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Nonlinear current of strongly irradiated quantum Hall gas
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Two dimensional electrons in weakly disordered high Landau levels are considered. The current-field re-
sponse in the presence of a strong microwave field is computed. The disordered Floquet evolution operator
allows us to treat the short range disorder perturbatively, at any strength of electric fields. A simplifying
random matrix approximation reproduces the broadened Landau level density of states and structure factor. We
derive the magnitude of the microwave induced resistivity oscillations. The disorder short wavelength cutoff
determines the nonlinear electric fields of the zero resistance state and the Hall induced resistivity oscillations.
We discuss wider implications of our results on experiments and other theories.
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I. INTRODUCTION

Some remarkable phenomena have been recently ob-
served in high mobility GaAs/AlGaAs heterostructures:
microwave induced resistance oscillations (MIROs), zero
resistance states (ZRSs),'” and Hall induced resistivity
oscillations (HIROs).%"!% These experiments are carried out
at weak fields (relative to the quantum Hall regime) and at
temperatures T=%w, (w, is the cyclotron frequency), where
Shubnikov—de Haas oscillations are thermally smeared. Nev-
ertheless, microwave radiation, or large Hall currents, can
expose the underlying Landau quantization via the MIRO
and HIRO oscillations.

MIRO (in the Hall bar geometry) exhibits large magne-
toresistance oscillations as a function of radiation frequency
o, with nodes at harmonics of mw,, m=1,2,.... In strong
enough radiation, the resistance in the positive detuning re-
gimes may be nearly completely suppressed. This phenom-
enon is commonly denoted ZRS. The ZRS has been attrib-
uted to the spontaneous generation of internal electric field
domains.!" The macroscopic structure and stability of ZRS
domains have been investigated by a phenomenological
Lyapunov functional.!>!3

Microscopic theories for MIRO and ZRS are divided into
two categories. (i) The displacement photocurrent (DP)
mechanism which was proposed by Ryzhii et al.'* and Durst
et al.> See also Refs. 16, 17, and 19. The DP is stronger for
well resolved Landau levels, whose width I" is smaller than
the Landau level separation fiw,. (ii) The distribution func-
tion (DF) mechanism was proposed by Dmitriev et al.'® and
Vavilov and Aleiner.!” The DF mechanism becomes impor-
tant when the inelastic lifetime is much longer than the elas-
tic transport scattering time.

Independent of the particular dominant mechanism, the
disorder potential is essential for the dissipative currents.
Treating disorder in high Landau levels is an old theoretical
challenge: since the clean system has macroscopic Landau
level degeneracies, a straightforward perturbation theory in
disorder is ill posed. The linear, dark conductivity (in the
absence of radiation) has been calculated by the self-
consistent Born approximation (SCBA).?%?! The SCBA is a
selective diagram resummation, whose neglected vertex cor-
rections are controlled by the smoothness of the disorder.”
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Unfortunately, a controlled extension of the SCBA to strong
static and time dependent fields has so far proven difficult.
Nevertheless, the ZRS and the HIRO are inherently nonlin-
ear effects which require theoretical attention.

In this paper, we devise a “divide and conquer” method,??
which incorporates strong electric fields with the disorder
potential. It has long been appreciated that strong radiation
effects on the clean Landau levels are tractable using a Flo-
quet transformation.'*'7 However, writing down an explicit
Floquet transformation for a disordered Hamiltonian is, in
general, intractable. Here, we make progress by exploiting
the commutation between Landau and guiding center opera-
tors. We construct a separable disordered Hamiltonian, which
is completely “Floquet transformable.” This trick allows us
to eliminate the electric fields and obtain the random Floquet
(quasistationary) eigenfunctions. These states describe our
zeroth order density matrix, without any dissipative current.
The dissipative current is subsequently computed perturba-
tively, to leading order in the remainder short wavelength
disorder. The physical small parameter is the ratio of trans-
port scattering rate to Landau level width.

This approach allows us to answer some outstanding
questions.

(1) What is optimal disorder for large MIRO and ZRS
effects? We identify the “figure of merit” as the ratio R
=hw,./T", which is also expected to be large in systems ex-
hibiting the HIRO effect.

(2) What characteristic Hall fields determine the HIRO
effect? The low intraband field is

Er=T/(el3q,), (1)
and the higher “interband” field periodicity is given by
E, = ho(elag,), (2)

where ¢, is the high wave-vector cutoff of the disorder fluc-
tuations and /p is the Landau length.

