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To investigate Majorana fermionic excitations of a p,+ip, superconductor, the Bogoliubov—de Gennes
equation is solved on a sphere for two cases: (i) a vortex-antivortex pair at opposite poles and (ii) an edge near
the south pole and an antivortex at the north pole. The vortex cores support a state of two Majorana fermions,
the energy of which decreases exponentially with the radius of the sphere, independently of a moderate
disorder potential. The tunneling conductance of an electron into the superconductor near the position of a
vortex is computed for finite temperature and is compared to the case of an s-wave superconductor. The
zero-bias conductance peak of the antivortex is half that of the vortex. This effect can be used as a probe of the
order-parameter symmetry and as a direct measurement of the Majorana fermion.
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I. INTRODUCTION

In the last few years it has appeared increasingly likely
that nontrivial (or non-Abelian) topological phases of matter!
may be produced in the laboratory. In fact, it is quite possible
that these phases of matter have been produced although cur-
rent experiments still leave room for doubt. Interest in such
phases of matter is driven to a large extent by their possible
application for building naturally error resistant, so-called
“topological” quantum computers.! Among such topological
phases of matter, perhaps the simplest is of the “Ising” or
SU(2), class," which correspond to chiral pytipy, BCS-
paired superconductors.’

There are several possible physical systems where p,
+ip, pairing is believed to be realized, including the A phase
of superfluid *He (Ref. 3) (*HeA), the exotic superconductor
Sr,Ru0,,* and the v=5/2 quantum Hall state.>° In addition,
there have been recent proposals to realize p,+ip, pairing in
cold fermion gases.” For quantum information processing ap-
plications, two dimensionality (or at least quasi-two-
dimensionality) is necessary. This is certainly the case in
quantum Hall systems and may also be achievable for
Sr,RuQ, (which is a layered structure), for 3HeA films, and
also potentially in cold atomic systems. For the purpose of
this paper we will assume quasi-two-dimensionality, al-
though some parts of our results are more general.

In these (weak coupling) p,+ip, systems, certain types of
vortices (quasiparticles in the quantum Hall context®) are be-
lieved to carry zero energy Majorana fermions,®® which are
topologically protected degrees of freedom. In Sr,RuO, and
SHeA the vortices that carry the Majorana fermions are the
so-called half-quantum vortices, which can be thought of as
a vortex in the order parameter of one spin species, without a
vortex of the opposite species.'” (Note that in spin-polarized
py+ipy systems, including proposed atomic gas realizations
or the 5/2 state, there is no half-quantum vortex and the full
quantum vortex carries the Majorana fermion).

A Majorana fermion is an operator which satisfies
the fermionic anticommutation relation {%'(x),7(x")}
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=28(x—x'), but equals to its own Hermitian conjugate
5t =1n. Therefore 7*=7"?=7%"n=1. A fermion occupation
number state can be defined as a linear combination of two
Majorana fermions 1ogalized in two distinctive vortices
) =[ ) +in 012 and () =[700)=im (02
This operator satisfies the usual fermionic relations
{4 (x), Y(x")}=8(x—x") and ¢">=y?=0. We shall call such a
fermionic occupation number state a Majorana state. The en-
ergy of the Majorana state reflects the exponentially small
hybridization between the wave functions of the two local-
ized Majorana fermions.

The zero energy of the Majorana fermion in a single vor-
tex is believed to be topologically protected against weak
disorder.® But in the case of more than one vortex, an experi-
mentally relevant question is whether the exponential local-
ization and hybridization of the Majorana state is a property
only of a clean system or is it robust against the inclusion of
disorder. We find that these properties survive even in the
presence of a moderate disorder.

Another unique property of the p,+ip, order parameter is
the existence of low-energy chiral states, which are localized
along the edge of the sample.? If a single vortex is present,
the Majorana state is split between the vortex core and the
edge.

Let us suppose that in one of the above systems, the rel-
evant Majorana-fermion-carrying vortex has been created.'!
An important next step would be to design an experiment to
demonstrate that the Majorana fermion is present in such a
vortex.'? In the case of Sr,RuO,, one obvious experiment
would be an energy-resolved tunneling experiment, which
measures the local density of states (LDOS).!* An observa-
tion of a localized mode at precisely zero energy would be
direct evidence of the Majorana fermion. For cold atoms, an
analogous experiment for observing the LDOS would be an
energy-resolved local particle annihilation experiment. For
the other realizations of p,+ip, order it is not as clear how
such an experiment would be performed.'*

In principle such tunneling experiments could provide de-
finitive evidence for the Majorana fermion. However, in
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practice they may be prohibitively difficult. In the vortex,
there will exist subgap bound states in the core known as
Caroli-de-Gennes-Matricon (CAGM) states.!>!® The spacing
between the CdGM states is approximately eC=A(2)/ €r, where
A, is the gap (presumably on order of the critical tempera-
ture) and € is the Fermi energy. Since the experimentally
observed tunneling spectrum will be smeared by the tem-
perature, this tunneling experiment would naively only have
a clear signature for 7'<< €.. Unfortunately such low tempera-
tures could potentially be unattainable in any of the proposed
realizations (€,~7 K in *HeA and <0.1 mK in Sr,Ru0,).

We find that within the reachable temperature region,
€. <T<A,, the central peak of the smeared LDOS of the
antivortex is half the height of the peak of the vortex. We
shall see that this distinction is clear evidence of the
D.+ip, symmetry of the order parameter and of the existence
of the Majorana fermion.

