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We present extensive magnetic measurements of the �CaxLa1−x��Ba1.75−xLa0.25+x�Cu3Oy system with its four
different families �x� having a Tc

max�x� variation of 28% and minimal structural changes. For each family, we
measured the Néel temperature, the anisotropies of the magnetic interactions, and the spin-glass temperature.
Our results exhibit a universal relation Tc=cJns for all families, where c�1, J is the in-plane Heisenberg
exchange, and ns is the superconducting carrier density. This relates cuprate superconductivity to magnetism in
the same sense that phonon-mediated superconductivity is related to atomic mass.
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The critical temperature for superconductivity Tc in me-
tallic superconductors varies with isotope substitution.1 This
observation, known as the isotope effect, played a key role in
exposing their mechanism for superconductivity. In contrast,
the mechanism for superconductivity in the cuprate is still
elusive, but is believed to be of magnetic origin.2 Verifying
this belief would require an experiment similar to the isotope
effect, namely, a measurement of Tc versus the magnetic
interaction strength J, with no other structural changes in the
compounds under investigation. Here we present such an ex-
periment using the �CaxLa1−x��Ba1.75−xLa0.25+x�Cu3Oy

�CLBLCO� system with its four different superconducting
families, for which maximum Tc �Tc

max� varies by 28%. This
is a large change compared to Sn, which has the strongest
isotope effect in nature where Tc varies only by 4%. For each
family, we measured the Néel temperature TN and the
anisotropies of the magnetic interactions. This allows us to
obtain the Heisenberg coupling J. In addition, we determine
the spin-glass temperature Tg of underdoped samples. J, Tg,
and Tc allow us to generate a unified phase diagram for mag-
netism and superconductivity from no doping to overdoping.
We combine this result with a previous determination of the
superconducting carrier density ns,

3 and demonstrate experi-
mentally a magnetic analog of the isotope effect.

CLBLCO is a high-temperature superconductor �HTSC�
system that belongs to the YBa2Cu3O7 �YBCO� group. Each
value of x in the range of 0.1�x�0.4 �Ref. 4� is a family in
the system. All families are tetragonal. The difference in the
unit-cell parameters a and c /3 between the two extreme
families �x=0.1 and 0.4� is 1%.4 Therefore, variations in Tc

max

due to variation in ionic radios are not relevent since they are
expected to be on the order of 1 K, and with opposite sign to
observation.5 Moreover, the level of disorder as detected by
Ca NMR �Ref. 6� and Cu NQR �Ref. 7� is identical for the
different families. The range of accessible y’s in CLBLCO is
so large that samples from the heavily underdoped antiferro-
magnetic �AFM� parent compounds, to the nonsuperconduct-
ing extreme overdoped, are obtainable. When varying x,
nearly concentric domes of Tc versus oxygen doping y are
formed, with the maximum value of Tc varying from 58 K at
x=0.1 to 80 K at x=0.4,8 as demonstrated by the open sym-
bols in Fig. 1. The magnetic properties of these compounds

are determined using the zero-field muon spin-relaxation
��SR� technique.

Figure 2 shows typical muon polarization P�t� curves, at
different temperatures, for three samples from the x=0.1
family. At high temperatures the polarization curves from all
samples are typical of magnetic fields emanating from
nuclear magnetic moments. In this case the time dependence
of the polarization exhibits, as expected, a Gaussian decay.
As the temperature is lowered the sample enters a magnetic
frozen phase and the polarization relaxes much more rapidly.
While the transition from paramagnetic to the frozen state
looks identical for all samples, the behavior at very low T is
different and indicates the nature of the ground state. Figure
2�a� is an example of an antiferromagnetic ground state.
When the temperature decreases, long-range magnetic order
is established at �377 K reflected by spontaneous oscilla-
tions of the muon polarization. Figure 2�c� is an example for
a spin-glass �SG� transition at �17 K. In this case the ground
state consists of magnetic islands with randomly frozen elec-
tronic moments,9 and consequently, the polarization shows
only rapid relaxation. When the transition is to a Néel or
spin-glass state, the critical temperatures are named TN and
Tg, respectively. Figure 2�b� presents an intermediate case
where the sample appears to have two transitions. The first