(3) What is the expected magnitude of the spontaneous
ZRS fields? The quantity Ey sets the overall scale of the ZRS
field E¥*, which also depends on R, frequency, and micro-
wave power. E* has a second order dynamical phase transi-
tion at a threshold microwave power.
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This paper is organized as follows. Section II briefly re-
views the macroscopic transport theory of the Corbino and
Hall bar geometries. The main purpose is to define the dis-
sipative current, which is the subject of subsequent sections.
Section III introduces the microscopic model: noninteracting
electrons in a weak magnetic field, with “broad-tail” disorder
correlations. The disorder potential is split into two opera-
tors, where the long wavelength components are (mostly)
incorporated into the broadened Landau levels Hamiltonian.
In Sec. IV, the disordered Floquet evolution operator U ,(t) is
constructed. We show that while the Landau levels broaden
into random Floquet eigenstates, the dc field (surprisingly)
produces no dissipative current and a perfect classical Hall
current. The random matrix approximation (RMA) captures
the spectrum and eigenfunctions of the broadened Landau
levels and recovers the well known SCBA. In Sec. V, we
derive the leading order dissipative nonlinear current [Eq.
(48)], which can be disorder averaged numerically. In Sec.
VI, the current formula is simplified by the RMA to a trac-
table analytical expression [Eq. (59)]. The simplified expres-
sion is analyzed in some detail: the SCBA dark conductivity
is recovered, and the MIRO, ZRS, and HIRO effects are
obtained. Predictions are obtained for the magnitudes of
these effects and the values of nonlinear field scales. A plot
of the full microwave irradiated current as a function of dc
field is given in Fig. 9. We conclude with a brief discussion
of theoretical and experimental issues pertinent to our re-
sults. Appendix A calculates the disorder matrix elements
and Appendix B derives the explicit Floquet operator.

II. MACROSCOPIC TRANSPORT THEORY

Here, we briefly review the magnetotransport theory of
the Corbino and Hall bar geometries. This will provide a
direct relation between the experimentally measurable cur-
rents and voltages and the quantity calculated theoretically in
later sections: the nonlinear dissipative current j%(E).

In the presence of a microwave field E, and a dc field

E=EE, macroscopic transport theory assumes a local rela-
tion between the dc current density and the electric field,

i=jE.EE +j"(E),

jH=O'HiXE, (3)

where j is the nondissipative Hall current and oy, is the Hall
conductivity. o and j¢(E) require input from a microscopic
theory, which involve quantum mechanical scattering pro-
cesses on length scales shorter than the inelastic dephasing
length.

In the presence of large scale inhomogeneities (considered
in Refs. 12 and 13), the dissipative current j%(r) is not nec-
essarily parallel to E(r) and o may vary in space. Here, we
do not consider such large scale disorder.

A. Corbino geometry

By the definition [Eq. (3)], for a position independent o,
the dissipative and Hall currents are conserved separately,
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FIG. 1. (Color online) Definition of currents in the Corbino and
Hall bar geometries. In the homogeneous Corbino sample, the elec-
tric field and dissipative current density are radial, while the non-
dissipative Hall current is azimuthal. In the Hall bar, the vertical
current between leads includes both dissipative and nondissipative
components. For large Hall angle o3> o, most (but not all) of the
current is nondissipative.

V.j=V.j#=V.(jE)=0. (4)

In a Corbino geometry (see Fig. 1), one specifies the poten-
tial on the inner and outer boundaries of the sample, which
determines the purely radial electric field E=E(r)f. The dis-
sipative current j¢ is also radial, while the nondissipative
Hall current circulates around the annulus unrestricted.

The Corbino geometry completely separates the effects of
oy and j¢ and is simpler to analyze theoretically. The func-
tion j4(E) is uniquely determined for particular sample di-
mensions, from the total current and voltage between the
outer and inner edges, with no dependence on oy.

As was shown in Refs. 11-13, in the absence of an exter-
nal bias current, a negative conductivity in some field range
j%E) <0 may be unstable to spontaneously created domains
of finite internal fields whose magnitudes are |E|=E* and
orientation is determined by the boundary conditions and
long range potentials,

JUE™)=0. (5)

In the absence of “pinning” in the Lyapunov functional, the
domain walls are free to move and absorb any charge in
external bias voltage, leaving the current vanishingly small.
This is the so-called ZRS, which, confusingly, yields zero
conductance in the Corbino geometry.

B. Hall bar geometry

Experimentally, the Hall bar geometry (see Fig. 1) is more
popular for ease of fabrication. The Hall bar geometry im-
poses j,=0. The current is forced through in one direction
j=JjX, and the longitudinal and transverse voltage drops are
measured. The electrochemical field E=(E,,E,) can be de-
duced from the geometry. By Eq. (3), the electric field satis-
fies the coupled nonlinear equations
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. g E
j =Jd(E)EX +oyE,,

E,
0=-oyE, +jd(E)7;. (6)

In the case of large Hall angle,
o> o, = jYE, (7)

and thus E~E > E,. This inequality simplifies the solution
of Eq. (6),

d
L JUE)
Ey(,]) = _[1 + O(|0-xx|/0-H):|’ (8)
Oq
where we can drop the terms of order o,/ oy <<1. An experi-
mental measurement of E,.(j) approximately describes the
nonlinear function jd(E), which will be calculated in Eq.
(48),
1 .
E()) = —jd(i). ©)
Oy \Oy
The negative conductivity implies E-j<<0. In the ZRS, the
spontaneous fields E¥* of Eq. (5) are associated with the
dissipationless flow of Hall currents with magnitude

|jzrs| — O'HEZ”, (10)

In the ZRS, the currents traverse the system in the x direc-
tion, producing very little longitudinal voltage drop and dis-
sipation. For the Hall bar geometry of width W (see Fig. 1),
the resistivity remains vanishingly small up to a critical cur-
rent /" given by

I = Wo,E. (11)

Thus, the critical current directly measures the internal ZRS
field.

