states and leave only the tunneling matrix elements that connect
near degenerate states |E, — E, | < hw, = g. The E-dependence of M can thus be
eliminated by replacing all the important elements by E-independent averages:

bl ’ 1 + ’ E _E ’ -
]\l’l ",={Mn,n(2(En En ))’ l n n|<<g (310)
' 0 otherwise.

Negligible errors are introduced by this substitution as can be seen from the fact that
dlog M(E)/JE ~ g~ . Thus we end up with a truncated E-independent hamilto-
nian 9 which includes only the low-lying states of the two independent wells, and
some relevant tunneling matrix elements (which we shall learn to compute in the
next section).

9C reproduces the semiclassically calculable tunneling effects in the system, such
as the splitting of degenerate energy levels and the admixture of restricted states.
However we point out that there are tunneling effects which cannot be calculated
within a consistent semiclassical approach, which include the amplitude leakage of
the wave function between restricted states which are uncoupled in J(. This is closely
related to the known difficulty in the one-dimension WKB approximation when
applied to the asymmetric double well problem*. The source of that difficulty lies in
the necessary admixture of the exponentially growing solution with the exponentially
decaying one when connecting the wave function of the allowed region to the
forbidden region. This admixture cannot be calculated consistently to high enough
accuracy.

In the case where there is a continuum of states in region 2, G is not pure real
and its imaginary part is propottional to F®:

ImG?(x,x’, E)= —gnF¥(x,x",E), (3.11)

which has as diagonal elements the local density of states
2
FO(x,x,E)= ¥ [v2(x)['8(E - ER). (312)

In this case the poles E, of G should be evaluated directly from the sum over
bounces, i.e. the determinant equation eq. (2.30). It is clear that tunneling results in
an unimportant, exponentially small shift of the pole E" proportional to Re G®
and a similarly small imaginary shift which is the leading-order contribution to the
imaginary part of E, and can be interpreted as the decay rate of a metastable state

E,=EM+4r,, (3.13)

* We thank Dr. Martin Gutzwiller for pointing out to us this difficulty in the WKB method.
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where
L, =8ImGy (EP) = - g’ (4P [ 211G [ 2] FO[Z,1G [ Z]v) .
(3.14)
In the cases where F® can be factorized (as in one dimension),
FO(x,x', E)=yP(x)yP(x")p(E). (3.15)

I, is expressed by a simpler version of eq. (3.14):

1T, = - g (WOIZ, 16 (ED) 2,10 2) [0 (E), (3.16)

which is the familiar “Fermi golden rule” as it applies to the tunneling decay
process. _

Again the spectrum can be represented by a truncated hamiltonian . In this
case, however, I is purely diagonal and has complex matrix elements E,; it is thus
non-hermitian. ‘

3.3. PDX AND THE SEMICLASSICAL APPROXIMATION

This subsection is technical in nature. It provides the steps needed in order to
calculate a PDX expression in the semiclassical approximation. The main task of this
subsection is to arrive at a calculable formula for the tunneling matrix element
M, ,.(E) introduced in eq. (3.8) such that the tunneling effects in the truncated
system described in the previous subsection section (3.2) can be computed. _

For pedagogical reasons we begin by evaluating the single well wave function 1,
of energy E, at position y, where y is deep in the forbidden region, i.e. ¥V( y)> E,.
Y,( ») is obtained using the semiclassical approximation to the single surface PDX
expression, eq. (2.17). We pick the decomposition surface 2 to lie in the forbidden
region, and take the residue of both sides of eq. (2.17) at E = E, .- This leads to the
equation '

va(y)= fz dx,¥,(x,)C(x,, y, E,), (3.17a)

where
C(x,,y,E)=—38(Aa - V)G (x, p, E) x=x,. (3.17)

C can be evaluated using the semiclassical approximation to the restricted Green
function G*. (The reader is referred to ref. [5] for a comprehensive review of the
semiclassical energy Green function, and to ref. [6] for the treatment of hard walls).
The result is

C(x,, ¥, E)=A(x,, y, E)exp[— iW(xa, ¥, E)][l +0(g)l, (3.18)
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where the quantities on the right-hand side depend on the dynamics of the classical
path x () which is the solution to the equations

i.(1) - vV(x(1))=0, (3.192)

12()-V(x(1))= -E, (3.19b)
subject to the boundary conditions |

x(0)=x,, x(T)=y, (3.19)

with T= T(x,, y, E). Thus x_(¢) is the classical path with energy — E which obeys
Newton’s equations of motion in the inverted potential. In principle more than a
single path can obey egs. (3.19). However, by imposing general restrictions on the
behavior of the potential, we shall discard this additional complication. Having
found x(#) we can express the action W, the time T, and the prefactor 4 as

W(x,,,y,E)=fxydxc,/2(V(xc)—E) , (3.20)

ow
T(xa’y’E)——(xoay9E)’ (321)
A, 172
A(x,, p,E)=h-" v(O)[ OF (T)} , (3.22a)

(%)H, (3.22b)

where v= x_.. The unit vectors %,(¢), i =1, N are an orthonormal basis set chosen
such that #,(¢) is parallel to o(¢) for =0, T. The matrix in the determinant of eq.
(3.22b) has indices i, j; i, j =2, N. The prime denotes projecting out the i =1 and
Jj =1 components.

In many non-separable cases the surface integration of eq. (3.17a) can be
performed by steepest descents. This is possible whenever the integrand in eq.
(3.17a) is highly peaked in the vicinity of an “instanton point” x, € 2. The prefactor
A(x,, y, E) in eq. (3.18) is a slowly varying function of x,, so C(x,, y, E) is peaked
at the point X, where W(x,, y, E) is minimal. Since the gradient of the action with
respect to its initial point is the negative of the initial momentum of the classical
path, the condition that W be minimal is equivalent to the condition that the
classical trajectory from X, to y must leave the surface perpendicularly. In general
there are potentials and surfaces where this condition can be satisfied by many

2

A; = det’ ni(O)'m'm T
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Fig. 6. The semiclassical calculation of the 2-dimensional harmonic oscillator wave function
Yum (x?, y®) which is carried out in appendix C. The solid contours are equipotential curves, and the
dashed contours are the surfaces of constant wave function (¢). The shaded area is the allowed region
E, . >V, and X is the decomposition surface which is perpendicular to the instanton path of zero energy
X, y, and tangent to the surface of constant wave function 3. (1) and 9),(¢) are the parallel transported

basis vectors of the fluctuations defined in eqs. (3.26).
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instanton points, but, for the sake of simplicity in the following discussion, let us
restrict ourselves to study the cases where only a single instanton point exists. In
order to simplify the steepest descents evaluation of the surface integral in eq.
(3.17a) we use our freedom in picking the decomposition surface to choose X in such
a way that ¢, (x,) is maximal at X, as well. We can construct such a surface in the
following manner: first we consider a surface 3 of constant wave function, well
inside the forbidden region. (Fig. 6 illustrates this procedure for the 2D harmonic
oscillator wave functions which are computed semiclassically in appendix C). We
find the instanton point on this surface according to the above prescription. We then
choose the decomposition surface = to be locally flat and tangent to 3 at the point
X,. (Since the only important contributions to the steepest descents evaluation of the
integral come from the region of radius ~ Iy~ /E about ¥,, 2 need be flat only
over a distance large compared to /,.) Now, by construction, X, is an extremal point
of . Since we are interested in cases in which ¢ decays with distance from the well,
we expect 2 to curve “inwards” as shown in fig. 6, and hence the wave function is
also maximal at the instanton point.
We express ¢,(x,) as

\P,,(xa)=p(xo)eXP[— éqb(xa)]- (3.23)

In some cases the wave function is nor well behaved at the instanton point. In this
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case the surface integration cannot be performed by steepest descents but, rather
must be carried out more carefully. For example, if the potential is separable, i.e.
V= 3NV(x,), and if we are interested in a perpendicularly excited state n, p(x,, n)
may oscillate rapidly in the vicinity of the instanton point. However, separable
potentials need not be handled by the multidimensional PDX. In some other
situations, where a perpendicular coordinate is an adiabatic “slave” along the
instanton path, one can use the adiabatic fluctuations approximation (AFA) which is
discussed in appendix D. In the following discussion we shall assume that in eq.
(3.23) p and ¢ (which depend on n) are slowly varying functions of x, in the
vicinity of the instanton point.