FIG. 1. �Color online� Phase diagram for the
�CaxLa1−x��Ba1.75−xLa0.25+x�Cu3Oy system.
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one starts below 240 K, where the fast decay in the polariza-
tion appears. Between 160 and 40 K there is hardly any
change in the polarization decay, and at 30 K there is another
transition manifested in a faster decaying polarization. This
behavior was observed in all the samples on the border be-
tween antiferromagnet and spin glass in the phase diagram.

In order to determine the magnetic critical-transition tem-
peratures, the data were fitted to a sum of two functions: a
Gaussian, and a rapidly relaxing function that describes the
magnetic field due to frozen electronic moments, namely,

P�t� = An exp�− �2t2

2
� + Am�a exp�− ��1t�

+ �1 − a�exp�− ��2t�cos��t�� . �1�

In this function An and Am represent the amplitudes �i.e., the
volume fraction� of the nuclear and magnetic parts, respec-
tively, and �1 ,�2 are the relaxation rates of the magnetic part.
In the fit � is determined from high temperatures, and the
sum Am+An=1 is constant at all temperatures. The solid
lines in Fig. 2 are the fits of Eq. �1� to the data. Figure 3
shows Am as a function of temperature for the three samples
in Fig. 2. Above the transition, where only nuclear moments
contribute, Am is close to zero. As the temperature decreases,
the frozen magnetic part increases and so does Am, at the
expense of An. For the pure AFM and SG phases, the transi-
tion temperature was determined as the temperature at which
Am is half of the saturation value. For the samples with two
transitions, two temperatures were determined using the
same principle. The coexistence of Néel and spin-glass states
indicates that the transition from one kind of ground state to

the other is a first-order quantum phase transition.
The full phase diagram of the CLBLCO compound, ob-

tained from the measurements described above, including the
Tg measurements in the superconducting state from Ref. 9, is
presented in Fig. 1. From this diagram it is clear that, at high
doping levels, CLBLCO is a pure superconductor. As the
oxygen doping decreases considerably from optimum, these
compounds can be in a mixed state of magnetic islands,
which freeze at Tg, and superconductivity in between. Upon
further decrease in doping, the system has a pure spin-glass
ground state. Even further underdoping towards the parent
compounds leads to abrupt replacement of the glassy state
with a long-range antiferromagnetic order with TN�400 K,
which seems to saturate. The inset of Fig. 1 shows that y
�6.5 is a crossing point, and at higher doping, families with
high x values have lower TN and Tg. In contrast, at doping
levels below y=6.5, families with higher x values �and
higher Tc

max� have the higher TN. This is the first indication of
correlation between Tc

max and magnetic interactions.
In order to untangle the phase diagram, we use the scaling

relation introduced in Ref. 9 that caused both Tc and Tg data
of many cuprate families to collapse into a single curve.10

This means plotting, for each family, Tc divided by Tc
max of

the family, as a function of �P where �P=K�x��y, �y=y
−y0 is the chemical doping measured from optimum y0, and
K�x� is the scaling parameter determined for each family so
that all the superconducting domes collapse onto a single
curve.9 We use K=0.77, 0.67, 0.54, 0.47, and y0=7.135,
7.15, 7.155, 7.15 for the x=0.1–0.4, respectively. The results
are presented in the upper inset of Fig. 4. We find that, with
the exception of the x=0.1 family in the AFM region, the
scaling relation holds perfectly well for the entire phase dia-
gram.