III. MICROSCOPIC MODEL

We consider a two dimensional electron gas (2DEG) sub-
ject to a perpendicular magnetic field Bz, microwave field
E,, and a dc field E,.. The standard treatment of electrons in
a magnetic field defines the dimensionless Landau level and
guiding center coordinates as

o1
m=—"p+—2Xr,

LR
R=" 450 (12)
=— 4+ —7 ,

2, " w TP

where the magnetic length is /z=\%c/eB. By construction,
the two guiding center components commute with the two

Landau operators
[7%,RP]=0, a,B=x.y. (13)

The microscopic model Hamiltonian is
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FIG. 2. The broad-tail model of disorder correlations of Eq.
(18). The wave vector g; bounds the long wavelength spectrum,
which is incorporated into the disordered Floquet evolution operator
(see text). Most of the spectral weight is below ¢;, although the
higher moments which determine the dissipative current are domi-
nated by the short wavelength cutoff g;.

hw,
2

H(r) = |7 +a(n)>+ V(r), (14)

where w.=eB/(mc) is the cyclotron frequency. The electric
fields are represented by the dimensionless gauge field

a(r) = %B(m[ %e} . Edcr) - (15)

The disorder potential is described by a random function of
position r,

1 —iq-r
V=Z§q: Vqe ar, (16)

where A is the area of the system. The Fourigr components
are random complex numbers obeying V =V_g, with corre-
lations

<VqV—q’>= AW(Q)(Sq,q“ (17)

Our divide and conquer tactic is to split the disorder poten-
tial into two components by a dividing wave vector g;. We
assume that W(q) is a broad-tail distribution (see Fig. 2), i.e.,
most of its weight is concentrated in a region below some
dividing wave vector g; (say, of the order of Ig), but the
higher moments are dominated by much shorter wavelengths.
For example, we might choose the function

W(g) = Wie™@ + W, 6(q, - q),

W,
ﬂ<ﬂ<1, (18)

s W

such as depicted in Fig. 2.

This model is realistic for high mobility heterostructures,
where the offset distance to unscreened charges is d=1/¢;,>*
and W, is the intrinsic short range disorder of the 2DEG. The
upper cutoff is effectively at some g,=< mky. We do not in-
clude at this level any electron-phonon or electron-electron
interactions.
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FIG. 3. (Color online) A typical numerically computed eigen-
state ¢,, chosen closest to the band center. The phase (amplitude) is
plotted in the top (bottom) panel. klz describes the height position
on the cylinder. We use Landau degeneracy n; =128, Fermi level
np=15, and cutoff ¢;=2/[p for the long range disorder. The cyclo-
tron radius and Landau length are depicted.

A. Splitting the disorder

The main trick is to split the disorder into two operators
V(r) =V(R) + V(7. R). (19)

The long wavelength disorder term is defined as the operator

V= ViE Ink)(nk'| = > e na)na

nkk' na

; (20)

where np is the single-spin filling factor at the Fermi energy.
The Landau level degeneracy is n,=.A/(2ml%), where A is
the system area. Without loss of generality, we choose the
basis |nk) on a cylinder of circumference L,= V/Z, where n is
the Landau level index and k=2mmlg/L,, where m
=1,...n;. The state |k) is centered at position (y)=klp. The
matrix elements of V), are the (identical) block-diagonal ma-
trices (see Appendix A),

~2
Vi =— 3 V, TR (%) omiTL(+k)12] 5k+§y’k"

(21)

where L, is the Laguerre polynomial of order n and g=qlp.
In Eq. (20), €, and ¢,(k)=(k|na) are the disordered spec-
trum and eigenvectors, respectively.

V), by construction, has no interband matrix elements and
identical intraband blocks. It is therefore a random function
of only the guiding center operators R [see Eq. (12)]. Nev-
ertheless, it contains most of the spectral weight of the dis-
order.

B. Random matrix approximation

We shall now see that at high Landau levels, V"k]f, is well
represented by a random Hermitian matrix. Its eigenstates
appear as random extended wave functions, as depicted in
Fig. 3.

Although numerical averaging over disorder poses no
great difficulty, the statistical properties of Vzlf, suggest to
approximate it as a Hermitian random matrix of the Gaussian
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unitary ensemble (GUE). This RMA will provide easy aver-
aging of spectra and correlations over the long wavelength
disorder. This presents another example of the usefulness of
the random matrix theory?® for quantum transport.?’

