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A continuum perturbative analysis and the Schwinger-boson mean-field theory are used to
evaluate the ground-state energy of the two-dimensional Heisenberg antiferromagnet in the pres-
ence of background topological density. The spin-wave spectrum is bunched into Landau levels.
The gauge charge of the Schwinger bosons is half the charge of the Holstein-Primakoff spin
waves. The mean-field Skyrmion creation energy vanishes with the ordered moment at the disor-

dering transition.

The stable topological excitations, called Skyrmions, in
the two-dimensional Heisenberg (isotropic) magnet have
inspired researchers in condensed-matter and in high-
energy physics. !> Haldane has recently shown? that in
the two-dimensional quantum antiferromagnet “hedgehog
events,” which describe Skyrmion creation and annihila-
tion processes, give rise to quantum interference between
their associated Berry phases. The abundance of
hedgehog events affects the ground-state symmetry and
excitations in the disordered phase.3”> It is the purpose
of this paper to investigate the quantum corrections to the
Skyrmion energy in the long-range-ordered phase near the
transition.

Our Hamiltonian is the quantum Heisenberg model
(QHM) on a bipartite square lattice,

HQHM“ZJijSi'Sj, S2=S5(S+1), ¢))
ij

where J;; >0 for nearest neighbors (ij). If frustrating
longer-range exchanges are not too strong, the long-
wavelength properties of (1) are described by the Euclide-
an (2+1)-dimensional nonlinear o model® (NLSM)

1 )
.,U--zzfd3x(a,,n)2+z}x:gx, In|=1. )

n is the O(3) Néel field, g is the coupling constant, and
x*=(x,y,ct), where c is the spin-wave velocity. Our
units are chosen such that 2 =1 and the lattice constant a
is the unit of length. Summation over repeated indices is
assumed. Haldane has calculated the Berry phases {x
which are integer multiples of (25 mod4)x/2. They count
hedgehog tunneling events centered at plaquettes labeled
by x.

The continuous field n(x,z) defines a topological density
in two dimensions given by

p(x,t) =308,nxd,n-n=08,A, —9,A,, 3)

which defines the Néel vector potential A(x,z) (up to a
gauge transformation). For periodic boundary conditions,
the corresponding topological “flux” is quantized as

=1 [ -0 +1 +
p@) and xp(x,t)=0,+1,%+2, ... . 4)

p is the Pontryagin integer, which is conserved if n has no
discontinuities. Hedgehog events are singular events in
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which p— p *+ 1. For g <g., the NLSM ground state is
long-range ordered and {p)=0. Hedgehog events can
connect the ground state only to higher-energy sectors and
are therefore rare and unimportant. It is interesting to in-
vestigate how the different Pontryagin sectors become de-
generate at the disordering transition.

The static configurations n? with topological charge p
and which minimize the spatial part of .L have the classi-
cal energy,

2d Y 2 2
L > fd x|Vn?|?2=4xyp , (5)

where y=c/g is the stiffness constant. y~JS? for the
large S near neighbor QHM. n” are multi-Skyrmion
configurations, or Belavin-Polyakov solitons, whose expli-
cit form is given in Ref. 1. Classically, Skyrmions do not
interact. Dimensional analysis of Eq. (5) shows that their
energy is scale invariant.

Here we study the quantum energy of Egs. (1) and (2)
in the presence of an infinitesimal uniform topological
charge p(x,z) =p. This background represents a non-
coplanar twist in the Néel order parameter, as experi-
enced near the center of a large Skyrmion. We use two
complementary approaches: First, the low-order spin-
wave corrections to the classical energy are calculated
perturbatively in the NLSM, Eq. (2). Although the nu-
merical prefactors are cutoff dependent, this approach al-
lows us to determine the first nonlinear contribution
analytically, which would tell us something about Skyr-
mion interactions. The second approach will apply the
Schwinger-boson mean-field theory (SBMFT) for the
nearest-neighbor lattice model, Eq. (1). The SBMFT will
be solved numerically in the range 0 < 1/S < 5. This re-
gime, within the mean-field theory, corresponds to the
weak-coupling ordered phase g < g, of the NLSM.

