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We show that in the frequency regime of the subgap tail, large-amplitude fluctuations of the
(CH), chain are involved in the optical absorption process. A recently developed semiclassical tech-
nique is applied to calculate the absolute absorption coefficient which is related to multidimensional
tunneling of soliton pairs. We include the renormalization effects of weak electron-electron interac-
tions and background transverse phonons. Good agreement with recent experimental data is found.
Experimental predictions are made concerning the isotope dependence and the effect of the soliton

shape mode on the absorption coefficient.

I. INTRODUCTION

The main features of the optical properties of polyace-
tylene (CH), have been successfully explained by theories
based on the model Hamiltonian of Su, Schrieffer, and
Heeger (SSH).!'> Most studies of this model have treated
the lattice in the classical (“static”) approximation; quan-
tum fluctuations of the lattice have thus been ignored. In
this approximation the ground state consists of a dimer-
ized chain (alternating long and short bonds), and hence a
gap of energy 2Ao=1.4—1.8 eV in the electronic spec-
trum. The resulting optical absorption coefficient a(w)
was calculated by SSH; it exhibits an unphysical inverse-
square-root divergence at threshold a(w) ~ (fiw—2A) ™'/
due to the one-dimensional density of electronic states.
Inclusion of any of a number of other interactions which
were not included in the simple treatment of SSH will
suppress this divergence: Lee and Kivelson® have shown
that local-field effects produced by the three-dimensional
screening of the electromagnetic field eliminate this diver-
gence. The presence of interchain electron hopping®
makes the electronic band structure three dimensional
(4¢, is the interchain bandwidth), and hence also removes
the band-edge singularity and slightly shifts the threshold
energy to 2(Ayp—t,). However, these modifications still
cannot properly account for the experimentally observed
exponentially falling tail of the optical absorption which
extends deep into the gap, down to at least fiw=1.1 eV
(see Fig. 1.). Among the experiments which are sensitive
to this tail are the measurements of photothermal deflec-
tion spectroscopy (PDS) of Weinberger et al.,* which
measure the absolute absorption rate; measurements of
photoinduced absorption (Blanchet et al.”); and measure-
ments of photoconductivity (Laughlan et al.%), which
measure the rate of photoproduction of charged solitons.

The tail structure is observed most clearly in the most
carefully prepared samples of pristine trans-(CH),, which
suggests that the relevant broadening mechanism is not
related to static disorder. We therefore suggest that the
quantum fluctuations of the lattice, which were frozen out
in the classical approximation, are crucial in determining
the photoresponse functions of (CH),.

To get a feeling for whether this suggestion is plausible,
let us, as a first crude approximation, imagine treating the
ion’s zero-point motion as a form of quenched disorder
which produces a Gaussian white-noise random potential
for the electrons. In this approximation, we can easily
compute the density of states in the valence and conduc-
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FIG. 1. Optical absorption coefficient of trans-(CH),. The
following data is given in absolute units: x-(NH;) compensated
sample, Ref. 4; and O, Ref. 5. In relative units: /A, the uncom-
pensated 0.5 film of Ref. 4. @ is the photoinduced change in
transmission at 1370 cm ™!, Ref. 5. The right solid line is the re-
sult of the static approximation [Eq. (2.6)], and the present cal-
culation [Eq. (4.9)] is given by the left lines for two different
values of the average soliton creation energies V.
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tion band using the method of Halperin.” We can esti-
mate the magnitude of the random potential felt by the
electrons using the Bogoliubov—de Gennes equation® and
computing the mean-square fluctuations of the order pa-
rameter in the ground state. This has been done by Hicks
and Blaisdell,’ who find that (5A2) =0.42A}; this implies
a root-mean-squared disorder potential A;=0.48 eV. If
taken seriously, this would imply such a broad absorption
tail that there would be no observable optical threshold
energy at all.'”

However, the quenched disorder model is applicable, at
best, when the magnitude of the lattice fluctuations is
small, since otherwise the lattice dynamics are strongly in-
fluenced by the induced changes in the electronic spec-
trum, especially of the localized states. We can, however,
conclude from this argument that quantum fluctuations
of the lattice will have a large effect on the optical absorp-
tion.

Sethna and Kivelson'! (SK) have shown that at low en-
ergies the only electronic states participating in the optical
absorption process are the even and odd parity localized
states associated with a virtual soliton-antisoliton pair,
which are formed by a large-amplitude, localized lattice
fluctuation. SK treated the valence electrons as adiabatic
slaves of the lattice motion. Within this approximation,
the effective lattice dynamics are determined by the two
adiabatic potential energies corresponding, respectively, to
the instantaneous electronic ground state and the first ex-
cited (exciton) states. SK then mapped the resulting two-
level transition rate problem onto an equivalent multidi-
mensional tunneling calculation which is amenable to the
solution using the instanton bounce formalism of Callan
and Coleman.'? SK estimated In[a(w)] to leading order
in # using an approximate solution to the classical dynam-
ics. They found good agreement with the photoconduc-
tivity data of Lauchlan et al. However, the absolute ab-
sorption coefficient was not determined since the prefac-
tor expression of the bounce is difficult to evaluate.