Fortunately, the RMA becomes exact in the limit of a
uniform white-noise disorder fluctuation W(g)=W and large
filling factor. The matrix elements of Vzlf, become maximally
uncorrelated,

1 W(q) L~ "
hm VF/Viﬁ m = ,=equ(k_k >5 ’ =~ 5 "oy s
nFHOC< kk' Y k'K >Vq WRC.AE‘; \*'6161’ K ke, Ok K +q,
277[12;
=~ A FRMA(Sk,k’”é\k',k"’
2 1 -
Dra= 2R dqW(q), (22)
cJ 0

where R.=15\2n. The density of states is defined as an en-
semble average

W(E) = <E SE- E,m)> : (23)

Vi

For a GUE ensemble, the density of states of each Landau
band is expected to be semielliptical. In the limit of narrow
Landau levels, the SCBA also produces semielliptical den-
sity of states. Moreover, the SCBA2%?2 for the Landau level
broadening (sometimes called in the literature “quasiparticle
scattering rate” 71/ 7,) equals I'g44, within the assumptions of
Eq. (18).

Here, however, we are interested in the long range disor-
der where ¢;<<kp<<c. This implies that the matrix elements
of V;f, are correlated within a distance Ak=<1/(lpq;) and that
the density of states at the tails will not be well described by
the RMA’s semielliptical form.

In the regime ¢,z €[0.3,5], the numerical density of
states, averaged over a Gaussian distribution of disorder po-
tentials {V,}, can be fitted to a sum of Gaussians,

1
2 e—(E - nﬁwc)2/2F2 ) (24)

WE) = ————
Qm)¥?Lr~;

As shown in Fig. 4, the Gaussian fit is excellent for g,/z=2.
The fitted Landau level width I' is also quite close to the
RMA result,

[~ 1.37RMA, (25)

The RMA for the eigenfunction correlations, which deter-
mine the structure factor, will be investigated later in Sec.
V D.

IV. FLOQUET TRANSFORMATION OF
TIME DEPENDENT FIELDS

A. Clean Landau levels

The clean Hamiltonian, driven by a time dependent vector
potential, is
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E) = (27r 21?31‘ Eexp 21_,2

AR

(nF — 1)hw, nphuw,

(nF + l)h’wc

FIG. 4. (Color online) Numerical averaging of 500 disorder po-
tentials, for the density of states p(e) of V;7,, using W= 12, np=80,
Landau level degeneracy n;=512, and ¢;=2/lz. The fit is to a
Gaussian of deviation I'. Inset: dots are the numerical values of I'
for different cutoff wave vectors ¢g;, divided by the random matrix
approximation I'®™4 [Eq. (22)].

hw,
Holr) = T‘Iw +a()|* (26)

The Schrodinger equation for the evolution operator,
ih,Up(t,10) = Ho( U(.1o), (27)
is solved in Appendix B and is given by

UF(IJO) — e—if(z)-we—iﬁo(t—to)eﬂg(to)-17’

Ho(t) = 2 finaw, (28)
nk

where the Floquet Hamiltonian 7, is identical to the time
independent Hamiltonian. This identity (called Kohn’s theo-
rem) also holds in the presence of arbitrary two-body inter-
actions 2, ;V(r,—r;) between electrons.?

The vector fields &(r)=§&,+&, are solutions of coupled
linear equations. Their explicit form, given in Appendix B, is

well known,'4
elzw wE +ioE, .
- c% “w we_lwt i
& ho { wi -’ }
0 Clgo. | o.E, —ioE, _
&= ﬁwm wg—wz ¢ ’
el
&0 =152 Edc X 2= By (29)

c

B. Floquet transformation with disorder

In Eq. (20), we have constructed the long range disorder
operator V; to a function only of R. Thus, Eq. (13) implies
the trivial, yet very useful, commutation relation
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[V, w] =0, (30)

which we exploit to write the time dependent disordered
Hamiltonian as

H (1) = Ho[m,a(t)] + V[R]. (31)

Now, we can construct the disordered Floquet evolution op-
erator U, which obeys the evolution equation

iha,U(t,t0) = H () Uy(t,15). (32)

Since the Floquet operators ¢’é”"™ commute with V[R], the
solution is simply

U (1,1) = €07 omiHli=io) g™

,F(d= (33)

na
with the same vector function &(z) as for the clean Landau

level problem [Eq. (29)]. For E,;.=0, the Floquet states
return to themselves (up to a phase) at

every integer period.

Expression (33) implies that the Floquet quasienergies
(the spectrum of the transformed Hamiltonian #,) are the
disorder broadened Landau levels. The equivalence between
stationary and quasistationary states with time dependent
electric fields is a special property shared by harmonic oscil-
lators, Landau levels, and our H,,.

Using the last equation in Eq. (B3), we can also explicitly
express the time dependent Fourier operator as

eiq-r(z) — e(i/ﬁ);[dteiq-re—(i/h)ﬁdteiqu-f(t)’ (34)

where we can use the explicit solution [Eq. (29)] to perform
the Bessel expansion,

o

eiqu-g(z) — e—iw 2 l-VJV(quﬁ)eit[vw+(el§/h)q><Edc-i]’ (35)

y=—00

where ¢ is an unimportant phase and J, is the Bessel func-
tion of order v. The quantity

ALG(E,) = max[q - &01)] (36)

is proportional to the microwave field strength. For positive
circular polarized light of field E,=E,(X+iy), £ and A4
diverge at the cyclotron resonance as |w—w,|™!. For the op-
posite polarization, A, is continuous at resonance.