Nevertheless, we would like to check whether the scaling
relation can be extended to the x=0.1 family. We suspected
that in x=0.1 anisotropies might be different from the other
families. It is well established that a pure two-dimensional
�2D� AFM orders magnetically only at T=0, and that TN for
three-dimensional �3D� AFM is finite. Intermediate cases are

FIG. 2. �Color online� Time evolution of the muon polarization
for �CaxLa1−x��Ba1.75−xLa0.25+x�Cu3Oy from the x=0.1 family close
to the magnetic critical temperature. �a� A sample with an antifer-
romagnetic transition. �b� A sample with both an antiferromagnetic
and a spin-glass transition. �c� A sample with a spin-glass transition.
The solid lines are a fit to Eq. �1�.

FIG. 3. �Color online� The magnetic volume fraction extracted
from the muon depolarization as a function of temperature for the
three samples shown in Fig. 2.
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described by anisotropic interactions where J and �J are the
in- and out-of-plane coupling, respectively. For small � the
reduction of the magnetic-order parameter M with increasing
T is fast so that at �=0 the 2D limit is recovered. A plot of
the normalized order parameter 	=M /M0, where M0 is the
order parameter at T→0, versus T /TN should connect �1,0�
to �0,1� �see Fig. 5� in a way that is determined only by �. At
the same time J
TN ln��� �up to ln of ln of � corrections�11

so that knowledge of � would lead to J.
To test our hypothesis we measure P�t� with high timing

resolution at T→0, and extract 	. A typical time-dependent

polarization is depicted in the inset of Fig. 5. The best fit of
the polarization is achieved with the function

P�t� = 	
i=1

3

Ai exp�− �it�cos��it� , �2�

with �3=0, which is shown in the inset by the solid line. The
reason for multiple frequencies is that the muons stop at
different sites in the unit cell. Since the muon oscillation
frequency is proportional to the local magnetic field it expe-
riences, ��T� /�0 is equivalent to 	. The order parameter
extracted from the high frequency, around a few tens of MHz
��0�27 MHz in our case� is known to agree with neutron-
scattering determination of 	.12 The lower frequency is be-
lieved to emerge from metastable muon sites and is not used
for further analysis.

In Fig. 5 we present 	 for the two different CLBLCO
samples with x=0.1 and 0.3 having the same �P that is
marked in the inset of Fig. 4. The data sets starting at 	=1
are from the high frequency and will be used for comparison
with theory. Clearly, the reduction of the magnetization with
increasing temperatures is not the same for these two
samples, and therefore their anisotropies are different. Since
	 is less sensitive to increasing T in the x=0.1 family than in
the x=0.3 family, the � of x=0.1 must be larger. Conse-
quently, TN of the x=0.1 turns out to be too high due to �
and not J. This could explain the deviation from scaling of
the x=0.1 family.

To account for the anisotropies quantitatively we assume
that CLBLCO could be considered as a 2D magnet with
weak anisotropies since the chain layers are partially full
with oxygen even for the parent compounds. Therefore we
use the Hamiltonian

H = J�	
i,�


Si · Si+�

+ �xy	

i,�


Si
zSi+�


z + ��	
i,��

Si · Si+��� ,

�3�

where �
 and �� are the in- and out-of-plane neighbor spac-
ings, respectively. We apply the self-consistent Schwinger-
boson mean-field �SBMF� theory13 to calculate 	��ef f , t�
where t=T /J, �ef f =zxy�xy +z���, and the z’s are the number
of neighbors. The calculation is done by solving simulta-
neously for every �ef f and t two equations: a self-consistency
equation

h = 2�ef f�1 − 2K��,h,t�� , �4�

and a constraint equation ensuring one Schwinger-boson per
site,

K��,h,t� + K��,0,t� = 1. �5�

In these equations

K��,h,t� = 2.32

0

1 �1 + � + h�
���,h,��

�n„���,h,��,t… + 1/2�
���d� ,

�6�

the density of states is given by

FIG. 4. �Color online� Upper inset: the phase diagram after the
scaling described in the text. Lower inset: The effective anisotropies
as a function of �P for the different families �see the text for de-
tails�. The solid lines are guides to the eye. Main figure: phase
diagram after both scaling and extraction of the contributions from
anisotropies as described in the text. TN

cor=J for the parent
compounds.