Later, Su and Lu'® used a nonradiative decay approach
to compute a(w). Their treatment is simpler than the in-
stanton approach, but it implicitly ignores the extremely
anharmonic nature of the large-amplitude lattice fluctua-
tions. Although their results are similar in spirit to those
obtained by SK, their method is inadequate for obtaining
the asymptotic behavior of a(w) near threshold.

The more recent experiments of Refs. 4 and 5, which
are in good qualitative agreement with the SK results,
demonstrate the need to complete the calculation and ob-
tain quantitatively reliable results. In this paper we begin
by rederiving the results of SK using a correlation func-
tion approach, and then calculate the absorption coeffi-
cient by applying a newly developed technique called the
path decomposition expansion (PDX).!*!* This method
enables us to use separate approximation schemes in the
different parts of configuration space and to evaluate the
Green functions in the classically forbidden region to
leading order in (fiwy/Ag), the dimensionless quantum pa-
rameter, where #iwg is the long-wavelength optical phonon
frequency of the dimerized lattice. Since the PDX is dis-
cussed at length in Ref. 15, we will refer the reader there
for detailed derivations of some of the more technical de-
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tails of the approach.

We are able to incorporate three additional effects in
this calculation which have not been treated previously.

(1) Quantum corrections to the lattice potential energies
due to soliton-induced shifts in the phonon spectrum.

(2) Electron-electron (e-e) interactions [using the per-
turbative calculations of Wu and Kivelson'® (WK)].

(3) The modulation of the absorption spectrum caused
by excitation of the symmetric width oscillation mode of
the final soliton pair. This is a ‘“backscattering” effect
that is, in principle, missed by the bounce method.'* It
has not been observed previously, but it should be experi-
mentally detectable, and its observation would provide
strong additional evidence of the subgap soliton-pair pro-
duction.

II. THE SSH MODEL AND THE OPTICAL
ABSORPTION COEFFICIENT

The SSH Hamiltonian for a single chain of trans-(CH),
is
Hssu=He+H,, ,
Ha=—10 3 [14+3(= 178 + 8, 1]
ns

X (cnsCin+1s+H.C.) 2.1)

Hy=[1/(4a)*] | + 3 (P,)*/M

+3K 3 (A +48, 07|,
n

where c:{, creates an electron of spin s at site n; A, is the
staggered order parameter (‘“‘dimerization”); P, is the
momentum conjugate to A,; and 4¢y, M, K, and «a are,
respectively, the C, bandwidth, the mass of the CH
group, the bare stiffness constant, and the electron-
phonon coupling constant. The continuum version of this
model is known as the Takayama, Lin-Liu, and Maki;

(TLM) model:®
HTLMZE fdx ¢S(x)

s

. )
—zvpaza +A(x)o, |Ys(x)

+2/g* [ dx($A%+ +0hA?), (2.2)

where vp=2toa /#, g>=timvrogh, A=(4a)’/4mtoK, a is
the lattice constant, and the bare optical-phonon frequen-
cy is wé=4K/M. The field is defined as A(na)=A,, and
¥s(x) is a two-component fermion field. In the classical
approximation, both models have doubly-degenerate
broken-symmetry ground states with the dimerization
(A)=+*A, The corresponding electronic spectrum has a
gap 24, between the valence and conduction bands. For
pristine (CH), the Fermi energy lies exactly in the
midgap. Since the band gap is much smaller than the
bandwidth, calculations which involve only states with en-
ergies of order 2A, or smaller can be done using the two
models interchangeably. WK showed that the effects of
weak e-e interactions can be accounted for using pertur-
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bation theory. We shall therefore begin by ignoring these
interactions for simplicity’s sake, and shall later correct
the results to include their effect.