V. CALCULATION OF THE CURRENT

The dc current density is given by the full evolution op-
erator U as

j= A l 2 PraknalUT(t,10)wU(1,10) + a(n)|na),  (37)
Bn

where p,,, is the electron density operator defined in the Flo-
quet basis
The notation F(¢,f,) implies averaging the end-point

times ¢,¢, over many periods of 27/ w.
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A. Zeroth order theory

The zeroth order dc current density is given by setting
U— U, in Eq. (37). Using Egs. (B3) and (29), it is easy to
obtain

2
.](0) = (§() X7+ adc

IBA(% 8 ) )

(38)

where the result holds for any distribution p,, (not necessar-
ily Fermi-Dirac) which sums up to the full electron density
n,.

It is interesting that although 7, has random spectrum
and wave functions, its current density [Eq. (38)] produces
no dissipation. In addition, we see that the Hall conductivity
is precisely given by the classical value

e’n, é?

Oy =

(39)

mo,. - h’
although for V,;# 0, our system is by no means Galilean in-
variant. Incidentally, this result [Eq. (38)] applies in the pres-
ence of arbitrary electron-electron interactions which may be
added to H ().

We iterate that Eq. (38) applies only to the zeroth order
Hamiltonian defined in Eq. (31). Dissipative effects enter at
second order O(V?).

B. Second order dissipative current

The leading order dc current requires expanding the mo-
mentum operator to second order in V,. The interaction rep-

resentation is defined as
O%t,19) = Ul(t,1) OU(t,1,). (40)

The zeroth order (“clean limit”) Landau operator (in com-
plex notation 77=a"+i7") transforms as

7D(t,10) = 0T — A(1,10), (41)

where vy is an unimportant c-number function.
The full evolution operator U is expanded to second order
inV,,

.t

—1

— | di'V(t .1,
ﬁ L s( 0)

0

t’
dt"VA i)V 1) + -+ } ,
To

U(t,t) = Ud(t,to){l +

2 [t
dr’

1
(42)

which yields the second order correction to the Landau op-
erators as

7I(t,1) == f dr' f dr"e!=10)
X[[%,Vi" (1, 10) V(" 1) ]

2 qx+lq\)f dt’ f dt'eiodi=t")

mlBﬁA2
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X [eiq-r(d)(l'vfo), e_iq"r(d)(t”’to)] . (43)

The leading order dissipative current is obtained by the
disorder averaged expression

= <2fm<<na| i) |”a>>v> o
Vl

A lB na

Here, we use the Fermi-Dirac distribution
fra= 1+ EndT)t (45)

Corrections to the distribution function enter at higher order
in V, (see discussion in Sec. VII, item 2). Equation (44)
ignores correlations between V; and V,, which exist in the
range ¢<<gq;. The resulting error in the current, which is
dominated by large wave vectors, is relatively suppressed by
powers of ¢i/q>.

Using the matrix elements of the time dependent Fourier
operator [Eq. (34)], we obtain

<na|ei‘1‘r(d)([”0)|mﬂ) — e(i/ﬁ)(E"“_Emﬁ)(t_t‘))Dnm(q)
. *
X 2 eleleq)a(k) ()Dﬂ(k + qle):|
k

©

xS TG0 ) il (veH(ely/ Mg xEged)

(46)
Averaging Eq. (43) over {V,}, keeping V), fixed yields

4.+ 1iq
(@2 11p) lna)y, = —— CA% “W(g)
X(l - 5nm0q<ql)1nm(t’t0)v
t—to
nm(t t()) E t' za)

t’
XJ dl‘”lz + eii(Ena—EmB)(t'—t")
2
0

mpB+
XA (o AR (47)

We can henceforth neglect the terms (=3,,,6, < flz) in Eq. (47).
The corrections contribute only to the low wave-vector inte-
gration and are therefore suppressed by factors of (gq,/¢;)
<l1.

Integrating Eq. (44) over time, we obtain the full current
expression

wkp d2 res
i'= mRe.wf e )Z(qu)2 ot

Xf dEdG,(fn,e _fm,e’)KZ(q’ €, E’)
XE |Jv(quﬁ)|25(El1zf’ - Ene - fivew - eléi X q- Edc) ’

(48)
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where K, is the disorder averaged intraband structure factor,

1 L~ ’ ES £ —_
Kyg.e€)=— 2 W o ()@ k') pplk+7,)
kk' a#

X ppk' +7,) 0~ e )€ ~ €9y (49)

Note that by the symmetry of [d?q integration, the second
order current is parallel to the dc field and purely dissipative.
Hence, to second order, the Hall conductivity remains equal
to the classical value oy of Eq. (39).