Generally speaking, a physical asymmetry between a vor-
tex and an antivortex can occur only in superconductors
which break time-reversal symmetry, such as p,+ip,
superconductors.!” The order parameter of such supercon-
ductors involves internal angular momentum, which is inter-
laced with the angular momentum of the vortex according to
theirs relative directions.!®

This paper is organized as follows:

In Sec. I we implement the p,+ip, superconductor on a
sphere, with vortex-antivortex pair at the poles.!® Using
monopole harmonics functions, we numerically solve the
Bogoliubov—de Gennes (BdG) equation, and get the full BdG
spectrum.

In Sec. III we test the exponential decay of the Majorana
state energy as a function of the distance between the vorti-
ces in the presence of disorder. We find it is unaffected even
in the presence of a moderate disorder.

In Sec. IV we put an edge around the south pole of the
sphere and observe the edge excitations and their linear dis-
persion. In Sec. V we calculate the tunneling conductance of
an electron into the superconductor near the position of a
vortex or an antivortex at zero temperature and at elevated
temperature. We find an asymmetry effect in the zero-bias
conductance between the vortex and the antivortex, which
one can use as “smoking gun” evidence of the existence of
the Majorana fermion. We compare it to the tunneling spec-
trum for a regular s-wave superconductor to support this con-
clusion. Our analysis shows that this effect will occur for any
spin-polarized chiral superconductor (chiral-p, chiral-d,...).
However, it occurs for the single vortex only for the chiral-p
case, whereas it occurs for the double vortex for chiral-d and
correspondingly higher vortices for higher pairing symme-
tries. Some of the results of this paper were recently pub-
lished in a short format.?°

II. BdG THEORY ON A SPHERE

Consider a two-dimensional uniform p,+ip, supercon-
ductor of spinless fermions. The excitation spectrum is given
by the BAG equation?!
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where 7 is the kinetic-energy operator and € is the Fermi
energy. W denotes electrostatic potential and will be zero in
this section. A is the order-parameter field, which according
to the p,+ip, symmetry is of the form

o +id, 1 ,
Alx—x') = Ay 20— e x4
lkp 47T§p
A N2, 2
= 0 [(x—x") +i(y—y)]e x4,
8771%?,](1:‘

2)

Here A, is the pairing amplitude and kj is the Fermi wave
vector given by €F=k12,~/ 2m*, where m™ is the electron effec-
tive mass. &, is the pairing range, which is usually taken to
be zero for simplicity, whereas in quantum Hall systems it is
comparable to the magnetic length. In Fourier space,

A= g2 e g, (3)
kp

which shows that A, is approximately the energy gap. Al-

though we have written down a special case of p,+ip, order

parameter, the k— 0 part is universal.

All the calculations in this paper are considered to be in
the short-range pairing limit, where kz§,<1. However, the
form Eq. (3) remains acceptable up to k€, 1, although due
to the exponential factor the amplitude is highly reduced (but

can be compensated by multiplying by a factor of ekigzzr). We
have checked that none of our results change substantially
even for kp§,~ 1.

A vortex (+) and an antivortex (—) are described by the
order parameters

A(rx’) = Alx —x")f, (FE)e™?, )

where 7, ¢ denote the polar coordinates of the pair center of
mass (x+x')/2. The amplitude profile of the vortex f,(x)
vanishes at the origin and approaches unity at x>1. ¢ is
Pippard’s coherence length,?

261:‘

=—. 5
WAokF ( )

3
Note that for the vortex A,, the relative and the center-of-
mass angular momenta are aligned, while for the antivortex
A_, they have opposite chirality.

We implement the BdG equation on a sphere of radius R,
parameterized by the unit vector Q=(6, @). The spherical
geometry has two important advantages: (i) it has no bound-
aries, which strongly affect the low-energy spectrum (as will
be discussed in Sec. IV) and (ii) it enables the use of mono-
pole harmonics functions as a basis, which appears to be
very convenient for the p,+ip, pairing. However, the spheri-
cal symmetry forces us to consider an antipodal vortex-
antivortex pair. We set such a vortex-antivortex pair in the
north and south poles, respectively, see Fig. 1. The azimuthal
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symmetry of this configuration conserves the azimuthal an-
gular momentum, which greatly reduces the computational
difficulty of the BdG diagonalization.

The spherical geometry is used in this paper for calcula-
tions on finite-size geometry, where the physical limit of far
separated vortex-antivortex pair in the two-dimensional
plane is approached in the R — o limit. Since the quantities
we are interested in will be found to decay exponentially fast
with R/§, our finite sphere calculations will be relevant at
values of R/& which are not enormously large, i.e., in mod-
erate vortices density. Of course, our calculations would be
even more directly relevant to thin spherical shells which
might be experimentally created on small spherical sub-
strates.

The order-parameter field on the sphere is taken to be of
the following form:?3

AYQ,0') = A,(Q,Q)F (D), (6)
A(Q,Q) = % .
(4w§§)(1F + 5)

% (aﬁ/ _ﬁa/)|aa/*+IBB/*|2(R/§p)2,
a=cos(/2), (7)

B=sin(0/2)e. (8)

where A, gives the pairing of the particles and is constructed
by the spinor functions @ and . The (---) factor in A, ac-
quires a 27 phase winding when  encircles ', which
describes p,+ip, pairing. The |- -+| factor keeps the particles
within relative distance &,. I is the Fermi angular momen-

tum given by

Ip(lp+1)
€r= om R2 . (9)
In this way A, reproduces A [Eq. (2)] in the large R limit.