The optical absorption coefficient a(w) is determined
from the dielectric function:

elw) =€, +(4m/3)(e?/EoA)nad)S (») , (2.3)

where S(w) is the following electronic correlation func-
tion:

S(@)=—i(Bo/HigoL) [~ dt e (x (1)x(0))

| (ol x | ¥p)|?
_(A°/L§°)§ (Eg—Eo—#iw+i8)

(2.4)

€, ~3 is the high-frequency dielectric constant which in-
cludes the effects of the o electrons (and is pure real),
Eo="%wr /A, is the electronic correlation length, n is the
volume density of (CH) monomers, ¥g are the many-body
electron-phonon wave functions, and x is the electron di-
pole operator. We have chosen to normalize S in such a
way that it is finite in the thermodynamic limit (L — o)
and in the continuum limit (§,/a and ty/A¢— « with na,
&0, and Ag held constant). The optical absorption coeffi-
cient is then

alw)=(w/V2eV e —»e’z(a)/?.c)e—e,

V—'
—ay | T2 |57(0) (2.52)
Ay
where
ag=1na(2m/V'e e /fic)~2%10° cm~! (2.5b)

and prime and double prime denote the real and imagi-
nary parts, respectively. The factor of + was obtained by
averaging over the directions of the polarization vector.
Note that since €' is a slowly varying function of w, the
frequency dependence of al(w) derives predominantly
from S”, and hence depends only on the properties of the
state with energy fiw above the ground state.

To implement the adiabatic approximation, it is con-
venient to express the full wave function g in terms of
the electronic eigenstates X; in the presence of the instan-
taneous static lattice configuration A. X; depends
parametrically on A:

J

where ¢5[A] is a wave functional of the lattice configura-
tion A. In the classical or static approximation, fluctua-
tions of A about its most probable value [A(x)=A,] are
ignored, which amounts to approximating ¢f; by a & func-
tional. The resulting expression for a(w) was evaluated
by SSH, and by Suzuki et al.:!

alw)=16ay2A¢/#iw)[(Fiw /280> — 117172 . (2.6)

We plot this expression in Fig. 1 and compare it to the ex-
perimental data. It is clear that the classical approxima-
tion is only valid for fiw>>2A;. We now consider
fiw <2A,. In the adiabatic approximation, the lattice
wave functions satisfy the effective Schrédinger equation:

_ #(4a)
M

2 . .o
s aaAZ +VIA] |#h=Ebeh. (.72

€ j[A].is the adiabatic potential energy corresponding to
electronic state j,

VilAl=¢;[Al+ 3K /(42 3 (A, +A, 1), (2.7b)

and ¢;[A] is the instantaneous electronic energy of state
X;. The adiabatic approximation is valid at least so long
as h =#iwy/ |€;—¢€; | << 1, where wy is the k =0 optical
phonon frequency. For the present purposes, it is neces-
sary to keep track of only the electronic ground state,
Jj =0, and the first excited singlet state, j = 1; higher lying
electronic states only become important when #iw >2A,.
We shall see that & is also the appropriate dimensionless
measure of the magnitude of # which enters the semiclas-
sical approximation for the lattice wave functions: both
the adiabatic and semiclassical approximations are asymp-
totic expansions in small 4. Having decided only to in-
clude transitions between the two lowest electronic states,
we can easily obtain a spectral representation for S in Egs.
(2.5) in terms of lattice wave functions alone:

A
Léd

S(w)= f DADN{ PAISIA X1 [A)X0[A"]

X G (A A )}, (2.9

where the integrals ZA=]],dA, run over all lattice
configurations A and A’, X, is the electronic dipole ma-
trix element

Xo[Al=(Xo|x [ X)) (2.10)
which depends parametrically on A, and G, is the lattice
propagator in electronic state 1:

delAl*9HA']
G((AAE)=—*# .
i % (E —Ej+Eq—id)

(2.11)

Since the lattice wave functions are highly peaked in
the vicinity of the perfectly dimerized configuration,
A(x)=A,, all the configurations that make important
contributions to S must have A(x) near A, except in a
small (spatially localized) “defect” region. The presence
of such a defect alters most of the electronic spectrum
weakly, and pulls two or more localized states out of the
continuum into the gap. The charge conjugation symme-
try of the model implies that the localized states are
placed at energies €y= —e€; placed symmetrically about
midgap (Ep=0). If the lattice were truly static, an elec-
tronic transition could only occur when €,—e€y="%w.
However, since the lattice configuration is merely a result
of the quantum zero-point fluctuations of the lattice, the
transition is necessarily virtual unless #iw is greater than
the total energy of the final-state continuum. ¥V,;(A) takes
on its minimum value of twice the soliton creation energy
2E5=(4/m)A, when the lattice configuration corresponds
to a far separated soliton pair. Thus there exists a thresh-
old energy of #iw ~2Eg for optical absorption.