Thus, the integrand of eq. (3.17a), I, in the vicinity of X, can be expanded in
powers of (x,— x,):

I,=p(x,)A(X,, y, E)eXP{ - %[:ﬁ(f,) +W(%,, y,E,)

N
+ X xjxj'(”ﬁ“%)]} 1+ZO("/‘)]’
J

Jaj'=2
(3.24a)
where

x;=(x,—%,)-9,(0), (3.24b)

and we denote

32

Web=———W(xD, x? E), ,B=1,2. 3.24¢c
ij ax’(a) axj(p) (x x ) a, B ( )

We can use the same basis vectors %,(0), j=2,N as in eq. (3.22b), since by
construction L is normal to #,(0). The steepest descent integration of eq. (3.242)
over ¥ can now be performed to yield

v, (y)=A,(%,, En)xPn(fa)expl— ;W(f,,, ¥, E,,)][l +0(g)],

(3.25a)

where
vo(T) 4, I ’

An(fa’ y,E,)= (3.25b)
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where v is the magnitude of ¢, 4, is defined in eq. (3.22b), and

1 N-1
A,=det'|W} + ¢ij|( E) . (3.25¢)

The prefactor A, is the measure of the contribution of paths in the vicinity of the
instanton path. It can also be computed in terms of solutions to the linearized
classical equations of motion for the fluctuations around the instanton path, also
called the “variational equations of Jacobi or Poincaré” [7]. The fluctuations are
denoted by the vector functions g/(¢), ¢ € [0, T'], which obey

- V(%)
q.j= .
dx dx’

qj? j=2’N’

where the index j denotes that g/(¢) satisfies the initial condition ¢/(0) is parallel to
#,(0). These equations yield N —1 stability frequencies which can be incorporated
into the instanton action as a potential renormalization (see subsect. 4.5 for a model
problem in which this effect can be dramatic). This alternate description of the
prefactor is derived in detail in appendix B, much in the same way as Gutzwiller
derived the stability angles for the semiclassical energy levels [8] (the analysis of
Gutzwiller was extended to field theories by Dashen et al.). The main differences
between this and the energy levels analysis is that here we are looking at a classical
path in imaginary time (forbidden region) with positive stability angles (definite
instability) between different endpoints, and in the other case the complex stability
angles are calculated for a periodic orbit in the allowed region. We briefly present
the results of appendix B. It is convenient to express the fluctuations equations in
terms of the parallel-transported moving frame {#,(¢)}, which coincides with the
frames {%,(0)} and {#,(T))} at t =0 and ¢ = T respectively. The parallel transport is
defined by

. ()

"‘(I)_W’ (3.26a)
7,(¢) 9, (t)=0, i, j=1,N, (3.26b)
#.(e)-9;(1)=0, i,j=2,N. (3.26¢)

This enables us to reduce the N coupled equations for the fluctuations to N -1
equations for the projection of the fluctuations onto a hyperplane perpendicular to
the instanton path. Thus, g;;=#;" g’ obey the equations

qij(t)= Z [‘Qizi'(t)_38ii"]12i’(t)]qi'j(t), i,j=2,N, (3-273)
i’=2,N
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with the initial conditions
qij(0)=8ij’ q-ij(o)-——q)ij' (3.27b)

Here, the ““transverse curvatures” are

92(1)=“ (,).M.* (1) (3.27¢)
v L dxdx’ K ’
and the “bending frequencies™ are

Jlj(t)=:;\71(t)'?’j({) (3.27d)

for i, j=2, N. In terms of the solutions of this equation, A, is given by the
expression

v(0) 2 , n v(0) 12
An=[m—)] aertg, (D)= | 225 Vel -1 £ w629

where again det’ is an (N — 1)’-dimensional determinant (i, j=2, N), and the
(N — 1) stability frequencies »,(T) correspond to the eigenvalues of g;;.

In appendix C the two-dimensional harmonic oscillator wave functions are
worked out to provide an explicit example. An exact calculation of the instanton
path and fluctuations is demonstrated. In other potentials the analytic solutions for
the classical dynamics are not available in closed form, and one has to resort to
numerical methods or approximations.

We proceed to the more complicated problem of calculating the tunneling matrix
element M, ,.(E) of eq. (3.8). This involves two surface integrations: on 2, and Z,.
The two restricted wave functions ¢ and ¢{? are written as in eq. (3.23) thus
defining the exponential functions ¢V(x{") and ¢®@(x?) respectively. (The indices
n and n’ will sometimes be dropped to avoid cluttering the notation.) We choose the
surfaces of constant wave functions 3 ;» 1=1,2 in the forbidden region, and find the
instanton path x(r) of energy — E in the inverted potential such that its initial and
final velocities are perpendicular to 2, and =, respectively. Again, we choose =, to
be the tangent surface to £, at x’. In fig. 7 these surfaces and the instanton path are
illustrated. As in the previous case, we use the steepest descent integration simulta-
neously on both surfaces to arrive at

1
M, (E)=A, 4P(xP)2 (3P )exp| - EW(f.‘,“,fff’,E) [1+0(g)],

(3.29a)
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Fig. 7. The semiclassical calculation of the tunneling matrix element M(E). The solid contours are

equipotential curves, and the dashed contours are the surfaces of constant restricted wave functions. The

shaded areas are the allowed regions E > V, and Z,, i =1,2 are the decomposition surfaces which are

perpendicular to the instanton path ¥ of energy — E. #;(¢) and #,(¢) are the parallel transported basis
vectors of the fluctuations defined in eq. (3.26).

where

W(Z®, 59 E)= 4z \2[V(x)—E] , (3.29b
(1)

xﬂ

Al 1/2
A, o= [v(0)o(T)]"? —] ;
v A3
1 N-1
b= (- ge)  derm

1 \¥¥-D m;1+¢§1_) VVil'z
(———) det’| 7 Y ’ (3.29¢)

21 22 2|
Wi W3+ o

(The superscripts «, 8 in W}‘;B denote the arguments to which the derivatives d,, 9;
are applied respectively.) The prefactor A, ,, can be expressed in terms of the same
fluctuations ¢,; which are the solutions of eqgs. (3.27) but where in the initial
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conditions egs. (3.27b) ¢} is substituted for ¢,;. The result is

A, o =det|g, (T)+J,(T)q(T)+ ¥ ¢fq,, (T2 |
’=2,N

x (2ag) "V [v(0)v(T)]?, (3.30a)

where the “longitudinal” fluctuation, ¢, ,(T'), which appears here, can be expressed
in terms of the transverse fluctuations according to

Ju(t)q,;(1)
T)=2v(T dt ———. 3.30b
ql/( ) U( ),§N'[ U(I) ( )
Again, this prefactor can also be expressed in terms of the stability frequencies, as in
eq. (3.28), and the dimensional quantum lengths /, which cancel the N —1 length
dimensions of the wave functions normalization,

n,=[u(o>v<r)]‘”( nz)p[— L] G

k=2,N

where
L=\gn/v, . (3.31b)

While the solution of the fluctuation equations is often complicated, good ap-
proximated solutions can often be obtained. In appendix D the adiabatic fluctua-
tions approximation is presented. It is the adiabatic approximation for the dynamics
of the transverse coordinates, and can be valid even when the naive semiclassical
approximation for G' and the steepest-descent integration of the surfaces is not, as
shown by an explicit example in subsect. 4.5. The approximation is valid when the
curvatures (3.27¢) and bending frequencies (3.27d) are slowly varying along the
instanton path. In this case,

Vk(T)T=fOszszk(;(t)), (3.32a)

where 2, are the eigenvalues of £,; of eq. (3.27¢). Using eq. (3.32a) we can replace
A, with a local renormahzatlon of the potential, such that ¥(x) is replaced by

n
V'i(x) in the instanton action W, where

vee(®) = V(%) +gk22(mk+ Dex), (3.32b)

where m, are the quantum numbers of the transverse excitations.
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3.4. THE SEPARATION OF TIME SCALES

Here we discuss a method which can be used to handle a tunneling problem in a
real physical system of many coupled degrees of freedom. The classical dynamics in
such a problem will generally be too complicated to calculate explicitly. However, in
many cases the important part of configuration space can be effectively reduced to
only a few degrees of freedom. This reduction is performed by a separation of time
scales, and we examine the situations which allow us to carry it out. This analysis
was introduced by Sethna [3] in his treatment of tunneling centers coupled to
phonons.

Suppose we can identify a tunneling coordinate, x, which is coupled to many
modes. We wish to separate the modes into 3 categories according to their small
oscillation frequencies w,: the “fast modes” w{ > 771, the “slow modes” w{® < 771,
and the “important modes” w{™ ~ 7~! where the “tunneling time”, , is the
characteristic time scale of the instanton path x(z).

The fast modes, y{), can be treated in the adiabatic Born-Oppenheimer ap-
proximation. They effectively renormalize the potential and mass of the tunneling
coordinate and thus drop out of the problem. This was labelled the “effective mass”
or the “slow-flip” approximation by Sethna in his instanton treatment of the
tunneling centers in alkali halides.