C. Simplification at 7> /i,

Many of the relevant experiments are carried out at tem-
peratures 7>%w,, where the Shubnikov-de Haas oscilla-
tions are thermally smeared. Using the energy-conserving
delta function, we approximate the difference of Fermi func-
tions as

I(E, o
fn,e_fm,e’ ~-0(T- |AEV|)AEV—’ (50)
oE
where AE, is the transition energy,
AE,=hvo+elzi X q - Eg. (51)

Defining the single frequency structure factor K; as

K(q,w)= f deK,(q,€,e+ hw), (52)

the current expression simplifies to

kg ()
d e 2 Wiq) .
= d X
= UJ 4=, @xq)

[AE,|<T
X 2 (hvw + eléi Xq- Ed,;)|Jy(‘7Awq)

v,m

XK,(g,mw, + vo + eléi X q-Eu/h). (53)

2

D. Random matrix approximation for
the structure factors

Within the RMA, the Hamiltonian of each Landau level is
taken as a member of the GUE. Thus, by the RMA, the wave
functions ¢,(k) are normalized complex random vectors and
the spectral correlations are completely uncorrelated beyond
a few level spacings.’® From random matrix theory, one has

(@) @a(k" )y = BupSiars

1
E<E 5(e—ea>5<e—ea>> —2nlp(eple),  (54)
af Vv

for e-€' > nLL The RMA approximates the dynamical struc-
ture factor [Eq. (49)] as

I e+ (e)
KEMA(e €)= ex [— , 55
2 e = o O T (55)
where I'="*M4 i5 the width of the single Landau level den-

sity of states [Eq. (22)].
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FIG. 5. (Color online) The static structure factor K,(g,w=0)
evaluated numerically for n; =128, np=15, and ¢,= 1/112;. The exact
correlator has a peak at zero wave vector of width ¢; and agrees
with the (wave vector independent) RMA at higher wave vectors.
The inset depicts classical cyclotron orbits, which strongly overlap
when separated by 2R,. In contrast, K; shows no signature of en-
hanced scattering at wave vectors corresponding to 2R,.

The RMA for the single frequency structure factor is

— 2 2
var ( A w )
exp| — .
@m?2r “P\” ar?

(56)

KIfMA(w) = f deKlfMA(e,e+ hw) =

We have computed the structure factor K;(g, ) numerically
for a finite Landau level degeneracy on a cylinder. As de-
picted in Figs. 5 and 6, the RMA works well for ¢>g¢,,
where ' is given by Eq. (25). This finding confirms our
expectation that the RMA is applicable at large wave vectors
since correlations between matrix elements of V"k,f, decay be-
yond the wave-vector scale g;. In contrast, at low wave vec-
tors g <3¢, there is a peak in K;, which is absent in the
RMA. It contributes negligibly, however, to the overall cur-
rent. We note that there is no signature of enhanced scatter-
ing at wave vectors corresponding to the classical cyclotron
diameter 2R, (see discussion in Sec. VII, item 6).

FIG. 6. (Color online) The dynamical structure factor.
K1"™(q,w) is evaluated numerically, for n;=64, ny=80, and ¢,
=1/lg. The random matrix approximation K’fMA is given in Eq.
(56). Good agreement is found for g>3q,, at all frequencies.
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VI. ANALYTICAL RESULTS

The full nonlinear current j(E,..E,,®,B,T,n,) can be
computed from Eq. (48), by numerically averaging K; over
disorder. It is useful, however, to use the RMA and obtain
analytical results. These allow a better understanding of the
important characteristic energy and field scales of the non-
linear current.

The first order of business is to extract the dark linear
conductivity from Egs. (53) and (56). We obtain

2
dark nre ﬁ )
ot =— —. 57
o h (277”27',,F (57)

Not surprisingly, this result agrees with the SCBA,?® where
the transport scattering rate is defined in the standard way:>

qs
U, = Qmh?vpk;) ™ f daq*W(q). (58)
0

Using the RMA for K, given by Eq. (56), the current can
be simplified into an analytical expression

. fi
J= 0% NEr| &4 F (€ 4er €0 00) + (Tw)G(sdc,sw, w):| .
(59)
The dimensionless fields are defined as
Eye = E/El",

€y = AquqslB' (60)

The characteristic electric field scale,
Er=T/(el3q,), (61)

defines the lowest scale of nonlinearity in j¢.

At |E|=Ep, resonant intraband transitions are enabled
over a distance of I3g;.

For a white-noise short range disorder W(q)= W,6,<, . the
dimensionless functions F,G in Eq. (59) are explicitly evalu-
ated as

3 [AE,|<T 2
F== 2 d27‘y_|.[,,(r8w)|2€_[y8d" + f(vow — ma)c)/l‘]2/4’
T my r<1 r
|[AE,|<T
G= é E v dZVX|JV(VSw)|26_[y8‘IC +h(vw - mw()/F]2/4’
T r

r<1

(62)

where the sums are limited by the temperature condition on
the transition energies [Eq. (51)].

A. Microwave induced resistance oscillation:
Photoconductivity oscillations

G describes the photocurrent contributions. Near a par-
ticular primary (v=1) resonance at some interband interval
m= 1, the dimensionless detuning frequency is defined as
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]

dark
T

[o

azz

W

w — MW,

FIG. 7. (Color online) MIRO effect. The frequency dependent
conductivity is plotted against the detuning frequency near the mith
resonance. A set of dimensionless microwave field strengths g, is
given. The broadening ratio [Eq. (65)] is chosen at R=10. Tempera-
ture is 7=7hw,. The regions of negative conductivity are unstable
toward the zero resistance state.

h _
S5,= F(w—mwc). (63)

The MIRO effect, arising from the function G, changes sign
at the resonances as

Gx-94,. (64)

The magnitude of MIRO is controlled by the figure of merit,
the Landau level broadening ratio

ho, 27 h v pe \ 12
R= T - B——| .