For a given value of fiwo =€, — ¢, the lattice configura-
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tion which minimizes the total adiabatic potential energy
(18
is

Ag(x;Y,R,K,A)=Ao(1—A{ tanh[K (x + 3R —Y)]
—tanh[K (x — 3R —1)1}),
(2.12)
where K and A are the implicit functions of R,

K =A4 =tanh(KR) , (2.13)

and the value of R itself depends on #w according to the
relation

R =sech~#iw/A,) . (2.14)

We can think of Ag(x;Y,R,K,4) as being a soliton-
antisoliton pair with center of mass Y and separation R
where each soliton has a width K ~!. In the next section
we shall see that R, Y, and K are natural collective coor-
dinates. Crudely, Ag is the most probable lattice fluctua-
tion that permits an electronic transition with energy #w.
Thus we expect the integrals in Eq. (2.9) to be dominated
by lattice configurations A and A’ near Agg.

In the next section we will evaluate the integral Eq.
(2.9) by the method of steepest descents (i.e., in the semi-
classical approximation). However, this cannot be done
directly since, due to the translational symmetry of the
model, any saddle-point configuration A(As~Ag) has a
zero mode ug(x) associated with it such that the in-
tegrand is invariant under

Ap(x)—>Af(x +dY)=As(x)+dY Ay(x)

=Ap(x)+dY||Af||uo(x) , (2.15)
where dY is an infinitesimal translation and
’ —_ _‘i_x ’ 2
l1ayll=[ — A0 (2.16)

We must therefore perform the integration over Y expli-
citly by changing the integration variables:

DA=F ALY ||Af||/ VT, (2.17)

where & A represents the integral over all transverse con-
figurations obeying

J E 80180 8,0]=0.

We can now formally do the Y integrals. At the same
time, we shift integration variables to express the in-
tegrand in terms of fluctuations about Ay: A—A—A[.
The result is

S(o)=||A%| 7~ (Ag/Eh) S (@) , (2.18)

where
Flo)= [ FADN(F[AIB[AIX[AIX[A']F (A,A3E)}
(2.19)

S[A1=¢o[A+As], X[A]=Xo[A+Af], and F(A,A%E)
is the momentum P =0 component of G:

L2 Y
I\(ANE)= [ dY Gi(A+ApA+ALE) . (220)

Here, AY signifies the translated saddle-point configura-
tion Af(x)=As(x —Y). The imaginary part of the ex-
pression for ¥ (w) in Eq. (2.18) can now be evaluated ap-
proximately by the method of steepest descents.

III. THE CLASSICAL DYNAMICS

In this section we first evaluate the ground-state wave
function and the imaginary part of the lattice Green func-
tion S” in the semiclassical approximation,'*? and then
carry out the integrations over A and A’ in Eq. (2.19) by
the method of steepest descents. To do this we make ex-
tensive use of the PDX method. We will attempt to
motivate these results with intuitive descriptions but have
not actually derived them in the text; they are derived and
discussed in detail in Refs. 15 and 19.

As we have already argued, the integrals in Eq. (2.19)
are dominated by configurations near the saddle-point
configuration A, (which was named the “flip” by SK
since it is the configuration at which the adiabatic poten-
tial flips from ¥V, to V). Since Ay in turn closely resem-
bles the soliton-pair configuration, Ags, in Eq. (2.12) for
soliton separation R determined by Eq. (2.14), we need
only evaluate ¢, and &Y for configurations in the neigh-
borhood of Ag(Ry). These configurations lie deep in the
classically forbidden region of configuration space as
shown in Fig. 4: The potential ¥ rises from zero to 2Eg
as the soliton separation R increases from &, to several &,
so ¢[Ag] is an exponentially decreasing function of R.
The potential V| decreases as a function of R from 24, to
2Es, so 97(#w) is proportional to the penetration factor
of a barrier of height V| —#w, and hence decreases ex-
ponentially with decreasing R. In the entire barrier region
in the figure, £, <R <R, the overlap of ¢, and & is
an exponentially small function of 1/h. This justifies the
use of the semiclassical approximation.

The problem of finding the ground-state wave function
of a multidimensional potential well with a quadratic
minimum is a standard problem which is discussed in Sec.
IV and in Ref. 15,

1/4

oM
: expl — Wo(Ao, A;0) /4] ,

i

(3.1a)

$0[A]=H

k

where {w;} are the harmonic phonon frequencies, and
W, is the action of a classical path of energy O in the in-
verted potential, — V,

Wolo AsE)= [ dsVIM (VA —E] . (.1b)

By classical path we mean simply a solution of the Euler-
Lagrange equations. Here s parametrizes the classical
path, A(x,s), between the configurations A(x;0)=A, and
A(x;1)=A(x). M(s) is the square of the length incre-
ment along the path (the “effective mass”):

M(s)=[M/(4a)?] [ dxa~'|dR/ds |?. (3.2)

Equation (3.1) would be exact if the lattice potential were
perfectly harmonic (see, e.g., Appendix B of Ref. 15), and
is the leading order term in 1/7 for an arbitrary potential.
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Similarly, the leading order contribution to ¥ {(A,A";E)
for configurations A and A’ deep in the classically forbid-
den region is given by
G{(AAE)= +AWw[A[A] 2