On the other hand, the “slow modes”, y{, can be kept as frozen parameters in
the tunneling calculation and thus modulate the resulting energies and tunneling
matrix elements E(y(®) and M/",(y{®) respectively. The truncated hamiltonian
JC will have residual interactions with these coordinates which can be treated for
instance by perturbation theory. This scheme is known as the “Frank-Condon”
approximation, and is used for example in Holstein’s small-polaron treatment of the
electron-phonon interactions [9]. There the electron is described by a tunneling
coordinate that is fast relative to the phonon frequencies.

The important modes, y{™, have to be included explicitly in the computation of
the tunneling matrix elements because by their very nature, if we used either of the
above approximations to compute the dynamics of y{™, we would find large
exponential errors in the computed tunneling effects.

From first inspection of the hamiltonian it is not always easy to determine which
modes are relevant. In the next part, sect. 4, we shall demonstrate the subtleties
involved in finding the tunneling time and the transverse frequencies in the strong
coupling regime. Only after these time scales are evaluated can one argue that the
effective mass or the “frozen phonon” approximations may be used. In the regions
of strong coupling large renormalization effects may make the tunneling time 7 and
the transverse frequencies appreciably different from those of the decoupled prob-
lem. This is vsually indicative of the fact that the coordinate system has not been
well chosen; the coordinates do not approximate independent normal modes. When
this is the case, a canonical transformation (rotation) of the coordinates will
transform the problem into a more weakly coupled problem in which the relative
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time scales are apparent. This regime has been labelled the “self-trapping” regime in
ref. [3].

3.5. THE MULTIDIMENSIONAL TUNNELING COOK BOOK

This subsection is a summary of sect. 3. We outline in a “cook book” fashion the
strategy of solving a general tunneling problem in multidimensions. :

(i) Rescale distances such that all the coordinates have unit mass.

(ii) Examine the potential energy. Find the local minima and define the tunneling
coordinate x to parametrize an approximate classical path between them. The
projected potential ¥'(x) gives us the dimensional scales of length, time and energy,
I, w1, V,, respectively, of the tunneling problem. V(x) and these scales might be
redefined after including the renormalization effects of the fast modes, and the
“squeezing” effects (Qquantum renormalization arising from significant changes of
curvatures). Evaluate the quantum parameter g = hw,/V,; it must be considerably
less than 1 (or semiclassical methods are inapplicable).

(iii) Treat the fast modes by the adiabatic approximation. This will renormalize
the mass and potential of the remaining degrees of freedom which are coupled to
these modes. The effects of fluctuations of these modes can also be included as
potential renormalization by use of the adiabatic fluctuations approximation (AFA)
described in appendix D.

(iv) Separate the slow modes. This is done by keeping them as frozen parameters
in the tunneling calculation, and including them later in the truncated hamiltonian
as separate modes with residual interactions which modulate the energies and
tunneling matrix elements.

(v) You are left with a few important degrees of freedom. Evaluate the energies
and wave functions of the low-lying states of the single well problems. (For many
applications harmonic oscillator states are acceptable.)

(vi) Calculate the tunneling matrix elements M;-.(E) between near degenerate
states. This is done in two stages:

(a) Choose two surfaces of constant wave functions in the forbidden region and
find the classical path of energy —E in the inverted potential that crosses the two
surfaces on a perpendicular trajectory. This simultaneously defines the instanton
points on both surfaces, the instanton time, and the instanton action. In general this
path cannot be found analytically, but it is relatively easy to find it numerically (e.g.
by variational algorithms). The instanton action and the wave functions at the
instanton points determine the exponential contribution to M.

(b) Solve the N — 1 linear second-order coupled equations of the fluctuations, egs.
(3.28), analytically, where possible, otherwise numerically.

(vii) The result of the calculation at this point is the truncated hamiltonian. The
states in this hamiltonian are coupled by the tunneling matrix elements computed in
(vi), and they interact with the slow modes via residual interactions. The transport
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and thermodynamic properties of the system (at low temperatures) can now be
calculated employing other methods. Examples for such methods are the polaronic
hopping treatment of Holstein [9], and the spin coupled to a dissipative heat bath of
Chakravarty and Legget [10].

4. Solutions of model problems

4.1. INTRODUCTION

In most physical systems the full multidimensional potential is not known with
great quantitative accuracy. However one can learn a great deal about the behavior
of these systems from a knowledge of their symmetries, energies, and time scales.
Solutions of model problems are useful in this respect, as they enable us to obtain
qualitative insight into the behavior of generic systems. Model problems are also
useful as examples of how our method actually works.

In sect. 3 we discussed tunneling in multidimensions and we introduced the notion
of “separation of time scales” as a strategy for reducing configuration space by the
use of the “effective mass” or the “frozen phonon” approximations. In this section
these approximations are reexamined and their domains of validity are explored. In
this way, the notion of separation of time scales can be made a well-defined
asymptotic expansion in terms of small adiabaticity parameters in the model
problem. We shall use the PDX to solve three problems which have long been of
considerable interest in various branches of physics-and chemistry. We take particu-
lar care to explore the different regions of parameter spaces and to compare the
complete results to those obtained using the various approximation schemes.

Each of the three problems involves a particle in a quartic double well with the
coordinate x coupled to a harmonic oscillator (phonon) coordinate y. All quantities
are rescaled as in subsect. 3.1. We thus consider the following potentials:

(i) The “linearly coupled” double well:

‘Y 2
Vi(x, y) =4(x* - 1)2+%w2y2—7xy+%(—) %2, (4.1)
w
(i) The “gated” double well:
2
Va(x,0) =32 =)+t 4y (P Dy 32 (=17 (@42)
w

The name “gated” is given for the role of the phonon coordinate as a “gate” that
modulates the barrier height of the tunneling path. Linearly coupled and gated
double wells are abundant in physical tunneling problems. They describe the
interaction of a tunneling coordinate to first order in the phonon displacement, and
thus provide the simplest possible models for coupled tunneling. Examples of
problems of this sort which are extensively discussed in the literature are polaronic



830 A. Auerbach, S. Kivelson / Multidimensional tunneling

conduction in insulators [9)], tunneling defects in crystals [3], diffusion of light
interstitials in metals [11], and the low-temperature behavior of glasses [12]. We have
added counterterms to the potentials of the first two problems in order to keep the
height of the adiabatic barrier (which is also the classical activation barrier), and
the positions along the x-axis of the minima fixed, whilst the two parameters, the
phonon frequency w and the coupling constant v, are varied.

(iii) The “squeezed” double well:

V(x, ) =3 (x2 - 1) + 1[0+ v(x2 - )] y2. (4.3)

This potential is quite different from the first two. The instanton path is constrained
by the reflection symmetry of the potential to lie along the x-axis. However the
phonon may produce large effects in the tunneling due to the “squeezing” of its
curvature along the instanton path. A sizable quantum renormalization of the
barrier height occurs when g\/n—( ~ 1 due to large variations in the zero-point energy
of the phonon. The study of this effect takes us somewhat outside the regime of
validity of the semiclassical approximation as naively applied; large fluctuation
effects are incompatible with the semiclassical approximation. However, as discussed
here, and in greater detail in appendix D, the problem can often be suitably
renormalized so that it can be handled with the present methods. (See also [30]).

In subsect. 4.2 we start by deriving the ground state tunneling splitting of the
one-dimensional quartic well, and comparing it to the result of the WKB approxima-
tion with linear turning point connections. Then we present the PDX expression for
the coupled double well. In subsect. 4.3 the “effective mass” (EM) and the “frozen
phonon” (FP) approximations are defined for the coupled tunneling problems.
Subsect. 4.4 includes a comparison of the exact (semiclassical) results to the two
approximations for the linearly coupled and gated problems. Subsect. 4.5 contains
the solution of the squeezed double well and the quantum renormalization of the
potential. Also, we discuss the use of the adiabatic fluctuations approximation to
describe this phenomenon.