Fy(Q) describes the vorticity of the pair center of
mass Q=(Q+Q')/2. We choose Fy to describe an antivor-
tex on the north pole and a vortex on the south pole depicted
in Fig. 1. For the vortex pair field, we use (without self-
consistency) the approximate solution of the Gross-
Pitaevskii equation of a vortex>*

sin O(R/&) i (10)

Fy(Q) = 1+ [sin G(R/f)]zv

with §,<§<R for simplicity.

We expand the order parameter as a series of monopole
harmonics® Y, of g=—3, and [,m half integers.%>> These
monopole harmonics represent eigenstates of a particle on a
sphere in a radial magnetic field with 2¢g=-1 flux quanta
penetrating into the sphere (the — sign was chosen for
correspondence with the composite fermion picture of the
v=>5/2 state). In this basis, the BdG equation is represented
as a matrix,
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FIG. 1. (Color online) A vortex-antivortex pair of the p,+ip,
superconductor on the sphere, described by Eq. (6). Thin black lines
represent the current flow. Wide green arrows represent the pair
relative angular momentum. §, is the pairing range. § is the coher-
ence length, which determines the vortex core size.

Vv
Tlm,l’m’ Almjr,ﬁr Un,i'm E Uy im
_ —*n — ’
A i = T | \nie Uni
(11)

with summation over primed indices and with the following
matrix elements:

1
(+1)--
i+~

Tlm,l’m’ = 51[’5mm’6F -1 > (12)
lp(lp+ 1) - Z

1
Axn,pm/ = S 1-mBo \/E(21+ DRI +1)

X[D;+ (= )*'D 1> 2L+ 1f)
L

[ ' L ,
l l L
x| 1 1 s (13)
5 - 5 0/\-=m m-1 1
l _12(§ /R)Z
D;= —e "M, (14)
F

The matrix element Axn’l,m, [Egs. (13) and (14)] is justified
in Appendix A. (A definition for f] can also be found there.)
As expected by the azimuthal symmetry, m is a good quan-
tum number. This dramatically simplifies the numerics since
the BAG matrix can be diagonalized for each m separately.

Diagonalizing Eq. (11) for each m produces a set of ener-
gies E, , and corresponding eigenvectors u,, ;,,,U,, ;,,- The re-
sultant BAG wave functions on the sphere are

134515-3



KRAUS et al.

CdGM states

PPRPTRRE

000 800000000000 900004

4400004000000 etassteetestted

-20 0 20

FIG. 2. (Color online) BdG spectrum E, ,,, of the vortex pair on
the sphere, depicting the CdGM core states. The inset shows that
their double degeneracies are split by weak tunneling between the
poles. The positive energy member of the doublet, which saddles
Zero energy at m= %, is the Majorana state shared by the vortex and
antivortex.

() = 2 thy ¥ 121 2) (15)
1

Un,m(ﬂ) = E vn,lei1/2,l,—m+l(Q) . (16)
I

In Fig. 2 we depict the BAG spectrum of the vortex pair
state as a function of m. The spectrum shows an expected
symmetry of the BAG equation, which implies that for every
eigenvector (u,,v,) with energy E,, the vector (v, u,) is also
an eigenvector with energy —FE,. Hence according to Egs.
(15) and (16),

Upm= (vn',—m+l)*’

En,mz_En’,—m+1' (17)

The continuum states above the gap |E,|>A, are ex-
tended, while the branch that approaches zero is the p,+ip,
version of the CdGM core states. Their dispersion is

E,=|--m]e,
2

€.=AY/ep, (18)

and their number is of order €z/A,.'°

As seen in the inset of Fig. 2, each CdGM state is almost
doubly degenerate. The splitting represents weak tunneling
between the north and south pole cores and decreases expo-
nentially with the radius of the sphere SE¢,~e ®¢ for R> &
In particular, the lowest positive energy Ej+, and its negative
companion Ey- (both at m:%), approach zero as e ®¢, is
shown in Fig. 3. The probability densities |uy+(6)|?
=|vo-(0)]?> and |uy-(0)*=|vy+(6)|? are depicted in Fig. 4. The
wave functions are symmetric and antisymmetric superposi-
tions of the north and south localized core states.

In the infinite sphere limit Ey+=~Ej-=~0, and the wave
functions uy(€) =vy(€2) are equally split between the north
and south poles. The corresponding BdG quasiparticle field
operator near each pole 7(€2)=uy(Q)yY(Q)+vy(Q) ' (Q), is
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FIG. 3. (Color online) Energy of Majorana state Eq+ as a func-
tion of sphere radius R. The exponentially decreasing energy indi-
cates tunnel splitting between vortex and antivortex core states.

a Majorana fermion operator n=17'.
The asymptotic behavior of the wave functions uy(r) in
the plane are’'6

Jo(kpr)e™V/ml U 187, (r'18) antivortex

UplX) ~
o) Ty (kpr)e™ /T ATI019614 vortex,

(19)

where f, was defined in Eq. (4). We confirmed this
asymptotic behavior, as seen in Fig. 5.