X exp —%{ W.(A,Ap[ALE)

+ W, (A AL[A'LE) | .(3.3a)
Here,

2
WI(A,A+p,E)=f1 dsV2ZM ) V[(s)]—E], (3.3b)

where for 1 <s <2 the path A(s) is a classical path of en-
ergy —E in the inverted potential — V| with energy — E
which satisfies the boundary conditions A(1)=A and
A( 2)=A,[A]. Ay[A]is a configuration on the hypersur-
face =, of turning points defined by

3= {AgiVi[Ap]=E} (3.4)

for which Wi(A,Ay,E) is minimal, and so Ay, is a func-
tional of the end point A. v(A) is the magnitude of the
classical velocity at the end point

v[A]l={2/M)(V,[A]—E)}'/2. (3.5)

Q is a fluctuation determinant which measures the contri-
bution from paths in the vicinity of the classical path, and
is of order h°. We will discuss it in the next section. The
factor of % in Eq. (3.3) is found by connecting &/ to out-
going plane waves in the allowed region using the Airy
function connection formula. (In the bounce formalism it
is obtained from the Gaussian integration over half a sad-
dle point in path space.'?)

Since ¥} asymptotically factorizes (for A and A’ deep
under the barrier), we can carry out the two integrations
in Eq. (2.19) independently. They are dominated by the
saddle-point configuration, which we call the “flip” Af
since it is the configuration at which the transition from
state j =0 to j =1 occurs. It is found by maximizing ¢,
and ¢ simultaneously:

_8
SA(x)

Since the derivative of the action with respect to its end
point is the classical momentum, Eq. (3.6) has the simple
interpretation that the momentum is continuous at the
flip. This further implies that the flip configuration must
lie on the hypersurface defined by

3= {ApVolAs 1=V [Af] -0} . (3.7)

[WolApA;0)+ W (A,A,,:#0)]=0. (3.6

We can therefore conclude that the exponential contribu-
tion to ¥"(w) is determined by a single continuous and
smooth classical path called the instanton path A;, which
minimizes the action of a round trip (“bounce”) in config-
uration space from A, to the turning point surface 2, and
back, yielding

S"(w)~exp(— W /#) (3.8a)
and
2
W =2 fo dsV2M(s5)V (s,0) , (3.8b)

where M is the effective mass [Eq. (3.2)], and V is the
“unified” potential

V(s,w)=V(A;(s),0)=min(Vy,V, —fiw) . (3.9)
Af(s) is equal to Ay as it crosses 2y Af(1)
=Ag(Ryp)=Ay.

Let us now consider the family of soliton pair configu-
rations Ag(R,K,A) defined in Eq. (2.12). SK asserted
that the instanton path lies close to the adiabatic path in
which the soliton width, K (R), and amplitude, 4 (R), are
determined as a function the soliton separation R as in
Eq. (2.13). Conveniently, exact analytic expressions?! for
the potentials ¥V, and V| are known for these configura-
tions:

Vo(R)=(4/7){tanh(KR)—tan~![sinh(KR)] sech(KR)} ,
Vi(R)=V,(R)+2Aysech(KR) . (3.10)

Here we support their statement by a time-scales argu-
ment and a variational computation. As stated previous-
ly, the configurations A g minimize V for a fixed value of
the electronic level spacing €, —€p. The spectrum of small
amplitude (phonon) excitations around Ag has been ex-
tensively studied for R =£)[Ag(x)=04Aq], R >>&, (two
far-separated solitons), and R =sinh~!(1)/v"2 (the pola-
ron). It was found that the continuum of optical phonons
always has a lower cutoff at #iw,. The characteristic time
scale of motion along the R coordinate can be crudely es-
timated as

r={(d*V/dR*)[1/M(R)]) ~wj " . (3.11)

Since motion along the instanton path is thus slow com-
pared to the typical continuum phonon frequencies, these
modes are adiabatic slaves to the R motion. The true in-
stanton path can only differ significantly from Ag by a
modification of its shape, represented by the softer local-
ized modes parametrized by the collective coordinates K
and A. We have numerically determined the values of
K (R) and A (R) which minimize the action using Jacobi’s
form of the least-action principle,?

W[A;]=min(W[A]) . (3.12)
We therefore minimize the action with respect to the fam-
ily of soliton-pair configurations given by Eq. (2.12). We
parametrized the path by the soliton-pair separation
R =R (s), and choose K (R) and 4(R) so as to minimize
W. We found that K(R) and A (R) are within 10% of
their adiabatic values, Eq. (2.13), and that the instanton
action is within 1% of the action along the adiabatic path.
This conclusively verifies the ansatz of SK and allows us
to parametrize the instanton path in this way.