4.2, THE PDX RESULTS

First we derive the PDX expression for the ground-state splitting of the 1-dimen-
sional (decoupled) double well. The quartic potential is

Vix)=ltw?(x2-1)%, (4.4)

with minima at x'= +1. The restricted ground state of the right well (x,=1)
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evaluated at a decomposition point x,=1—d, where \/g/w, <d <1, is
o W, 1/4 oWy )
VP (x4) = - exp| — Z—g-d , (4.5)

and its energy is E{" = 1gw,. The tunnel splitting of the ground-state energy of the
double well problem is

Ef=E{ =4, (4.6)

where A is equal to the tunneling matrix element M, ,(;8w,;) of egs. (3.31). Thus

1
A/g= u(xd)[tpgl’(xd)]zexp[— g W(_xd» Xd» %gwl)]

- [;—;]l/zv(xd)exp[— ;-W(—I,I,O) + %wlT(—xd,xd,O)Hl + 0( Vi:) )}

(4.7a)

where, in the second line, the action W has been expanded to first order in the
energy:

W(a,b,E)= ["dx 2(V(x)-E) , (4.7b)

aw

T= EE . (4.76)

The classical path which contributes to W(a, b,0) is the zero energy path and not the
original instanton path of energy — E{V. This choice of path, which for simplicity we
shall also call the instanton path, simplifies the following calculations and will be
used throughout this section of ‘the paper. In eq. (4.7a), we use the harmonic
approximation for the dynamics of the (zero-energy) instanton path near +1 to
permit the substitution w;d? + W(—xg4, x4,0)= W(—1,1,0)1 + O(d)]. We can also
express the velocity v(x4) in terms of the velocity at the classical turning point

Xip = 1- Vg/""l 5 v(xtp)= \/ng:

v(x4) = /gw, e T*p-xa:0) (4.8)

Combining and evaluating egs. (4.7b) and (4.7c) we arrive at

A 2w, |12 2w, 49
P S I A | “2)
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Fig. 8. The linearly coupled double well. The potential ¥;(x, y) of eq. (4.1) and the instanton path (solid

line), are drawn for three values of y and w. The long-short dashed line marks the adiabatic path, which

is used in the EM approximation, and the short-dashed line marks the FP path. The tunnel-splitting 4 is

given in units of ‘/g . The parameters and tunnel-splittings for the three potentials are (a) » =0.316,

y=0.1, ABM =17exp[-1.33/g], AFP =2exp[—1.37/g], A=1.8exp[—1.16/g). (b) w=1, y=038, AEM

=2exp[—1.22/g], AP =23exp[-2.04/g], A=23exp[—1.18/g] (¢) w=0.1, y=002, ARM =
1.3exp[—2.10/g), ATP = 1.9exp[—1.40/g), A = 1.3exp[—1.27/3].

This is the correct semiclassical expression for A (see ref. [19]). It is instructive to
compare eq. (4.9) to the result one would get by using the WKB method with a
linear turning point connection formula ‘

AP /g = %e"wlexp[— L fl—‘/mdx \/2( V(x)-1gw) | (4.10)
8 Y\g/wy —1

By evaluating eq. (4.10) explicitly, one can verify that the error introduced by the use

of a linear turning point formula for the ground state is a factor of [« /e]*/2 (This

result is traceable to Goldstein [13].)

The 2-dimensional (coupled) problems of egs. (4.1)-(4.3) are solved numerically.
There are two quantities we need to compute separately when the quantum parame-
ter, g, is free: the prefactor 4, and the exponent W, such that the ground-state
tunnel splitting is

A 4 [ W] (411)
2 ‘/g exp e A1)
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0.25EM_~-0.25
instanton "~
~

Fig. 9. The gated double well. The potential V;(x, y) of eq. (4.2) and the instanton path (solid line) are

drawn for three values of y and . The dotted-dashed line marks the adiabatic path, which is used in the

“effective mass” approximation, and the dotted line marks the “frozen phonon” path. The parameters

(¥, @), and the exponential contributions (W) to the tunnel-splittings are (2) w = 3, y=5, WEM =184,

WFP =175 W=147. (b) w=7, y=10, WEM =121, WFP=144, W=115. (¢) w=15, vy=2,
WEM =220, WFP =162, W =148.
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Fig. 9 (continued).

Both these quantities are uniquely determined by the instanton path (x, y(x)).
Again, it is the classical path of zero energy in the inverted potential (just as in the
decoupled case) that goes between the two minima at x = +1. It can be found by
the use of Jacobi’s form of the least action principle [14], which is

= — fﬂdx\/Z(M )V (x, y.(x)) -0, (4.12)
Ye(X)=y(x)
where M_(x) is the path’s length increment or “effective mass”
' dya 2 ’
Ma(x)=1+( ) . (4.13)
dx

In practice, the minimization of W requires very few variational parameters for the
trial paths y,(x) since the instanton path is smooth and well behaved, as is
demonstrated in figs. 8 and 9. After obtaining the instanton action, which is the
exponent W, we choose x4 close to 1 as the decomposition point, and calculate
the velocity v(xy) and time T(—xg4, x4,0). We find the eigenvalues w2, w?, of the
quadratic minimum, and use the appropriate harmonic oscillator ground-state wave
functions. A of eq. (3.30) is computed by numerical integration of the one-dimen-
sional fluctuation equations (3.27), using a Runga-Kutta algorithm. Thus the final
expression for A is

A/g=A[w;—:b]l/zexp[— %f;l\/ZM(x)V(x,)_)(x)) + Hw,+w,)T|.

(4.18)
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Pictures of the instanton paths.for various choices of parameters, as well as the
values of the eéxponents and prefactors, are presented in figs. 8 and 9.

4.3, THE EFFECTIVE MASS AND FROZléN PHONON APPROXIMATIONS

The effective mass (EM) approximation entails approximating the instanton path
by the adiabatic path (x, y*!(x)) where

wv(x,y
—a__) =0. (4.15)
Y y=y*(x)

Thus the potential can effectively be replaced by the renormalized potential
vad(x)=V(x, y*(x)), (4.16)

and the mass by the renormalized effective mass

M*(x)=1 +( dyj)z. (417)

This results in an effective one-dimensional problem which can be easily solved to
obtain the tunneling rate. In the linearly coupled double well the EM approximation
gives for the tunnel splitting

22 |2 2V2M ™
MM= 2| —e—x| expl——5 |, (4.18a)
agy M 3g
where
Y 2
M“d=1+(—5) . (4.18b)
[

In figs. 8 and 9 the short-long dashed lines are the adiabatic paths, and by
comparing them to the true instanton paths it is clear that this approximation is
good only in a certain regime of the potential parameters. ’

The frozen phonon FP approximation is obtained by freezing the coordinate
y = const, and thus approximating the instanton path by a straight path (x, y),
—1 < x < 1. The tunneling splitting is thus

AT /g= f_wwdy%(y—y;)%(y—y,;)A"(y), (4.19)

where (£1, y,F) are the two minima, and A°(y) is the “bare” tunneling splitting of
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the one-dimensional problem of unit mass and “bare” potential V(x|y):
Vixly)=V(x, ). (4.20)

¢, is the relaxed ground-state wave function of the phonon. Integration of eq. (4.19)
by steepest descent results in

AT /g =e PN (), (4.21)

where y is the most dominant contribution (saddle point) to eq. (4.19), and P is the

—-— EM .
—— — 7 -
50 - FP _- y=Ew
—"':‘7:'—’.:"—'—"“‘-—»..
- N“-_
g 0 <
2
J ~ I
E 50 \\\\\; )r=I/2w 2
2 S ——
o o S~
x N 7
w
- Vs
w \ // )’:walz
% 100- \ -
. -~
) _>Z
Al e ~——
o O —— Ppe—
@ /
@ /
w / .
w — e y=lpw
> 101 e — \,5‘//
o S, — .\ [ —
g © N 3
~ 100+ : -7
uJ \ g
-~
o . - /
N, T r=hw'?
Om——— e — e —
|00'—'_'_'\'\.\ y="rw
~
___________ >~g—.—‘\-'__—~—~
° -3 ‘o2 T -1 T
10 10 10 10 10

Fig. 10. The linearly coupled double well. The relative errors (W — W)/W in the exponents of the
“effective mass” (EM), and “frozen phonon” (FP) approximations. Different cuts in the parameter space,
v(w), are sampled.
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Fig. 11. The linearly coupled double well. The prefactor A of eq. (4.11), for the line y=j&*/? in the
parameter space of ¥,. The prefactor varies smoothly between the “effective mass” (EM) and “frozen
phonon” (FP) approximations.

phonon overlap exponent

P(y)=—w[(y i+ G-y, (4.22)

The dominant paths in the FP approximation are shown by short dashed lines in
figs. 8 and 9. The vertical segments contribute to the overlap factor of eq. (4.22).
Again it is clear by inspection when the approximation is valid.

The accuracy of the two approximations in various regions of parameter space is
summarized in figs. 10-13.

4.4. THE LINEARLY COUPLED AND THE GATED DOUBLE WELLS

The linearly coupled double well, eq. (4.1), and the gated double well, eq. (4.2),
exhibit different reflection symmetries on the x- and y-axis. However, they share the
property that the instanton paths in both models generally bend in the two-dimen-
sional space and thus have complicated dynamics. If the phonon coordinate is
integrated out of the path integral, as in the treatment of ref. [3], the instanton
equation of motion contains a term which is non-local in time called the nme-retarded
interaction (ref. [4], p. 234), which reflects this complexity.