The physical reason behind the difference in Eq. (19) be-
tween the vortex and the antivortex is that the phase winding
of the order parameter is determined by the sum of the vor-
ticity and the relative angular momentum. For a vortex the
vorticity and the angular momentum are aligned, which
yields the phase winding ¢*¢. In that case the condition
for Majorana fermion solution of the BdG equation,
u(x)=v*(x), can be fulfilled only by u(x)=i,(r)e’®, where
iig(r) vanishes at the origin [the J;(r) behavior is expected
due to the azimuthal angular momentum 1]. By contrast, for
an antivortex the order parameter is real since the vorticity
and the relative angular momentum cancel each other. Thus
the Majorana fermion solution is real and radial wuy(x)
=iy(r) and can be finite at the origin. [Here, Jy(r) is ex-

“—— antivortex vortex—_
SR &R
0
ol
= equator
m q
S 8
-12- — log luy I?
- log luy,
0 /2 T
0

FIG. 4. (Color online) Probability densities of Majorana states
|ug|?> versus latitude on the sphere . The smooth parts of the Ma-
jorana state wave functions uy+(6) and ug-(6) are approximately
symmetric and antisymmetric with respect to reflection about the
equator =m/2. Both |uy+|* (blue) and |uy-|*> (green) show the ex-
ponential localization in the (anti)vortex cores.
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FIG. 5. (Color online) Probability distributions of Majorana
state |ug+|? as a function of the distance from the (anti)vortex center
r, at the cores vicinities. The wave functions have exponentially
small weights near the equator. The asymptotic (red) and the nu-
meric (blue) wave functions show excellent agreement.

pected, since the angular momentum is zero.] We will see in
Sec. V that this difference is crucial for an experimental sig-
nature of the Majorana state.

The excellent agreement between the asymptotic and nu-
merical wave functions, as seen in Fig. 5, reveals the under-
lying physics of the core states. The radial profile of the
order parameter serves only as a confinement and therefore
determines only the exponential decay of the wave function
(and very weakly the spacing between the core states). The
short-range part of the wave function is controlled by a
Bessel function, which is determined only by the symmetry
and the total angular momentum. Furthermore, the specific
pairing functions and pairing range do not play any apparent
role.

s -wave. In order to emphasize the unique behavior of the
chiral p-wave order parameter, we compare it to a regular
s-wave order parameter characterized with the same set of
physical parameters. An order parameter with s-wave sym-
metry in a plane, in the presence of a vortex, will have the
form

AS (x,x') = AS(x - x')f, (F1&)e™?, (20)

1 ,
AS(x —x') = Ag—— e~ ~ 48, (21)
47§,

where f, is the same as in Eq. (4). AS provides the s-wave
pairing, with the same pairing range &, of the p,+ip, order
parameter.

Implementing the order parameter on a sphere with a
vortex-antivortex pair at the poles is quite similar to the
Pytip, case:
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FIG. 6. (Color online) The BdG spectrum E, ,, of an s-wave
superconductor, with the same physical parameters of the p,+ip, in
Fig. 2. The distinction from the p,+ip, case can be noticed in the
inset, where the energies of the CAGM states are shifted by half the
level spacing, therefore lacking a Majorana state which saddles zero
energy.

ANQ.Q) = A(Q,Q)Fy(Q), (22)
N ’ AO I 1% 2(RIE,)?
@0 = " Glaa”+ BEIPEST,(23)
P

where F'y is unchanged.

Without the chirality, the order parameter can be ex-
panded in the regular spherical harmonics Y, basis, with
[,m integers. In this basis, the matrix forms of the kinetic
term and the order parameter are

I(1+1) 1>, 24)

Ty = @w%wfp(ﬁ +
F\'F

1
Afm,l’m’ == 5m’,l—mAO \/E(zl*' l)(2l’ + 1)

0

X(z I L>, (25)

-m m-1 1

— 1 I L
X(Df+Df,)2\'2L+1fZ(0 0 )
L

DS ~ e PR, (26)

Our method of computing Afm ;e 18 almost the same as that

for Ay, (Appendix A) but with ¢ set to 0 and integer /,m.
DZS is given essentially by Eq. (A7) and is approximated in a
way analogous to D, [Eq. (14)] but without the chirality fac-
tor /1.

The BdG spectrum of the s-wave system is generally
similar to that of the p,+ip, system, as seen in Fig. 6, which
was plotted with the same parameters that were used to plot
Fig. 2. Both the extended states, with |E,|>A,, and the
CdGM states, with E;, =~ (%—m) €,, are present. Here m is an
integer, the energies of the CdGM states are shifted by %ec
compared to the p,+ip, case, and the Majorana state is ab-
sent.

Far from the vortex core, the s-wave and the p +ip, show
almost the same gapped spectrum. Fourier transforming the
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BdG equation in the plane [Egs. (1), (2), and (21); see Eq.
(3)], and diagonalizing the BAG matrix gives

, k 2
Epity = \/ (K*12m" — €p) + (Aok—e-szﬁ) . @
F

ES = (2m" = ) + (Age™5)?, (28)

where k=(k2+k2)"2.

The small difference between the two cannot be distin-
guished in a tunneling experiment. Nevertheless, the dispar-
ity in the CdGM states, and especially the existence of the
Majorana state, may be observed by taking a difference in
the tunneling LDOS, as we will see in Sec. V.