In Fig. 2 we plot the contours of the potential ¥ in the
two-dimensional parameter space of K and R (A4 is set
equal to K). It illustrates the tunneling problem as find-
ing the minimum action path between the line K =0 and
the surface £ ,,. The vector 8 parametrizes the sym-
metric shape oscillation mode ug(x) which is a normal
mode of the lattice at large separations. Since the tunnel-
ing coordinate is coupled to this mode, as suggested by the
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potential contours plotted in Fig. 2, we expect this mode
to be excited by phonon emission simultaneously to the
motion of the instanton path. In Fig. 3 the instanton con-
figurations are drawn. Also shown is the form of the
breathing mode on the pair of far-separated solitons. In
Fig. 4 the potentials [Egs. (3.10)] are drawn as solid lines.

IV. QUANTUM CORRECTIONS,
e-e INTERACTIONS, AND THE PREFACTOR

Until now we have focused only on the instanton path.
The prefactors of ¢y and ¥/ in Egs. (3.1) and (3.3) are a
measure of how many paths there are “near” the classical
path in the sense that their action is nearly the same.
Likewise, the Gaussian approximation to the integral in
Eq. (2.19) over configurations at which the electronic
transition occurs measures how many classical paths have
action near that of the instanton path. To calculate the
prefactor of S’ we must account for all these factors. To
do this, we expand the action functional to second order
in the deviation from the instanton path 8A(s)
=A(s)—A[(s). The sum over paths can then be evaluated
formally since the path integral is quadratic. However,
the resulting fluctuation determinant is usually rather dif-

R)

Z&I(X

A Zyp
o1

| ALLOWED 00 7
AN REGION d

) ' B R

K

11
2¢]

0 1 | 1

0 €& Ry Rip2¢, 3¢,

FIG. 2. Potential V of Eq. (3.9) for soliton-pair configura-
tions given by Eq. (3.10) with A set equal to K. The ground
state lies on the two axis. 2., and 2/ are defined in Egs. (3.4)
and (3.7), respectively. The instanton path is parametrized by
K (R). 8K denotes the direction of the symmetric width oscilla-
tion mode ug(x).
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FIG. 3. Instanton path [as given by Egs. (2.12) and (2.13)] at different values of R. The bottom configuration is the ground state,
and the top one describes a far-separated soliton pair with a symmetric width mode ug drawn as dashed lines.
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FIG. 4. Bare and dressed potential energies along the instan-
ton path [Eq. (3.10) and (4.9), respectively], and the tunneling
barrier for photon energy fiw. Solid lines: the bare potentials
Eq. (3.10); dashed-dotted lines: the renormalized energies in-
cluding the quantum corrections [Eq. (4.3)]; dashed lines: the
dressed potential energies including the effects of e-e interac-
tions. In this figure we chose U s=0.4A¢ and V= —0.124,.

ficult to evaluate since it is formally equivalent to evaluat-
ing the propagator of a continuum of harmonic phonons
with a time-dependent dynamical matrix D(x,x’;R (1)),

52
BA(x)5A(x’) VIAlla=agr »

where j =0 for s <1 and j =1 for s > 1. Fortunately, as
we stressed previously, the motion along the instanton
path is slow compared to the characteristic phonon fre-
quency. This allows us to evaluate the prefactors using
the adiabatic fluctuations approximation (discussed in de-
tail in Refs. 15 and 19) which amounts to an adiabatic ap-
proximation for the phonon propagator. We define the
instantaneous eigenmodes of the dynamical matrix

f dx'D (x,x";5)ur(x";5)=(1/gHwk(s)u(x;s) .

D(x,x";R)= 4.1

(4.2)

There are two special modes: u, is the translation mode
we encountered previously and u; is the mode parallel to
the instanton path u,(x)adA;/dR. When we sum over
fluctuations in Eq. (2.19), we sum over the amplitude of
all transverse modes, that is all modes which are perpen-
dicular to both u, and u,;. In the adiabatic approxima-
tion, the transverse modes simply remain in their instan-
taneous ground state as the system tunnels. Thus, the ef-
fects of quantum fluctuations are as follows: (1) There is
a quantum renormalization of the bare potential V; in
Eqgs. (3.9) and (3.10) due to the shift in the phonon fre-
quencies along the instanton path

V;(R)=V;(R)+ +HQ(R) —5;, 1 #iwo ,
QUR)=3' {ox(R)—ax} ,
k

(4.3a)
(4.3b)
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where {w;(R)} are the transverse phonon frequencies rel-
ative to the lattice configuration A;(R), {w;} are the pho-
non frequencies of the perfectly dimerized lattice
(R =£&p), and the prime denotes sum over all modes ex-
cluding k =0 and 1. (2) There are two prefactors, the
ground-state normalization in Eq. (3.1a) and the factor in
Eq. (3.3a), which measure the cross-sectional area of the
bundle of the important path. We return to this below.