(65)
W,gmc

For R>1, the total current at J,,>0 can become negative
and produce the zero resistance state. This ratio increases as
VB. Our approximations, however, break down at low filling
factors.

In Fig. 7, we plot a low field conductivity oscillation as a
function of detuning frequency. We choose R=10 as the
broadening ratio and a set of microwave radiation field
strengths e,,. At temperature 7=7hw,, we note that the con-
ductivity at §,=0 is independent of radiation power. The
regions of negative conductivity are unstable to the forma-
tion of a ZRS.

B. Hall induced resistivity oscillation:
The dark nonlinear current

In the absence of radiation, G vanishes and the nonlinear
conductivity in Eq. (59) is 0®*F. In Fig. 8, we plot F(E) for
different values of iw./I".

At weak fields of order E,, we see a Gaussian decrease of
conductivity due to diminishing phase space for intra-Landau
band scattering. Caution has to be exercised in trying to fit
the low conductivity regime with Eq. (48). The far tails of
the density of states require multiple scattering theory, which
goes far beyond second order in V,.?°
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a(E)/a(0)

0 10 20 30

E [Er]

FIG. 8. (Color online) The HIRO effect. Nonlinear current os-
cillations at zero radiation, as a function of dc electric field, for a set
of broadening ratios R. The field scale Ey is defined in Eq. (61). The
oscillation periodicity is determined by E,, =REr.

At larger fields, the conductivity has secondary maxima at

[E"| = (m + SE,, 6=025m=12,...,
how,
. =" :REF, (66)
eZBQs

which corresponds to the inter-Landau level scattering over
the length scale qslé. For g,> kg, by Eq. (A4), one must use
q,— kg

C. Nonlinear photocurrent and zero resistance state fields

In Fig. 9, we plot the fully irradiated nonlinear current at
different microwave fields, at one fixed optimal detuning of
8,=0.9. For weak radiation, the HIRO oscillations are ob-
served, and their phase shifts as the microwave power in-
creases. At stronger radiation, the negative conductivity re-
gions are unstable toward the ZRS. The ZRS creates
spontaneous electric fields of magnitude E*, where the dis-
sipative current vanishes j¢(E¥*)=0.""12 In Fig. 10, we plot
the dependence of E“*(g,) at fixed detuning frequency. The

Er]

dark
zT

JUE) [o

FIG. 9. (Color online) Nonlinear current-field characteristics for
different levels of microwave field g,. The field scale is Er (Eq.
(61)). Temperature is chosen at T=7#hw, and the broadening ratio is
R=10. §,, defined in Eq. (63), is fixed at 0.9. Negative current
regimes are unstable to a ZRS with spontaneous electric fields of
magnitude E*.
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0 5 10
Ew

FIG. 10. (Color online) The ZRS spontaneous field. E¥* is given
by the zero of jUE) as a function of dimensionless microwave field
£, at fixed detuning frequency &,. A continuous (second order)
dynamical transition occurs at a threshold microwave field.

ZRS exhibits a continuous dynamical phase transition as a
function of microwave power, which was previously pre-
dicted on phenomenological grounds, by Alicea et al.*°

VII. DISCUSSION

We emphasize several issues regarding our results.

(1) Our analysis is limited to second order in the short
range disorder V,, which is controlled by the smallness of
W.q,/ (Wyq;)<1. In physical terms, this is equivalent to the
well known “small angle scattering” limit where #/(7,I")
<1, with I" and 7, defined by Egs. (25) and (58), respec-
tively. Small angle scattering is used to justify the SCBA.?
By Egs. (39) and (57), the small angle scattering parameter
can be experimentally determined by the Hall angle 6,

o ([
cot(fy) = — <27Tl/27trr). (67)
By Eq. (7), a large Hall angle 6y~ /2 is also the limit
which effectively separates the effects of dissipative and Hall
fields in the Hall bar geometry.%’

(2) Our photoconductivity supports the displacement pho-
tocurrent mechanism.'*!> We have assumed here that
electron-electron interactions are relatively weak for well re-
solved high Landau levels. However, we also implicitly as-
sume that electron-phonon interactions are strong enough to
produce an inelastic scattering time of the order

in = Tire (68)

T

Hence, to the leading order in 1/ 7, we do not need to cor-
rect the Fermi-Dirac distribution. We do not rule out that the
DF mechanism'® may yield sizable corrections, for the case
Tin > Tz‘r'

(3) We have assumed a model of weak disorder which
produces well separated Landau levels. We find that a large
ratio fiw,/I" can produce large MIRO and ZRS effects under
radiation. It is also responsible for a large HIRO effect.
Indeed, these effects have been observed in the same
samples.'?