The last point to be mentioned is the insensitivity of the
above results to the choice of Hamiltonian parameters. Ac-
cording to Egs. (12)—(14) there are three free-dimensionless
physical parameters: A/ €, [r, and &,/ R, while /R is deter-
mined by [zA,/ep [according to Eq. (5)]. However, the
asymptotic wave function [Eq. (19)] implies that the expo-
nential envelope is controlled by & Moreover, the energy of
the Majorana state is also determined by & We confirmed
this numerically for the physical regime Ay << €. k, which is
approximately /pR, controls the oscillation frequency of the
wave function, as seen in Eq. (19). The gap A, and e deter-
mine the energy spacing of the core states €. and their num-
ber. §, has negligible effect, up to k&, =2, meaning that
the pairing range has no significant effect either on the wave
functions or on the energies of the core states. Additionally,
modifying the vortex profile of Eq. (10)—to, for example,
tanh[sin O(R/ &) ]—only modifies the wave functions slightly
inside the cores, according to Eq. (19).

II1. DISORDER

Disorder mixes states with different angular momentum
m, thus making the BdG equation extremely hard to solve
analytically. We study numerically the effect of disorder on
the Majorana state by the addition of a white-noise random
real potential to the BAG equation [Eq. (1)] given by

N

W(Q) = 2wy, Y (Q), (29)
I,m

where the w,,,’s are independently identically distributed,
with w,_,,=(=1)"wj,.. [, is an ultraviolet cutoff. We want the
potential to be independent of the radius of the sphere via [,

therefore we take the real and imaginary parts of w;, to be
6mW, 67w,
l/\ ’ lA

uniformly distributed in the interval [— ], where

W, is given in units of energy. This gives
(W2(€) = W, (30)

as shown in Appendix B and demonstrated in Fig. 7.

The disorder breaks the azimuthal symmetry so that m is
no longer a good quantum number. The matrix elements of
W(Q) are

PHYSICAL REVIEW B 79, 134515 (2009)

FIG. 7. Three white-noise potentials W(£2) on the sphere, taken
from the same distribution of harmonics components w;,, but of
increasing high angular momentum cutoff /, (from top to bottom).
Each time [/, is multiplied by 2, while the disorder strength W,
remains constant.

1
Wi g = (= 1)1 \/—(21+ DRI +1)
' 4

Ip I ' L
X 2 \2L+ 1wl 11
L ’ - - 0
2 2
I L
><< ., ) (31)
m —m m —m

as derived in Appendix B.

Figure 8 depicts the disorder averaged energy of the Ma-
jorana state Eq+ versus R for increasing W, It can be seen
that both the average energy (solid) and the standard devia-
tion (error bars) decay exponentially in the regime W, < €.
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FIG. 8. (Color online) Disorder averaged energy of Majorana
state Eg+ versus R/ ¢ for increasing disorder strength W, (from top
to bottom). The exponential decay survives in the regime W< €.

Thus we conclude that the exponential drop of the Majorana
state energy with increasing system size survives moderate
disorder.

IV. SYSTEM WITH AN EDGE

The p,+ip, state has broken time-reversal symmetry, im-
plying there are chiral modes which are exponentially local-
ized at the edge of the sample. For a disk of radius R, the
energies of the edge states are expected to have the form
Effge «m/R, where the angular momentum m is a half integer
due to the antiperiodic boundary condition of the spin-
polarized fermions.%2°

In the presence of a half-quantum vortex, the boundary
condition on the BAG wave functions is periodic, and m is an
integer, with the Majorana state having the m=0 quantum
number. A fermion occupation number state is created from a
combination of Majorana state on the edge and in the vortex
core. This was recently investigated numerically.?’

In order to create an edge at latitude 6y, we add a strong
potential of the form

PHYSICAL REVIEW B 79, 134515 (2009)
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FIG. 9. (Color online) BdG spectrum E, ,,, of an edge without a
vortex, depicting edge states. The solid black line is mAy/lr. Here
R/£&="7.6, while the fit improves for larger R/é&.

2e
Wi(6) = m = EL: wiY1o(Q), (32)

which defines w¥. Note that at the edge Wy(6;)= e, which
sets the density to zero. The width of the potential was cho-
sen to be the longer length scale &.

For a uniform superconductor with an edge, the order
parameter is of the form

AHQ,Q) = A,(Q,Q")FL(Q), (33)

= E ffYLO(Q) >
L

(34)

tanh[(6; - O)R/E] 0= 0= 6,
Fr(®)= 0 O=0=m

where the pairing A,(€2,€’) is defined in Eq. (7) and the
envelope F(Q) equals to zero for §p= 6= due to self-
consistency. The matrix elements of Wy and Ay appear in
Appendix C, which also shows that m is a good quantum
number.

Figure 9 depicts the BdG spectrum of an edge without a
vortex. The states above the gap |E,|>A, are extended,
while the branch is composed of the chiral edge state. How-
ever, since there is only a single edge, these states are not
degenerate.

In a half-infinite plane the dispersion of the edge states is

. . . A
given by?° E,‘;dgeonkLF with the velocity vedge=k—§. Conver-
sion to spherical geometry with R> ¢ gives

Ede ~ A (35)
lp

The black line in Fig. 9 depicts this approximation for R/§
=7.6. The approximation improves for larger values of R/¢.
Moreover, Fig. 10 shows that ES®o 1/R, as expected.

When considering the antivortex in the north pole, the
potential remains the same, while the order parameter be-
comes

Avp(Q,Q7) = A,(Q,Q")Fyp(Q), (36)
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FIG. 10. (Color online) Energies of the two lowest edge states
without a vortex ES%%, for m=1 and m=3, versus ¢&/R, show the

1/R decay.