The phonon spectrum, and in particular the spectral
sums in Eq. (4.3b) have been evaluated for R =§, and
R — « (free solitons) by Nakahara and Maki.?® The pola-
ron spectrum sum at R =Rp=£yIn(1+v2)/V2 has been
computed by Hicks and Blaisdell.’ To obtain values for
), we must subtract the contributions of the two special
modes from their results which yields

0.00 for R =&,
—0.20 for R =Rp,
—0.22 forR—> o .

Q /0= 4.4)

To obtain an expression for (R) at intermediate R we
use the simple interpolation scheme:

Q(R)/wo= —0.22(41r/Ag) " 'V,(R) . (4.5)

The small and negative values of Q(R) reflects the fact
that the only major change in the phonon spectrum due to
the presence of the solitons is the appearance of four lo-
calized modes: the two modes u, and u; which derive
from the soliton translation mode and do not contribute
to 2, and the symmetric and antisymmetric combination
of the soliton width modes #g and ug, respectively. The
rearrangement of the continuum modes does not make
much of a contribution to Q.

Finally, we are ready to evaluate &". The adiabatic
fluctuations approximation (AFA) allows us to express
the integral over fluctuations about the classical path in
terms of the N —2 transverse phonon modes which span
3¢ [ug(x,R) for k >2 defined in Eq. (4.2)] and one mode
normal to 2,. It is therefore convenient to express the
measure for the integral in Eq. (2.19) as

GA=]]'dar[M(R,)/M])"/%dR , (4.6)
k

where a; is the amplitude of the k adiabatic phonon, and
M(R;)/M, defined in Eq. (3.2), is the Jacobian of the
transformation. The transverse integrals are now trivial.
We found in Eq. (3.3a) that in the semiclassical limit, & "
factorizes into a product of A- and A’-dependent pieces.
The AFA allows us to write the prefactor Q as the prod-
uct of the N —2 transverse phonon normalization factors.
Thus, the integral over transverse fluctuations is unity due

to the normalization of the wave functions. The R in-

tegral is a simple integral over the Gaussian factor
exp[—3A4(R —R,)z] where

1 2
A-ﬁdRz(Wo+W|)|R =R,
72
1 | M(R) d
—_— _ -V —R. -
‘ZV(R) ag VoV lr-r,
The result is
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F"(0)=[2M (Ry)wo/AI[A]~" | X(Rf) | *exp(— W /h) ,
4.7

where W is the instanton action given in Eq. (3.8).

Let us now examine the validity of the AFA. It is valid
so long as w,7 are large, where w; is the characteristic
time scale for motion along the instanton path defined in
Eq. (3.11). All the continuum modes satisfy this condi-
tion fairly well; these modes are not usually excited during
photoproduction of solitons. However, for the soliton
shape modes, wgT~1, there is a substantial probability
that the solitons will be produced in an internally excited
state. This claim is substantiated by the observation that
the instanton path bends strongly in the two-dimensional
parameter space of the collective coordinates K and R as
demonstrated in Fig. 2. In the oversimplified picture of
2D tunneling represented by the potential V(R,K), the
strong overlap of excited states in the K direction with the
transverse adiabatic phonon would yield a large branching
ratio for producing solitons in internally excited states.
the real problem is somewhat more complicated since the
effective mass also depends on R and K. However, this
does not change the conclusion qualitatively.

Until now we have ignored the effects of electron-
electron interactions. We now proceed to discuss how our
results are modified when these interactions are included.
Wu and Kivelson'® (WK) have studied the TLM model
with weak e-e interactions and calculated the corrections,
or “dressing,” of the various bare quantities such as the
ground-state dimerization and physical gap. These effects
are automatically included in our calculation by using the
experimentally measured gap energy. More importantly,
the interactions alter the form of the adiabatic lattice po-
tential by altering the electronic energies of the states
j=0 and 1. (Note, although in the presence of interac-
tions, the states 0 and 1 need not have a simple interpreta-
tion in terms of the occupancies of one-electron states,
they can still be defined as the two lowest-energy singlet
electronic states.) WK showed that interactions change
the soliton creation energies and, in particular, lift the de-
generacy between the neutral and charged soliton creation
energies E¢, and E, respectively. We define effective in-

teraction parameters (which can be evaluated perturba-
tively in terms of the bare interactions):