CONTINUUM MODEL: LINEAR SPIN WAVES

The small fluctuations of the Néel field are param-
etrized by

n=n"(1—|y|?) "2+ y'é+y%,, 6)
where w=y;+iy,. The unit vectors éy[n?1,€,[n?] de-
scribe the coordinate convention on the sphere at the point
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n”. Since n” is a classical configuration, the linear varia-
tions of .L° vanish. Following Polyakov,® we expand the
action to quadratic order about n”, and obtain

L= L°[n"]+8?,

Q=1 (3 . 2
$ 2gfd x| @, +i24,)v] ™
+B2BLly*y? — 6;ily| 1+ (3,n7) 2+ 0(y)3.
Here A is the gauge field
A” = ;— éga”é¢ 9 (8)

and Bf=n"9,¢, satisfies (BZ)2=(9,n”)2.

A of Eq. (8) is an explicit construction of the Néel
gauge field since it satisfies Eq. (3). Thus, the Néel gauge
field has a geometrical interpretation. The spin-wave
spectrum is that of two-dimensional relativistic bosons,
v(x), of charge two, moving in a “magnetic field” of mag-
nitude p. (The plaquette has unit area.) A change in the
transverse coordinate system on the sphere (e.g., changing
the position of the north pole) is a gauge transformation
under which (7) is invariant.

Integrating out the fluctuations w*,y we obtain

E?= L[0”]+ lim %ZTrlnI(iw,,)2+(8u+i2A,,)2
—» o0 n

=(@@,n")?+0(@). )

®, =2nn/B are the Bose-Matsubara frequencies. In the
Néel background n?=2%, Eq. (9) recovers the standard
spin-wave result. In (8) we find that the background
fields n?, and A affect the perturbative correction to the
energy in two ways: (i) a renormalization of ¥, the classi-
cal stiffness constant, obtained by expanding (8,n”)? out
of the Gaussian determinant, and (ii) a “magnetic field”
contribution to the spin waves zero-point energy.

Both contributions depend on the short-wavelength de-
tails (cutoff). Here we choose a circular Brillouin zone
(with two degenerate spin-wave modes) and normalize the
spin-wave sum such that the total number of states is one
per site. Let us recall the standard solution to the problem
of a two-dimensional nonrelativistic particle moving in a

transverse magnetic field in the continuum. If the
J

HMF= ¥
(ijd,m=1,2

where W is the number of sites, and A,Q are real varia-
tional parameters. 1/S serves as the quantum parameter.
The quantitative correspondence between 1/S and g de-
pends on the short-wavelength details of the model.

Read and Sachdev* have mapped the fluctuations about
the mean-field saddle point to the large-/NV expansion of
the CPV™! field theory. Consequently, they have been
able to derive an important correspondence between the
phases 6;; and the CP" ™! gauge field (for a lattice con-
stant of unity):

8= (—1)'A-G—j). (14)

For the physical model N=2, A is none other than the

M @aim+ama,) + Qe at,al, +e " aimaim)1TNLQS + 1)+ N4Q /T,
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strength of the field is ﬁ then the energy levels in our di-
mensnonless units are’ E,=4np with a degeneracy of
1/271? for each Landau level, where the magnetic length
is defined by / =1/(2p) /2. Going back to Eq. (8), we per-
form the Matsubara sum in the usual way to obtain the
energy per site as

e(p) =2yp+ —2 ﬁ: 4np) 2.

n=0

(10)

We use the Euler-Maclaurin formula to convert the sum
into an integral,

< n F(n)+F
X Fe) = [ Foydn+ Z) )
ny !
B
+E 2n F(Zn 1)(n2) F@n— 1)(’“)]
(1)
The final result for the free energy per site is
e(p) =c2p/g+~27/3—Qx) "%
—0.132085°2+ 0(5)2+0(g)] . (12)

The quantum spin fluctuations have two effects. They re-
normalize the coefficient of the term linear in p, which is
the zero-density chemical potential of the Skyrmions, and
they also introduce higher-order terms in p. This is indi-
cative of the fact that though the Skyrmions are nonin-
teracting classically, quantum ﬁuctuatlons mduce interac-
tions. Of particular interest is the (—p> /2) term, which
gives the system a negative compressibility at low Skyr-
mion density. The topological density would therefore
tend to phase separate. This will result in clumping into
localized regions of high topological density.