0\R
Fuu(6) = ¢/ tanh[sin(w—)E} 0=60=6;
velb) =

0 BESQS’TT

=2 fFYL(Q). (37)
L

Note that the vortex envelope Fyg is no longer symmetric
with respect to the equator, and so includes fZEaﬁ 0 for even
L’s, unlike Fy [Eq. (A14)]. The matrix elements of Ayg ap-
pear in Appendix C.

The resultant BdG spectrum, E, ,,, is shown in Fig. 11.
The edge states and CdGM states appear in two separate
branches. The only quasidegenerate state is the Majorana
state at m=3.

Figure 12 depicts the wave functions of the Majorana
state uy+(6), the first excited edge state ug",]fe(ﬁ) at m=%, and
the first excited CdGM state u’,,(6) at m=—3. It can be seen
that the Majorana state has almost equal support on the edge
and in the vortex core (and is exponentially localized in
both), while the edge state and the CdGM state are concen-
trated either at the edge or at the vortex core, respectively.
Figure 13 confirms that as expected the energy of the Majo-
rana state E,+ decays to zero as ¢ ®'¢, while the energy of the

first excited edge state ES$° scales as 1/R.

2
» Majorana

3 ¥ Es

i .
2 = 0"."“2’ " A
-20 0 200 4y

FIG. 11. (Color online) BdG spectrum E, ,, of an antivortex
with an edge, showing both the edge states and CdGM states. The
Majorana state is present, with an exponentially small energy, as
seen in the inset.
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FIG. 12. (Color online) log|u(6)|> of the Majorana state g+
(top), the first excited edge state 5 (middle), and the first excited
CdGM state u’ |, (bottom). The Majorana state is split between the
edge and the vortex core, while in each branch of excitation the

wave function is concentrated either in edge or in the vortex core.

0.1
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FIG. 13. (Color online) Energies of Majorana state E+ (bottom)
and first excited edge state ESS° (top) of an antivortex with an edge
as a function of the radius of sphere R. The energy of the Majorana
state decays exponentially, while the energy of the edge state scales

as 1/R.
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antivortex

FIG. 14. (Color online) Zero-temperature LDOS 7(E,r), in the
cores of the p,+ip, antivortex (top) and vortex (middle), and of the
s-wave vortex (bottom). €, is the spacing between CdGM states,
and Ay is the Fermi wavelength. The peaks belong to the CdGM
states. Notice that the zero energy Majorana state is maximized at
the origin in the p,+ip, antivortex, while it is removed from the
origin in the vortex, and is absent in the s-wave.

In summary, the spherical geometry enables an easy visu-
alization of edge effects by the addition of a confining po-
tential. The expected edge states appear in any case, while
the Majorana state appears only in the presence of a vortex.

V. TUNNELING LOCAL DENSITY OF STATES

The energy gap and the coherence length of a supercon-
ductor can be detected by tunneling of electrons to its sur-
face. For high spatial resolution, the tunneling also detects
the low-energy excitation spectrum inside a vortex core. In
this section we show that tunneling experiment also provides
direct signatures of the symmetry of the order parameter and
the existence of the Majorana state.

At zero-temperature the tunneling local density of states
(LDOS) is defined as'?

T(E,r) = 2 |un(r)|25(E - En) + |Un(r)|25(E + En)» (38)

where r is the distance from the vortex (or antivortex) center.
Figure 14 shows the LDOS at the core for displacements
r=0.3¢ and energies |[E|=0.2A,. The p,+ip, state shows a
distinction between the antivortex and the vortex, while in
the s-wave they are the same.

PHYSICAL REVIEW B 79, 134515 (2009)

The Majorana state can be easily discerned as zero energy
peaks near the centers of the vortex and antivortex cores of
the p,+ip, superconductor. The other CdGM core states also
appear as oscillatory peaks, with energy spacing €. The dif-
ference between the vortex and antivortex of the p,+ip,
LDOS is apparent: according to Eq. (19) the antivortex Ma-
jorana state wave function behaves like Jj, which is peaked
at r=0. By contrast, the vortex Majorana state wave function
behaves like J;, which is zero at r=0, and has a smaller peak
at r=N\p/4, where N\p=2m/kp is the Fermi wavelength.

The origin of this distinction was discussed in Sec. II.
According to that argument, in the antivortex only the wave
function of the Majorana state, with m= %, is real and peaked
at the origin. All the excitations with m#% have a phase
winding, and are therefore equal to zero at the center of the
vortex, and have much lower peaks. On the other hand, in
the vortex the Majorana state wave function has a phase
winding of ¢/%, and must vanish at the origin. But the u,,(x)
part of the first excited state, with m=—% and E{,=€,, is real
and finite at the center of the vortex. Similarly the v,,(x) part
of its negative companion, with m=% and E5,=—¢,, is also
real and finite at the center of the vortex. Therefore in the
LDOS the first two excitations have relatively large peaks at
r=0, while all the other CAGM states are much lower, as
seen in Fig. 14.