Uesr=75(Eg—Eg,) (4.8a)

and

Veff—__%(Echi"Esn)_ES ’ (4.8b)

where in Eq. (4.9b) Eg is the soliton creation energy in the
absence of interactions. WK have also shown that the sol-
iton equilibrium widths &, and £, differ from the nonin-
teracting value & such that §, <y <§&.. From these re-
sults we can determine the effect of interactions on the
lattice potential in the asymptotic region R >>£;. Again
we use the same simple interpolation formula to express
the effect of interactions on the dressed lattice potential
V;(R) for intermediate R [V is defined in Eq. (4.3)]:

Vi(R)=V,(RA))+U;(RA;)
Uo(R)=[V0(R)/2E5]( Veff—Ueff') )

(4.9a)
(4.9b)

Ui (R)={[240—V(R)]/(2A00—2E5)} (Vege+ Uegr)
(4.9¢)

and A; is the e-e interaction-induced scale change:
Ao=En /€0 and A;=§ /&y All previous calculations can
then be corrected by replacing V;(R) by V;(R) wherever
it appears. In Fig. 4 the bare and dressed potentials are
plotted.

V. RESULTS AND DISCUSSION

To compare our results with experiment, we use the
best estimates available to us of the various parame-
ters?*25 (see discussion in Ref. 2): 7,=2.5 eV, 2A0=1.65
eV, and wo=1400 cm~'. The density n of the fibril struc-
ture is 0.012a where a =1.1 A. The value of U, was es-
timated by WK to be 0.22 eV based on measurements of
the spin density of a neutral soliton, and &, /£ is approxi-
mately 0.8. However, the value of V.4 is unknown. We
therefore plot Eq. (4.19) using two estimates of V.g: 0.0
eV and —0.2 eV, as solid and dashed lines, respectively.
The energy range goes up to 1.5 eV, since for higher ener-
gies both the semiclassical approximation and the Born-
Oppenheimer approximation break down.

The data of Blanchet et al. is plotted as open circles.
The data of Weinberger et al. is marked by O and by X
for the pristine and NH-compensated samples, respective-
ly. The latter data shows a markedly different exponen-
tial tail which we attribute to the high impurity concen-
tration. The solid circles are photoinduced absorption
data of Blanchet et al. at 1370 cm~! plotted in arbitrary
units. Here the slower dependence at higher energies sug-
gests that the branching ratio of the electron hole decay
rate into stable solitons decreases with energy. Figure 1
demonstrates the agreement of our calculation with the
absolute magnitude and behavior of the absorption coeffi-
cient in the tail region where Vg is our only free parame-
ter. Cleaner samples and higher sensitivity measurements
of this region would enable us to obtain a more accurate
value for V.

The expression for /" in Eq. (4.7) derives its » depen-
dence primarily from the » dependence of the instanton
action W. We have computed W numerically; however, it
can be crudely approximated by replacing the true poten-
tial barrier with similar triangles in the energy range
1.2—1.5 eV. This yields the following form for In[a(w)]:

In[a(w)]~ —[(fiw—240) /A, P>+ 12.3In(cm~Y),  (5.1)

where, for example, 2A,=1.62 eV and A;=0.079 eV, for
the value of V;=0.0 eV. (It differs from the quadratic
power-law result of Su and Yu." Coincidently, it has the
functional form of the density of states in a one-
dimensional disordered model,” although its energy scale
is much smaller than A, which was derived in the Intro-
duction.

A critical test of the model could be obtained by
measuring the isotope dependence of a(w) in pristine
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trans-(CD),: The values of 2A, and the threshold depend
(up to small quantum corrections) on #, and K and are

therefore approximately mass independent.  Since
fiwvg < M ~'/? the mass dependence of « is given by
172 12
M 1 M fiw
alw,M)= exp | —— W |—
Mcy P\7% | Mcn { B
(5.2)

The isotope dependence would be completely different if
the absorption tail were due to strong electron correlations
or static disorder.

As mentioned earlier, soliton-pair generation is accom-
panied by excitations of the shape modes. The Raman ac-
tive localized mode of #iw,~0.16 eV was attributed to the
width oscillation of a single soliton. We thus expect that
in the low-energy (tail) regime the absorption curve should
have small- amplitude ripples with a periodicity of #iw,.
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In systems in which the ground-state degeneracy is lifted,
such as in cis-(CH),, or in trans-(CH), with strong inter-
chain interactions, one expects the final soliton pairs to be
confined by a potential that increases with the separation
R. However, the final-state structure due to the quantized
periodic motion of the breathing mode would correspond
to level spacings of order 1072 eV, and thus we do not ex-
pect them to be observable in the absorption curve.

Note added in proof. H. Schaffer and A. J. Heeger, of
University of California, Santa Barbara, have recently ob-
served isotope dependent shifts in the sub-gap absorption
of trans-(CH), versus trans-(CD),. We thank them for
the communication of their data prior to publication.
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