We scan the parameter spaces (w,y) and compare the PDX tunneling exponent
W, which is the action of the instanton path, to the approximated exponent, given
by the action of the EM and FP paths. Fig. 10 exhibits the relative errors of the two
approximations for the linearly coupled model. Note that both approximations
always overestimate the exponent. This is a result of the variational principle eq.
(4.12). We can map the regimes of validity in the parameter space. This is done in
figs. 12 and 13. The solid lines in the figures mark the boundaries of the regions of
parameter space where the specified approximation is accurate to better than 10 per
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STRONG COUPLING ®

EFFECTIVE MASS REGIME

Fig. 12. The linearly coupled double well. The regimes of validity (relative errors less than 10 per cent) of
the “effective mass” and “frozen phonon™ approximations are charted in the (, @) space. The points 1, 2
and 3 are the values of the parameters in figs. 8a, b and c respectively.

cent. We have also computed the prefactors of the linearly coupled problem along
the line y = Jw? and compared it to the corresponding EM and FP expressions. We
find that no dramatic behaviour of the prefactor occurs and in most cases a careful
calculation is unnecessary.

Figs. 8 and 9 provide examples of the potentials and instanton paths in the
different regimes of parameter spaces for the linearly coupled and the gated model
problems respectively. One can picture the instanton path as the path in which a ball
of zero energy would roll from one maximum to the other in the inverted potential.
The two other paths represent trial paths corresponding to the EM and FP
approximations, and they produce actions which vary in degree of accuracy as we
vary w and y.

We can regard the regimes of the two approximations in the context of the
separation of time scales that was discussed in subsect. 3.4. The EM regime is valid
when the instanton path is close to the adiabatic path, hence we can effectively
separate the transverse mode (fluctuation) as being “fast” compared to the tunneling
coordinate. Note, in fig. 12, that in the strongly coupled (y > w) regime, the
transverse mode can be fast even when w < 1. The strong coupling distorts the
potential such that the characteristic tunneling time is increased and becomes
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Fig. 13. The gated double well. The regimes of validity (relative errors less than 10 per cent) of the
“effective mass” and “frozen phonon” approximations are charted in the (y, ) space. The points 1, 2
and 3 are the values of the parameters in figs. 9a, b and ¢ respectively.

substantially larger than «~". It is then useful to rotate in the (x, y) plane and solve
a weakly coupled problem in the EM approximation.

On the other hand, the FP is valid when it is safe to separate the low-frequency
phonon from the tunneling calculation by freezing it. The region of parameter space
that lies outside both the EM and FP regimes is where the time scales cannot be
separated, and both approximations fail badly. In this regime, a full calculation of
the instanton path dynamics is essential in order to obtain a reasonably accurate
answer.

4.5. THE SQUEEZED DOUBLE WELL

The squeezed double well possesses a reflection symmetry y = —y. This forces the
instanton path to lie on the x-axis (see fig. 14a). Thus the naive calculation of
the exponent in eq. (4.14) would use the bare potential V®(x)= V;(x,0) and the
instanton path X(¢). The term “naive” will be explained shortly. The result would be

A = Mexp| - L(»(T)-w)T], (4.23)
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Fig. 14. The squeezed double well. The potential ¥;(x, y) of eq. (4.3) is plotted for w =2, y = 10. (a)

The potential V;(x, y) of eq. (4.3) and instanton path (solid line) in the (x, y) plane. (b) The bare

potential V;(x,0) (solid line) and the renormalized potential ¥'™"(x) (dashed line) of eq. (4.27) for the
case where the quantum parameter g is 0.1.

where A® is the “bare” tunneling splitting given by solving the one-dimensional
problem as in subsect. 4.2, eq. (4.9), using the bare 1D potential V' °(x) = V,(x,0),
and T is the time between the two turning points defined prior to eq. (4.8):

T= \/—{log[%]. (4.24)

v is the stability frequency obtained from the solution of the fluctuation equation:

v(T)=1log[q(T)}/T, (4.25)
where
4(1)=2%(1)q(1), (4.26a)
with
(1) = 2+ y(32(1) 1), (4.26b)
subject to the initial conditions

q(0)=1, 4(0)=w. (4.26¢)
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This “naive” approach is valid so long as gv(T)T < 1. If, on the other hand,
gv(T)T is not small, then the path integral is not dominated by paths in the
neighborhood of the “bare” instanton path. While it is still true that the instanton
path has the smallest action, the large value of the stability angle g»(7)T implies
that there are very few paths in the neighborhood of similarly small action. Rather,
the largest contribution to the path integral comes from the vicinity of that path
which minimizes the quantity W + 3g»(T)T. Since »(T') is dependent on the path
this leads us, in general, to a self-consistent problem of great complexity. Moreover,
since gv(T)T is explicitly proportional to the quantum parameter g, one might
expect that the semiclassical approximation itself is invalid unless this quantity is
small. ’

In the remainder of this section we will show how semiclassical methods can be
applied to the squeezed double well even when the naive approach is invalid. We use
in this approach to the problem the adiabatic fluctuation approximation (AFA),
which is discussed in detail in appendix D. In spirit, our approach is similar to that
of Coleman and Weinberg [15]. It is based on the observation that when the
characteristic frequencies of the transverse fluctuations are large compared to the
inverse tunneling time, their effect can be absorbed into a local (in the tunneling
coordinate) renormalization of the potential that appears in the instanton action. In
the context of the squeezed double well, this means that the tunneling problem can
be treated as strictly one-dimensional, but with the renormalized potential

ven(x) = Va(x,0) + dg{[w? + v (x> - )]/ - o) (4.27)

appearing in the action in place of ¥;(x,0). Hence, the tunnel splitting is
AAFA = po(prem), (4.28)

This is illustrated in fig. 14b for g = 0.1. (Note that the potential renormalization is
just due to the instanton zero-point energy 1g£2(x), of the transverse y-motion. This
generalizes to potentials which are nonquadratic in the y-direction.)

The AFA would be exact if the coefficient £ for the transverse fluctuations in eq.
(4.26a) were time independent. Thus in the present model, the AFA produces errors
which vanish (exponentially) as the parameter a — 0, where

a=(Q/9%. (4.29)

Here ( ) stands for typical-value-of, and 2 = Q(x""(¢)), where x™" is the classical
path in the renormalized potential. Since £ ~ Jw?+y and % ~ 1, « is small over a
wide range of parameter space. In particular, whenever a sizeable potential renor-
malization is produced, that is whenever g[2 — w]> 1, the condition g <1 neces-
sarily implies that a < 1. Note that in this regime, calculations based on the
unrenormalized instanton path can even be qualitatively wrong. In particular there
are cases where the squeezing effect provides most, or all, of the tunnel barrier! This
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is an example of dynamically induced barrier formation. It can produce interesting
physical phenomena such as an anomalous mass dependence of the tunnel splitting.
We are currently applying some of the results discussed here to the problem of
hydrogen diffusion on metal surfaces [16].

5. Summary and future applications

In sect. 2 we introduced a quantum-mechanical technique called the path decom-
position expansion (PDX). The PDX can be used to break configuration space up
into overlapping restricted regions, and to construct a direct sum representation of
the full hamiltonian. This enables us to study multidimensional tunneling problems
that break up naturally into weakly coupled wells. The semiclassical approximation
is closely tied to the PDX approach, since by using it we can obtain non-perturbative
effects of tunneling through the barrier regions. The tunneling matrix elements can
be calculated to leading order in the quantum parameter and divergences in the
prefactor can be avoided by choosing the decomposition surfaces away from
classical turning points. :

A previous generalization of the WKB method to multidimensions was carried out
by Banks, Bender and Wu [17]. They formulated a connection procedure of the
multidimensional wave function to the exponentially decaying solution in the
forbidden region and arrived at the same fluctuation equation as egs. (3.27). Their
answer differs from egs. (3.25) only by some undetermined constants. The other
commonly used techniques for solving multidimensional tunneling problems are
mainly based on the instanton formalism (refs. [18,19, 31]). There, the ground-state
tunneling effects are derived from the contribution of the classical path of zero
energy and infinite imaginary time through the forbidden region. Since it contains
little information about the classically allowed regions, the instanton method does
not lend itself to problems involving tunneling from initially excited states of the
potential wells, nor to problems in which back-scattering effects are significant (i.e.
the effect of spectrum of final states). In one dimension, these difficulties have been
elegantly surmounted by a related method involving summing over complex-time
classical paths {20]. An additional difficulty of the instanton formalism is that the
prefactor, which in complicated potentials involves a ratio of infinite determinants,
is difficult to compute. (Such a computation was successfully carried out by Chang
and Chakravarty [21].) On the other hand, the instanton formalism is more adequate
than the PDX for solving problems where there is a continuum of weakly coupled
modes whose time scalés cannot be directly separated from the tunneling time, as in
the problem of a macroscopic tunneling coordinate coupled to a heat bath [22]. The
instanton formalism allows us to map the tunneling problem into a truncated
problem, even though no real separation of time scales exists. See refs. [23,24].