The same argument holds for the s-wave superconductor.
The phase winding of the order parameter with a vortex is
', while with an antivortex it is e”’%. This sign of the phase
winding is only a matter of convention; there is no distinc-
tion in the s-wave superconductor between the vortex and the
antivortex. Physically speaking, the pairing of the particles
does not involve any internal angular momentum, so the sign
of the vorticity is meaningless. For such an order parameter
there is no Majorana fermion solution since it requires
uo(x)=ity(r)e'??, which is not single valued. However, for
the lowest state, with m=0 and Eg:%ec, u,,(x) is real. Simi-
larly v,,(x) is real for m=1 (and E‘,':—%ec). Therefore, the
two lowest states are peaked at the origin, while all the
higher excitations are equal to zero at the origin, and there-
fore much lower, in agreement with Fig. 14.

In a tunneling spectroscopy experiment (e.g., Ref. 28), the
tunneling conductance is measured. The conductance reflects
the smearing of the LDOS by temperature broadening?’

dr, (IFE-EN
(B TJ dE( e )T(E,r), (39)

where f(E) is the Fermi-Dirac distribution at zero chemical
potential and temperature 7. In the BCS weak-coupling re-
gime, Ay<<€p, and therefore €, could be a very small tem-
perature scale. At moderate temperatures €,<T<A,, the
peaks of Fig. 14 are smeared on the energy axis (but not on
the r axis).

The tunneling conductance at 7=0.15A,=7.5¢,, for dis-
placements r= & and energies |E| < 1.5A,, is depicted in Fig.
15 for the p,+ip, antivortex and vortex and for the s-wave
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antivortex

3

FIG. 15. (Color online) Tunneling conductance %(E ,r), in ar-
bitrary units, of the p,+ip, antivortex (top) and vortex (middle),
and of the s-wave vortex (bottom). Ay is the energy gap, and ¢ is the
coherence length, which specifies the radiuses of the cores. The
temperature 7=0.15A, is about 10 times larger than the CdAGM
level spacing. The conductance of the p,+ip, vortex is almost iden-
tical to that of the s-wave, while the central peak of the antivortex is
twice lower.

vortex. The conductance shows a central peak at E=0,
r=0, with low broad ridges dispersing away to larger E,r.
We see that while the conductance of the p.+ip, vortex is
almost identical to the conductance of the s-wave vortex, the
central peak of the antivortex is half the height of that of the
vortex.

The explanation for this factor of 2 comes from the origin
of the zero-bias peak of the conductance. Consider the con-
ductance of the s-wave vortex. Since this lacks a zero energy
CdGM state, the zero-bias conductance vanishes at T<<e€,.
When the temperature is raised to %ec, the two lowest CAGM
states, which are peaked at the origin for E~ * %ec, broaden
to create a zero-bias peak. As the temperature rises further,
this peak diminishes due to the broadening, as shown by the
blue curve of Fig. 16.

The p,+ip, vortex behaves similarly to the s-wave case,
as shown by the green curve of Fig. 16. For T<<e€, the zero-
bias conductance peak vanishes since the Majorana state
wave function has a node at the origin. By contrast, for
T= €, a zero-bias peak is created by the two broadened first
excited states, which are peaked at the origin with E~ * €.
On the other hand, in the antivortex the Majorana state wave

PHYSICAL REVIEW B 79, 134515 (2009)

® p,+ip, antivortex

o \ ® p.+ip, vortex
” ® s-wave
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FIG. 16. (Color online) Zero-bias conductance peak at the (an-
ti)vortex core as a function of temperature 7T in log-log scale. For
€, <T<A, the p,+ip, vortex (green) and s-wave (blue) peaks are
twice the height of the antivortex peak (red).

function is peaked exactly at the origin. Therefore its con-
ductance is maximal at 7=0 and diminishes with rising tem-
perature, as depicted by the red curve of Fig. 16. Further-
more, since in the antivortex only the Majorana state is
peaked at the origin, the height of the zero-bias peak of the
antivortex is determined by the broadening of a single state,
while in the vortex and in the s-wave it is a sum of the
broadening of two states. This is why the central peak in the
antivortex is half the height of that found in the vortex when
€. <T<A,. Thus, the asymmetry between the vortex and the
antivortex is not only a clear fingerprint of the p,+ip, sym-
metry of the order parameter, but it is also a smoking gun
evidence of the existence of the Majorana state itself.

The distinction between the vortex and the antivortex
spectra is based on the distinction between the wave func-
tions, which may be seen on scale of the Fermi wavelength
N\r. Therefore, as long as the spatial resolution in the tunnel-
ing conductance or is better than \p, our effect is observable.
But when j—",(E ,r) [Eq. (39)] is smeared over a length scale
(6r)*> )\%, the ratio between the vortex and antivortex peak
heights rapidly approaches unity as &r>\p, as shown in
Fig. 17. The requirement of such a high resolution, in spite
of being restrictive, is feasible in present technology of
dr=1 A since in Sr,RuO, A\p=~83 A3

2%

&

ratio of conductance peaks

o

or

FIG. 17. (Color online) Effect of spatial resolution. Ratio of
vortex to antivortex conductance peak heights (shown in Fig. 16 for
perfect resolution) for spatial resolution &r. Ay and & are Fermi
wavelength and coherence lengths, respectively. Temperature is
7.5€,.
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Moreover, although we found in Sec. III that the Majo-
rana state survives moderate disorder, the suggested results
hold provided the disorder is weak on the scale of Ay, which
is very reasonable as that limit corresponds to minimum con-
ductivity and Anderson localization.