(4) The conductivity at @=mw, appears to be insensitive
to the radiation field (see Fig. 7). Within Eq. (59), this is true
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only at temperatures T/(hw,)=vV"">1; otherwise, the
Bessel function sum rule,

lim 2

pMaxX_ 00 || pmax

|J,,(rsw)|2= 1, (69)

is not saturated. At very low temperatures, only a few Bessel
functions contribute, and we expect the conductivity at reso-
nance frequencies to be suppressed under radiation.

(5) The characteristic field Ey [Eq. (61)] is in the same
ball park as Ryzhii’s estimate.'* It differs from the much
larger estimate [=%w,./(eR,)] provided by Ref. 19.

(6) The characteristic field of secondary HIRO maxima
[Eq. (66)] depends on the disorder cutoff g,. This is in con-
trast to the semiclassical picture® of touching cyclotron orbits
of radii R.=vp/w,.. This scenario is depicted in the inset of
Fig. 5. This argument suggests an enhanced scattering at an
electric field

ho,
+E,, (70)
2¢R,. ¢

(&

E,p =
2R,

where our E,, in Eq. (66) depends on ¢,. As evidenced in
Figs. 3 and 5, there is no signature of enhanced scattering at
wave vectors 2R,/ lé, unless, by coincidence, the short range
cutoff precisely matches g,=2ky. In summary, the cyclotron
radius is not a noticeable length scale in the structure factor
at high Landau levels.

Experimentally,® values of oscillation field have not been
universal and have varied in the range (1.63,2.18) X Epg .

(7) An important issue, which we have ignored in this
work, is the relation between the dimensionless microwave
field e, and an external microwave radiation field and polar-
ization. The resonance of positive circular polarization at w
=w, implies that close to the cyclotron resonance, one cannot
ignore the strong frequency and polarization dependence of
the dielectric function. There are related open issues raised
by recent experiments, most notably the apparent indepen-
dence of the MIRO on the microwave polarization®! and the
seeming inability of two photon absorption to explain a
MIRO about w,/2.3> We shall defer discussion of these prob-
lems to further investigations.
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APPENDIX A: THE DISORDER MATRIX ELEMENTS

Using the definition [Eq. (12)], the commutation between
Landau operators and guiding center coordinates are readily
obtained, for a,B=x,y,

PHYSICAL REVIEW B 76, 205318 (2007)

[ﬂ-a’Rﬁ] = 0,
[m.m]=[R,.R]=i. (A1)
The full disorder operator is expressed as
1 'z .
— _E qu—z U TXZ,=ilgq R (A2)

A

q

The matrix elements of the Fourier operators are given by

<k|e—i13q-R|k1> - e_iqulBﬁk’,k+qle’

<n|e-i13q.ﬂxi|m> — e‘<q18)2/4|q13/ VEl(m—n)ei(m—n)qS

m!
X\ L [(g15)*/2]

=D,,(q),

where ¢=arctan(q,/q,). Equation (A3) is used to split the
long and short wavelength terms in V in Eqgs. (21) and (48).
The asymptotic expression for the associated Laguerre
. 33 . . ~ ’f_
polynomials’® valid at large n<<m, with g=qlg<<\2nm,
yields

(A3)

c0s2(\2nG = )

2
q|Dt1n1(q2/2)|2 -~ 2— (A4)

/
2nar

where ¢=1/4+m(m—n)/2. The fast oscillations of the cos”
can be replaced by its constant average of 1. which simplifies
the ¢ integration over smooth functions considerably.

APPENDIX B: THE EXPLICIT FLOQUET OPERATOR

The full disordered evolution operator [Eq. (28)] is de-
composed into

i —

Up(t,ty) = W(t)exp{— %Ho(t - fo)} Wi(zy), (B1)
where 7?(0 is the clean Landau level Hamiltonian, and the
vector-potential-dependent Floquet operator W is defined as

W(t) = o €0 m=i['L(dl" (B2)

Here, we shall determine the fields &(r),L(r). W acts on the
time derivative and translates the Landau level coordinates 77
as follows:

WHa)W=9) + - £+ 0(EE) + L0,

WaW=m+£&X1,

WirW =r + €, (B3)

which transforms the evolution equation as
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WT<i¢9,— %|11+ a|2)W=iat— %|17+ EXi+va-Eol

p)
1 _
+ |2§—a|)c + 5(5@) + L(t) = ihd,— H,.

(B4)

The fields & are given by solving the linear equations

f— wcg XZ= wca(t),

L0 =5 (&), (BS)

For convenience, we fix the origin of time 7=0, such that
&(1=0)=&,.

Using the complex notation &= & +ig,, we write

E+iwk=wal). (B6)

The dimensionless gauge field (written in circular polarized
components) is
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o E, . -
fe_lm—jwe’wl+Edct . (B7)

Separating the solution into &(f)=E&"+& + &, one obtains

+
~ elgw, E, _.
é—_f-: + (2] e+twt’

ho o.+ o

= .EZBEdct elpE .

(B8)

o ho,
The zero frequency component of & in Cartesian coordinates
is

[ l
£(1) =15 By X - LBy, (BY)
h hw

c

In vector notation, we thus derived the explicit form of the
Floquet fields &(7) as given in the main text by Eq. (29).
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