In conclusion to this paper, we briefly outline some future applications of the
PDX technique to tunneling problems.
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In ref. [25] it was shown that it is possible to map an optical transition rate
problem into a multidimensional tunneling problem, and that in particular, the
subgap photogeneration of soliton-antisoliton pairs in polyacetylene can be under-
stood in this way. Polyacetylene is a half-filled Peierls system which is fairly
accurately described by the continuum (field-theory) model of TLM [26]. Thus the
subgap optical absorption is seen to be a direct experimental probe to the contribu-
tion of large amplitude (non-perturbative) fluctuations of the field to the current-
current correlation function of a simple field theory. In ref. [25] a crude estimate of
the magnitude of this effect was obtained by guessing an approximate instanton
path. Since there are now a fair number of experiments which are in good qualitative
agreement [27) with the results of ref. [25], it seems appropriate to obtain more
quantitatively reliable results. The exact time-dependent classical solutions of the
field equation are not known analytically. However, we can obtain good results by
minimizing the action variationally, and using the AFA to calculate the prefactor.

Another system in which the potential is known with high enough accuracy that a
detailed calculation seems worthwhile, and in which interesting experimental results
have been found, is the problem of hydrogen diffusion on the surfaces of metals. At
low temperatures, a temperature-independent diffusion rate with an anomalous
isotope dependence has been observed [28). We [16] are currently computing the
diffusion rate directly from the computed potential. Preliminary results indicate that
“squeezing” effects, i.e. quantum renormalization of the potential, are important in
understanding the isotope dependence. ‘

The “squeezing” effect, calculated in the adiabatic fluctuations approximation
(AFA) in subsect. 4.5, generalizes in a field theory to the effective potential given by
the 1-loop approximation. In some field theories, for example massless scalar
electrodynamics [15], this term dynamically creates a double well problem and
causes a spontaneous symmetry breaking. We expect the PDX technique to be a
useful tool in calculating tunneling amplitudes between the vacua [29], [30].

We wish to thank L.S. Schulman and J. Sethna for their helpful suggestions and
comments. This work was supported in part by a National Science Foundation grant
no. NSF-DMR-8318051, and one of us (S.K.) would like to thank the Alfred P.
Sloan foundation for a fellowship.

Appendix A

THE PDX: 1D EXAMPLES

In this appendix we shall first demonstrate the use of the single surface PDX, eq.
(2.17), with two simple examples in one dimension: the free Green function and the
infinite square well (ISW). Then we shall calculate the energy levels of the ISW using
the 2-site PDX and the direct-sum representation of the hamiltonian. This is an
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important example of the direct-sum representation, since all the restricted regions
are classically allowed (V(x) < E), and the transition matrix elements are not small
and strongly E-dependent. Thus, this problem indicates that the PDX could possibly
be applied to other non-tunneling problems.

First, let us consider the “free” Green function (no potential energy)

m klx; — x|
G(xy,x,, E)=i—exp| —i———|, (A1)
k h
where
k=vV2mE . (A2)

Let us pick x,, x,, r such that x; <r <x,, so r is our “surface” of decomposition.
The restricted Green function to the right of r, G* (which can be found for example
by the “method of images” [6]) is

G'(x,x,, E)=— 2—1:n-sin(-k(xh—_r))exp[— E(_x_;__fl] : (A.3)

It is then easy to verify that G and G" satisfy the PDX equation

h\ad
6070, E) = (507, E) = 32| 267 32, ) (A4)

x=r

The second example is the ISW, where V(x)=0 for 0 <x <L, and V(x)= o0
elsewhere. We choose the decomposition “surface” at a point r in the well,
0 <x, <r<x,<L, and verify eq. (A.4) using

G(xy,x E)=—-Lsin(ﬁ)sin(l—(g-—:—x—2)—) (A.5)
P k sin(kL/h) h h " :

e B) =~ par s )

(A.6)

Note the appearance of the “fictitious” poles of G on the right-hand side of eq.
(A4) at '
2 lh?

Ere———  n=12,..., A7
2m(L—r)2 : (A7)

that is to say, poles that do not belong to G. These make no contribution to the PDX
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since G(x,r, E') vanishes. This teaches us to use considerable caution when
studying the analytic structure of a Green function from a PDX expression.

We would like to use this opportunity to demonstrate the fact that the symmetric
form of the PDX is satisfied by other restricted Green functions, explicitly consider-
ing the function G* that satisfies the “log-derivative” or “emitting” boundary
conditions

d -
—logG*(x,x’, E)
dx

=-;:; Zm(E—V(r)) =£;f'. (A-S)

xX=r

These boundary conditions yield instead of the two “Dirichlet” restricted Green
functions (A.3) and (A.6), the functions

G~’=vi’—1:1~exp[—ik—(—x2h_—x)], (A.3)
~ m k(x,—x k(2QL—x,—x
G'=i-;[exp[—'—£—h—)]-exp[—i(——h——"-}‘”, (A.6")

respectively. It is easily verified that these functions indeed satisfy eq. (2.17). Notice,
unlike G in eq. (A.6), G' in eq. (A.6’) has no spurious poles.

Let us now consider the ISW of eq. (A.5) and set A =m =1. We divide the well
into three regions (see fig. 15) by two decomposition surfaces at @ and a + b such
that 2a + b = L. The two-site Green functions G’ and G® have identical poles (as
a result of the symmetry of the surfaces) at EV:

nixg?

EV= ——— n=1,2,..., A9
2(a+b)’ (A.9)

-2 _ sin(nmx/(a+b))sin(n7x’/(a+b))
a+b Z E-E®

- GV(x,x’,E)=

2 sin(kx)sin(k(a+ b — x’))

f '>x. (A0
k sin(k(a +b)) or x">x. (A10)

The transition matrix (eq. (2.33)) is

B - ) a \. ([, 6 a
M, (E)= (a+ b)sn(k/b) sm(mra+b)sm(n'rra+b), (A.11)

where k is defined in eq. (A.2).



A. Auerbach, S. Kivelson / Multidimensional tunneling 847

® ®
b Site | | Transition I site 2 4
\p“’ Region @
2
2
I — — I'll.c'l-l'
v, l |
EZ/T\.‘__/
(n (2)
m Y J Y (2)
E, ”\Pi/r,’_;.'\&
E
1
1 |
0 (4] a+b L=2a+b
X

Fig. 15. The 2-site decomposition of the ISW problem. The two decomposition surfaces are drawn and
the lowest two states of GV, G® and G are represented schematically by the dashed, dotted and solid
lines respectively. E{" and E,, are defined in egs. (A.9) and (A.13) respectively.

Solving eq. (2.37) requires finding the energies E,, and nullifying vectors (a,’, b,"),
n=1,2,...,00, such that

(E,—E®)ar+ XM, ,(E,)by=0,
Y M, (E,)ap+(E,—EP)br=0. (A12)

The solutions for these energies are

m2,”2

E,=—, m=12,.... Al13
2(2a +b)’ (a13)

Using eq. (A.10) one can verify directly that the corresponding vectors are

sin(nwa/(a+b)) m
am= E_E0 pm=(-1)"""ar. (A.14)

Thus the wave functions of the full ISW ¢, (x) can be expressed in terms of the
restricted states {9, i=1,2 as

¥n(x) = LamyP(x) + 792 (x). (A.15)
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Accidental degeneracies occur when a/b is a rational number. In that case
M, ,.(E) may have a pole at E,, and eq. (A.12) is not well defined. One should then
first lift the degeneracy by moving the surfaces an infinitesimal distance 8, and then
calculate the solutions of eq. (A.12) to lowest order in 8.

Appendix B

THE PREFACTORS OF THE SEMICLASSICAL APPROXIMATION

In subsect. 3.3 we encountered two prefactor expressions, A, in eqs. (3.25) and
A, . in egs. (3.29), which are the results of the semiclassical approximation to the
wave function y, and the tunneling matrix element M, ,. respectively. These
expressions are given in a form that does not manifestly show their relation to the
classical dynamics of the instanton path. In this appendix we derive the alternate
expressions, egs. (3.28) and (3.30), which define the prefactors in terms of the
classical fluctuations about the instanton path. We shall soon transform the ratios of
determinants in eqs. (3.25) and (3.29) to determinants of solutions to linearized
initial value problems which are the stability equations of the instanton path. This
derivation is analogous to the analysis of the stability angles in refs. [8].