SCHWINGER-BOSON MEAN-FIELD ENERGY

For larger values of the quantum parameter, we use the
Schwinger-boson mean-field theory,®® which is the
large-N theory of the SU(V) antiferromagnet, applied to
the N =2 system. In the presence of background topologi-
cal density, the mean-field theory is given by a quadratic
Bose Hamiltonian,

(13)

[

Néel gauge field defined in Eq. (3). Note in (13) that the

charge of the Schwinger bosons with respect to A is unity.
Equation (13) is diagonalized by following Hofstadter’s

solution of the tight-binding square lattice in a uniform

perpendicular magnetic field.'° To simplify our calcula-

tion, we choose the topological flux to be commensurate

with a large unit cell, and the gauge field is taken to be
(AL, A)) =(0,xp,) =(0,27x/q), q =integer. (15)

The mean-field free energy per site of (13) is given by

2
MF=iZfl dyn(Da.(n) —2@s+1)+22 42752,
T ! (16)
16
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Here n(y)=~N"128(y—n), and yc=1% (cosks
+cosk,). The spin-wave energies are w,(y)={)2
—[Q&,(¥)13 2, where &,(7) is the nth eigenvalue of the
Hermitian Harper’s matrix H,-f'q)(y), whose nonzero ele-
ments are given by

H® =—2cos {k+2—q’rj], j=L2,....9,
an

Hw =—e*, j=1.2,...,g—1, H§=e™",

where k =cos ~'y. The matrix elements below the diago-
nal are determined by the Hermiticity condition.

The variational parameters A(5,S), and Q(p,S) are
determined by two equations:® the constraint equation

1 A
L= )———=25+1, 18)
q;fdyn(y o, (y)
and the spin-wave velocity equation
1 E(y)? _8
- = 19)
qZ"’,fdyn(y) w,(y) J

Equations (12), (14), and (15) can be combined to obtain
the mean-field energy per site

eMF=—402/J+2JS2. (20)

We use the following numerical procedure to solve the
mean-field equations: For each value of ¢ =16,32,64, we
diagonalize the g xq Harpers matrix (17) on a grid of ¥
values. The left-hand sides of Egs. (18) and (19) are
computed to obtain S(,5,), and Q(,p,), respectively.
The Skyrmion chemical potential is given by

MF
uMF(5,8) =4 ag Q1)

In Fig. 1 we plot our results for Eq. (21) in the ordered-
phase regime. The solid line is the mean-field ordered mo-
ment mgo which goes as mo/S=1—S./S, where
S, =0.196 60 is the “critical spin.” By extrapolation, Fig.
1 shows that for vanishing topological density, u, or the
creation energy of Skyrmions, is proportional to the or-
dered moment.

Note, it is known that for p=0, the SBMFT energy
yields twice the O(1/S) correction as the Holstein-
Prin}?koﬁ" (HP) spin-wave result calculated by Ander-
son:

eMF=— 7§2[240.632/S+(0.315/5)°1,
(22)
eHP=—JS§2[240.316/S+0(1/S)?].

This discrepancy is due to the summation over two
Schwinger bosons per site, while there is only one HP bo-
son site. The error in the SBMFT is in relaxing the con-
straint in the large-N approximation. This error, however,
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FIG. 1. The normalized mean-field chemical potential for
Skyrmions uMF(S)/uMF(e0), for several background uniform
topological densities p, equal to: curve a, n/8; curve b, z/16; and
curve ¢, n/32. The solid line is the mean-field normalized or-
dered moment mo/S, which vanishes linearly at the critical spin
S =0.196 60.

is compensated by the factor-of-2 difference between the
charge with respect to A of the spin waves and the
Schwinger bosons. [Compare Egs. (9) and (13).] There-
fore, uMF and u"'? agree up to order 1/S.

To summarize, we have carried out two separate calcu-
lations which explicate different aspects of the energy of
Skyrmions in the ordered phase of the quantum antifer-
romagnet. The spin-wave calculation is valid for small g
(large spin) and shows that quantum fluctuations induce
the Skyrmions to clump together in a spatially nonuni-
form manner. The numerical calculation is based on
mean-field theory. It shows that the chemical potential
for Skyrmions vanishes continuously at the disordering
transition. This confirms the large-N analysis of the
CPV~! model in the massive (disordered) phase,** where
the gauge field energy goes as p2. Since mean-field theory
does not treat properly the critical fluctuations near the
transition, we cannot trust our critical exponent (one),
and we can regard the correspondence between mo(g) and
u(g) as merely suggestive. The analogy between the spin
waves in the background of a topological density and the
magnetic-field problem might be further explored in other
Heisenberg systems, such as magnetic bubbles in the
two-dimensional ferromagnet and Heisenberg spin
glasses.
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