FIG. 5. �Color online� The normalized staggered magnetization
as a function of the normalized temperature. The symbols are the
experimental results, taken by measuring the oscillation frequency
of the polarization curves. The solid lines are the theoretical curves
plotted according to Eqs. �4�–�7�. Inset: an example of muon polar-
ization for a sample in the Néel state at T→0; the solid line is a fit
to Eq. �2�.
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��� =
2

�2

0

1

��1 − t2��1 − t2 + �2t2��−1/2dt , �7�

or its approximation,14,15 ��� ,h ,��=2.32��1+�+h�2

−�2�1/2, and n�� , t�= �exp�� / t�−1�−1. Finally, 	��ef f , t�
=h��ef f , t� /h��ef f ,0�. tN and TN are defined by 	��ef f , tN�
=0 and TN=JtN. The theoretical order parameter for several
�ef f as a function of T /TN is also presented in Fig. 5 by the
solid lines.

When comparing theory and experiment we focus on the
low-temperature data, up to 200 K, where the theory is most
accurate. We determine the best �ef f and present them in the
lower inset of Fig. 4. The solid lines are guides to the eye.
Using the corresponding tN��ef f� we obtain the corrected TN

defined as

TN
cor � TN/tN��ef f� , �8�

where TN
cor=J for the parent compounds. At �P=−0.4, where

TN of all samples is saturated and they can be compared, we
find J=950�60�, 1130�70�, 1260�80�, and 1330�80� K for x
=0.1, 0.2, 0.3, and 0.4, respectively.

This variation of J is probably due to an increasing buck-
ling angle and decreasing lattice constants with increasing x.
Neutron diffraction shows that the buckling angle of the op-
timally doped samples changes by 1.3 degrees from x=0.1 to
x=0.4. Similarly, the lattice constant a changes by
0.03 Å.17,18 According to Ref. 19, where J is plotted as a
function of the Cu-O-Cu buckling angle and bond length for
a variety of materials, this king of changes can produce a
30% variation in J.

Determining tN experimentally for the AFM compounds
allows us to present a modified phase diagram using TN

cor.
The modified phase diagram showing TN

cor, Tg, and Tc nor-

malized by Tc
max versus �P is presented in Fig. 4. Note, Tg is

not corrected since it is determined by interactions between
islands, and anisotropies are not expected to play an impor-
tant role in this case. The large error bars for TN

cor are due to
the pure determination of tN��ef f�. Nevertheless, the scaling
now works for all four families, with a Tc

max variation of
28%, in most of the AFM region as well. This demonstrates
that an energy scale Jf, unique for each family but varying
between families, controls both TN, Tg, and Tc.

In a previous work it was found that CLBLCO obeys the
Uemura relation Tc
ns,

16 where ns is the superconducting
carrier density, in both under- and overdoped regions.3 Com-
bining this fact with our present finding that a magnetic en-
ergy scale controls Tc

max, suggests the formula

Tc = cJfns��P� , �9�

where the constant c=0.7�1� �using the definition ns�0�
=0.08 carrier per Cu�, �P=0 at optimal doping for all fami-
lies, and ns is family independent.

Equation �9� is a magnetic equivalent of the isotope effect
Tc=cM−1/2. We demonstrate this magnetic effect for 15%
variation of Tc

max without any theory. This is far greater than
the Tc variation due to the strongest isotope effect in metallic
superconductors. Using the SBMF theory we extend the ef-
fect further to 28% of Tc

max. Therefore, our data are a strong
support to the belief that magnons are responsible for pro-
ducing pairing in the cuprates.
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