The instanton path defined in the 2 N-dimensional phase space is (x(t), (7))
t€[0, T]. (In sect. 3 we have rescaled the coordinates to have unit mass.) Let us take
a neighboring classical path, x’(z)=x(t)+¢(), which deviates from (X, v) by an
infinitesimal fluctuation (g(¢), p(t)), where p=¢. The gradient of the classical
action W with respect to its final (initial) position is equal to the final (negative of
initial) momentum. We can thus use the second derivatives of the instanton action
W(x®, x?, E) to define a transformation on the surface of constant energy E. This
is a linear transformation between the coordinate fluctuations ¢(0),¢(7T’), and the
momenta fluctuations p(0), p(T), such that the neighboring paths, defined by these
deviations, are constrained to have energy E. In an (N X N) matrix notation we
write this transformation as

p(0)=—-w'.-q(0)— W' -q(T),

p(T)=w?-q(0)+W?-q(T), (B.1)
where
32
W= ———W(xV,x? E). B.2
92e 0P (xD,x9,E) (B.2)

We wish to express eq. (B.1) in terms of two coordinate systems which single out
the direction of the instanton velocities ©(0) and (7). Thus we define for any time ¢
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the moving coordinate system %,(¢), i = 1, N, such that

)) v= 9|, (B.3a)

ﬁi(t)'ﬁj(t)‘_‘aij- (B.3b)

711(’)_ ((

Henceforth we shall use Latin subscripts to denote the components of a matrix along
the two endpoint basis vectors, e.g.

Wt =5,00)-w'-7,(0), Wi =9,(0)-w?2-7,(T),etc., (B.da)
and the fluctuations in the moving frame as
g (1)=2,(t)-q(t),  p(t)=0,(t)-p(¢) (B.4b)

(as opposed to the bold face notation for vectors in a time-independent representa-
tion). By taking the x’ derivatives of the hamiltonian

H(x,v.W(x,x',E))=E, (B.5)
and using eq. (B.3a) one can verify that
Wit=wi?=0, i=1,N. (B.6)

We write eq. (B.1) in terms of the W,-‘j"-’3 elements. A summation or a determinant
with a prime denotes projecting out all the 1-components. We denote by a tilde (e.g.
W”) the minor of a matrix which has its first row and column removed. Let us
invert the minors W1!2 and W2 in eq. (B.1) and obtain the “area preserving
transformation” of the perpendicular fluctuations: '

N N
q(T)= ZAijqj(0)+ ZBiij(O), i=2,N,

p(T)= Z Cj4,(0) + ;ZD.,p,(O), i=2,N, (B.7)

where the matrices 4, B, C and D are given by

_(le)—lu"/u’ B=_(W12)—1,

~

G=Wh—WROF2) W, = — R (B.8)



850 A. Auerbach, S. Kivelson / Multidimensional tunneling

3

The equations of motion for the fluctuations are also called the *variational
equations of Jacobi or Poincaré” [7] and are derived by linearizing hamilton’s
equations about the instanton path. In the stationary coordinate representation these
are N second-order coupled equations:

2

dx dx’

The additional constraint we have is fixing the energy E of any deviating path. If H
is the hamiltonian, this implies

H(i+q,0+p)—H(x,0)=0=5(¢)-p(t)—v(1)-q(¢). (B.10)

When we write the stability equations, eq. (B.9), in the moving frame, additional
terms with %, and %, will enter the equations. These terms represent the *“Coriolis
forces” which act on the projected transverse fluctuations because of the rotation of
the moving frame around #,. However we shall simplify the equations by choosing a
“parallel transported ” moving frame, i.e. imposing the conditions

§j=0q, Q= V(E(1)). (B.9)

a()-a1)=0, i, j=2,N, O<i<T. (B.11)
The N — 1 “bending frequencies”
Ju(t)y=u()-4,(1), i=2,N, (B.12)
are thus defined. Eq. (B.10) can be written as
vg, — g, —2v Y J;,q,=0. (B.13)
i=2,N

After some algebraic manipulations; which use eq. (B.13) to eliminate the func-
tions ¢,(¢z) and §,(¢) from the equations for g,(¢), i # 1, we arrive at the N—1
coupled equations

.. 2 .
g(t)= Z [‘Qizi’(t)_38ii’(‘lli'(t)) ]»Qi'(t)’ i=2,N. (B.14)
i'=2.N '
Egs. (B.7) and (B.8) are used to rewrite the semiclassical wave function prefactor
A, of eq. (3.25):
1 -[2© V2 det'| — W2 |12
"\ o(T) det’| W + ¢|

v(0) |/ s

det’
o)) €

aqi(T) 3q,(T)
+ X ¢
3q,(0) ;55 5 9py(0)

v 1,2
- v((;)")) det’|q,,(T)| 2, (B.15)
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where g, are the solutions to eq. (B.14) with the initial conditions
q,~,~=8U, q,‘j=¢ij, i,j=2,N. (B16)

The prefactor of the tunneling matrix element A, , in egs. (3.29) can be
expressed analogously as

A,,‘,,,=det’ W _(WIZ)‘l[Wll +¢(1)][W22+¢(2)] ,_1/2

X (0(0)0(T))*(2mg) """

-1/2
= det’ qij(T)+Jliq1j(T)+ Z ‘1’:(':‘2’)‘7:";(7)’
i'=2,N
x (v(0)o(T))"*(27g) ¥ P72, (B.17)

where g;; are the solutions of egs. (B.14) with initial conditions (B.16) (¢ — o),
and ¢, ;(T) is obtained simply by integrating eq. (B.13):

a(T)=20(r) §_[Tar D80,

o) (B.18)
i'=2,N

Appendix C

THE 2D HARMONIC OSCILLATOR WAVE FUNCTION

Here we show an example of the semiclassical evaluation of the single surface
PDX, using the procedure described in subsect. 3.3. We choose the two-dimensional
harmonic oscillator as the model problem although its wave functions are known
everywhere in the (x, y) plane in an exact form. However, the classical dynamics of
the instanton path and the transverse fluctuations around it are non-trivial, since the
path is not linear in the two coordinates (it curves as a power law). Thus, working
out the semiclassical approximation in this problem would be instructive for
understanding the different contributions to the exponent and prefactor also in other
potentials. A generalization of this problem to any higher dimension harmonic
oscillator is straightforward.

Let us use dimensionless coordinates (x, y), scale the mass to unity, and use g as
the quantum parameter (instead of #). The potential is

V(x,y)=tw2x?+ Lwly?. (C1)
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The energy of the wave function v, is

Enm=g(n+§)wx+g(m+§)wy. (C2)
We follow the prescription of subsect. 3.3 to find the wave function y,,,,(x®, y@)
deep in the forbidden region (V(x®, y@)> E, ), to leading order in g. This
procedure is illustrated in fig. 6.

(i) We expand the wave function v,,,(x, y) to leading order in g, in the forbidden
region. Thus, only the leading powers of x and y are kept:

1/1 1
Youm(X, y) = C..x"cmy’"eXP[— E(E“”xb’ ‘z'wyyz)](l +0(g))

spm(x,y>exp[~ S, y)]u +0(g)). (€3)

thus defining the prefactor p and the exponent ¢.
(i) The decomposition surface X is chosen to be at

Gum(X, y) =d> 1. (C4)

d is still much smaller than ¢,,,(x®, y@). (The result, of course, will be indepen-
dent of 4.)

(iii) Although the instanton path (Xx, y) is classical path of energy —E,,, in the
inverted potential, it is substituted with the path of zero energy which leaves X
perpendicularly and reaches (X, y?) at time 7. The first-order correction to the
instanton action from the shift of the energy from —E,,, to zero, is E,, T, which is
of order g, and thus we include it in the prefactor eq. (C.7). Since we chose 2 in the
forbidden region, the second derivative of the action exists and higher-order correc-
tions in g do not contribute to the semiclassical level of approximation. The
instanton path can be parametrized by the time ¢, so

2(1) =xWest,  H(1)=5Veos, (C.52)

o) = (070 + (03062 (c50)

or by the x-coordinate itself, in which case

(% 7)=(x, 7(x)),  §(x)=5O(x/zD)>", (C.5¢)

where (@, y) is the instanton point on =.



A. Auerbach, S. Kivelson / Multidimensional tunneling 853

(iv) The exponential contribution ¢ to the wave function at (x@, y@) is the sum
of the instanton action and the wave function exponent ¢(x®, 3@), thus we verify
that

%a(x@nym)r;-[ 7, 50) + [ dx\ﬁV(x,y(x))(1+(g)2)]

1
= ?P(x‘z), y@). (C.6)

(v) The prefactor is given using egs. (3.28):

~ 2 2y — (1) @1 l U(O) V2
Bum(x®, y@)=p, (2D, ’)exp[gEan](———v(T)q(T) ) . (€

Where the fluctuation g obeys

= [22(1)-372(1)] 4, (C.8a)

with the initial condition
g(0)=1, (C.8b)
q(0)=—-1—2[w_v(wxf(l))2+w( y‘”)] (C.8¢c)

(v(0))
where
2= [U(t)] [(0)2e2ext 4 (3®) 2], (C.8d)
Jo— 0,0, TP (0, — @, Jels o0, (C.8¢)
(v(2))” " '
The solution to egs. (C.8) is

Et; (arto (C9)

Using egs. (C.9) and (C.5) in eq. (C.7) we can cancel the T-dependence and verify
that indeed

Pam(x®,y?)=p,,.(x®, y?). C.10)
n
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Appendix D
THE ADIABATIC FLUCTUATIONS APPROXIMATION

This appendix briefly treats a special case of tunneling problems in which the
prefactor calculation can be simplified a great deal by the use of the adiabatic
approximation for the transverse degrees of freedom. (We call this method the
“adiabatic fluctuations approximation” (AFA) and we intend to discuss it more
fully in a future study.) The transverse coordinates, which are denoted by the vector
y, are defined to be perpendicular to the instanton path x(¢). The AFA is an
adiabatic approximation in that it approximates the contribution to the path integral
of transverse fluctuations by a local function of the position along the instanton
path. The system is thus always in an instantaneous eigenstate with respect to the
transverse motion, corresponding to fixed x, and this state is adiabatically trans-
ported along the instanton path. This results in a renormalization of the potential
along the path by an amount equal to the instantaneous transverse energy ei-
genvalue. The AFA is clearly valid when the motion along the instanton path is
sufficiently slow, in a sense which emerges naturally from the analysis below. We
will also discuss what happens in the opposite limit, where the inverse-adiabatic
(sudden) approximation can be used.

We will only consider the case in which the instanton path is straight. (We ignore
“bending” effects. However, the more general case can be treated in a similar
fashion.) For the instanton path to be straight, it is necessary that on the x-axis, the
potential ¥(x, y) has a vanishing gradient in the y-directions. Hence to leading
order in y

Vix,p)=W(x)+iy-2(x)p+ . (D.1)

Here, 2%(x) is the curvature matrix of the potential which has eigenvalues SZf(x)
and corresponding eigenvectors %,(x), j=2,N. We define the x-dependent con-
strained harmonic oscillator states Xn,( yilx),

[ 18202 + 102(x) 57| x, (31%) = £, (x) s, (1) (D2)
where y; is the component of y along 7(x):
yj=y"'7j(x)- (D.3)

The PDX expressions for the wave function v, or the tunneling matrix elements
M, . (egs. (3.17a) and (2.39) respectively) are evaluated as follows: as always, the
decomposition surfaces X; are chosen to be perpendicular to the instanton path
(x-axis) at positions x§”. The restricted wave functions, whose matrix elements we
will calculate, are assumed to be given by the constrained states

N
¥ =x,,(x§) _l_lzx,,,(y,-lxé”), (D.4a)
i
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which have eigenenergies
N
E=¢, + _Zze,,_,-(xfp). (D.4b)
j=

The transition Green function GY(E) (which is G'(E) in the wave function
expression) is the Laplace transform of the transition propagator K * which we write
in imaginary time as

K“(x, y;x', y', —iT) = f"m”'GD[x]e-sllxl/xf-”‘”=y'cp[ ple—SitxoVe,

x(0)y=x yO)=y
(D.5a)
where
T
sl=f dr {1x*+ v™(x)}, (D.5b)
0
T 12 ren
S;= [ dr {152+ V(x, y) = V™(x)}, (D.5¢)

and V' ™"(x) is a potential which depends only on x. We shall eventually choose it to
be a suitably renormalized potential:

vrer=vi(x)+e,(x). (D.54d)

(The appearance of the vector index n will be explained at that time.) The AFA
approximation to K ' yields

K'=K,K, {1 + O(g)+0(2|aj|)I, _ (D.6a)
J
where K, is only dependent on x, x':
K, = 1| det| L ZSiL5] PNt D.6b
= /det| =— — = .
L e el L R ] (D.6b)

X is the classical path in the renormalized potential, and

ol (501 =) = T £ O, )|

fo Tat [{ g:ze,,j(i)} —én(z)“.

X exp[—
| (D.6c)

0q | —
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Eq. (D.6) is arrived at using three separate approximations: firstly, we apply the
semiclassical approximation, and express the path integral in eq. (D.5a) in terms of
the classical path between the endpoints (x, y) and (x’, y’). Secondly, we expand
the action of this path to quadratic order in the transverse endpoints y and y’ and
obtain the expression for K, as

-1 9%, 2
2mg wg dydy’

Ky(y, 5, {%(1)}, —iT) = det

y=y'=0

Xexp[— —;—[Sz(y, v {X},T)- fOTth,,()?)H,

(D.7a)

where

S[y. v, {%}.T]= gz{y, T)y; -5,0)y}, (D.7b)

where j,(¢) are the perpendicular components of the classical paths with the given
endpomts at y and y’. Lastly, we evaluate egs. (D.7) by solving the classical
dynamics of the y;(¢) coordinates in the adiabatic approximation. The linearized
equations of motion for these coordinates are the same as the transverse fluctuation
equations egs. (3.27) but with endpoint boundary conditions instead of initial
conditions. (Note, since by assumption the instanton path is straight, the bending
frequencies in eqgs. (3.27) are zero.) This implies that each coordinate y,(t) is
approximated by the adiabatic solution

E(t)=m{ymsmh[f dt9]+ '\/_;TSlm[f dtﬂ]}

x[1+0(a;)], (D.8)
where the a;’s are the small adiabaticity parameters of the approximation
a=(R,/9) <1. (D.9)

() denotes “typical-value-of” along the instanton path. The sum over constrained
states in (D.6c) is derived in a manner which is analogous to Feynman and Hibbs [4]
derivation of the harmonic oscillator eigenstates from its propagator. (It is the result
of expanding K, in powers of exp[— [d¢£,].)
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Because the wave function ¢{? has the form of (D.4a), the particular set of
quantum numbers n=n,, n,,...n, will be projected out of K, once the surface
integrals have been performed. Thus, we can choose &,(x), so that all the exponen-
tial dependence of K on the path x(t) appears in K;:

N

g (x)= Ze,,j(x). _ (D.10)

Jj=2

The renormalization of the instanton action simplifies the expression for G*(E)
and subsequently the wave function or transition matrix elements calculation. As an
example, we work out the AFA solution for the symmetric double well problem. We
choose the decomposition surfaces at +x4, and the energy E = E{), given by eq.
(D.4b). The resulting expression for the tunneling matrix elements is

1 N
Mn,n'(En) = an,(xd)lzv(xd)exp[— E ”/;’renjl l_.lzsnj,n;’ (D‘lla)
}'

where

u/nren= /xd dx lz(nren_E’sl)) R (Dllb)

—Xg

Note that the use of the AFA is limited to cases where a; are small, the instanton
path does not bend rapidly, nor do the transverse eigenvectors #,(x) rotate rapidly
around the instanton path. In appendix C, the two-dimensional harmonic oscillator
wave function calculation provides the converse example of a case where the AFA
can fail badly. Here, if the two frequencies are markedly different, then except near
a principle axis the instanton paths curve in the x —y plane and the transverse
curvatures vary rapidly. In cases where a; is large only locally in x, ie. the
transverse frequency changes abruptly from, say, 2, = 2(a —8) to 2,=Q(a+9),
for small 8, the sudden approximation can be applied in conjunction with the AFA.
This yields additional overlap factors P m in K, of eq. (D.6¢c):

Ppy = [ 45X (18 =8)Xm(yla+8)<1. (D.12)

We conclude by noting that this approximation can be generalized to cases where
the potential cannot be expanded as a quadratic function of y as in eq. (D.1). The
generalization simply amounts to replacing the states Xn, and &y, by the appropriate
constrained eigenstates and energies. (An example is the case when the transverse
potential is a square well. In an analogous problem in classical electrodynamics, the
low-frequency standing-waves of two microwave resonators weakly coupled by a
narrow wave guide are analogous to the low-lying states of the same quantum square
double-well.)
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