The above analysis is based on the two dimensionality of
the sample. In real three-dimensional samples the conduc-
tance peaks are strongly suppressed by bulk states and sur-
face imperfections.?®3! Nevertheless, it is the difference be-
tween a vortex peak and an antivortex peak which is
sensitive to the existence of the Majorana state. Moreover,
according to the asymptotic analysis,'® momentum along the
vortex line (additional ¢ in the wave function) leaves the
dispersion of the core states [Eq. (18)] unchanged and only
modifies weakly the oscillations in the radial part of the
wave function (through the oscillatory argument, which be-
comes V"k%+k§r).

Performing such an experiment is certain to be a chal-
lenge although likely remains possible. One might imagine
leaving the tip of the STM in the same position while revers-
ing a weak magnetic field where the field is weak enough so
as to flip the direction of the vortex but not to overturn the
chiral order parameter. Such an experiment would rely on an
assumption that the vortex prefers to sit at one particular
position in the sample—presumably due to some inhomoge-
neity or disorder in the sample—and that this preferred po-
sition does not change when the weak magnetic field is re-
versed. In practice, however, one would have to check this
assumption by spatially scanning the STM as even a small
change in the vortex position would have a large effect on
the measured tunneling.

General Cases. A difference between vortex and antivor-
tex conductance peak is expected for any chiral symmetry-
breaking (CSB) superconductor. The important questions are
whether this difference is observable for 7> €, and whether
it is sensitive to the existence of Majorana fermions.

For a CSB superconductor with relative angular momen-
tum M=1,2,... (chiral-p, chiral-d,...), in the presence of a
vortex with vorticity N=*1, =£2,..., the phase winding of
the order parameter is ¢/™*V¢, A Majorana fermion solution
uy~ e™® requires m=(M+N)/2 and would be single valued
only if m is an integer, i.e., M+N is even. However, only if
M+N=0 can the wave function of the Majorana state be
finite at the center of the vortex, i.e., an antivortex with vor-
ticity N=—M. Therefore, although a Majorana state is ex-
pected for every even M +N,’ the asymmetry in the zero-bias
conductance peak for 7> €, is expected only in the subset
IN|=M. Notice that the p,+ip, vortex is the only case where
the asymmetry occurs for a unit vorticity.

VI. SUMMARY

Implementing the BdG equation of a p,+ip, supercon-
ductor on a sphere had several advantages. It allowed us to
study the system with and without vortices and edges, with-
out artifacts of finite-size boundaries. We found the exponen-
tial decay of the Majorana state energy with respect to the
intervortex distance to be robust with respect to the addition
of moderate disorder strength up to the Fermi energy scale.

PHYSICAL REVIEW B 79, 134515 (2009)

The tunneling conductance was plotted and compared to the
s-wave case. It was found that in the moderate temperature
regime €. <T<A,, the zero-bias conductance in the center
of the p,+ip, antivortex is half the height of that of the
vortex. The asymmetry in the conductance peak heights is a
smoking gun signature of the spin-polarized p,+ip, super-
conductor and a direct measurement of the existence of the
Majorana state. This idea can be generalized to order param-
eters of higher angular momentum.
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APPENDIX A: THE MATRIX ELEMENT A"

Im,'m’
In this appendix we derive Al‘in,l’m’ [Egs. (13) and (14)]
from Ay [Egs. (6)—(8)].

The spinor functions a and 83 [Eq. (8)] obey
af’ = Ba’ =27Y_ 151212 Y_112.12,-12(2")
=Y 1212212 Y 1212122 7)] (A1)
and
|aa,*+BB,*|2(R/§p)2

0.0 ., .
cos—cos— + sin—sin—e¢'(¢~%")
2 2

2(RIE,)?

B ( 1 +cos O cos 0 +sin O sin 0 cos(¢p— d)’))(mfp)z
- 2

; (A2)

( 1+cos® >(R/§P)2
B 2

where O is the angle between 2 and €’. Note that for
§I7<R

(RIg,)?
( 1 + cos @) v -(RIE,)%46?

> (A3)

which is equivalent to Gaussian pairing in the plane.
If we denote M=[(R/£,)*], then

M
1 g (M
|Ct’a,* +IBB1*|2(R/§],)2 ~ —M(l + Ccos @)M: _ME ( )COSH®.
2 2 n=0 \ 7
(A4)

Any monomial x" can be expressed as a series of Legendre
polynomials P;(x) (Ref. 32);

X' = 2

I=nn=2,... 2(,._1)/2("7_1)! (I+n+ 1)

21+ n!

Pi(x), (A5)

which satisfy?
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1
4
P(cos ©) = ﬁ S D)"Y (Q)Y,(Q), (A6)

m==1

where Y, (Y, are the spherical harmonics. Substituting
Egs. (A5) and (A6) into Eq. (A4), we obtain

|aa/ +Bﬁ/|2(R/§p)2

' M 1
TS S (= 1AMY (@)Y Q).

M
2 1=0 m=-1

M

AM=

n=LI1+2,...

n—1 -1
=12 > LM =n)! (I+n+ 1)

(A7)
Multiplying two harmonics yields®

qum(ﬂ)yq’l’m’(ﬂ)

r ’ ’ 1
= (= [l mama mmmm \/4—(21 + 1)U +1)
ar

1+ I I
X > (= D)I'N21 + 1( )

! !
-] mem

m m
(l ! "
X

, , (A8)
q9 9 —49-4

) Yq+q!’l!!’m+m7 (Q) .
In particular

You()Y_12,12,+12(€2)

1
—_ (_ 1yn-1 _
=(-1) \/277_(21+ 1)

X D (=122 41 + 28

s=*1/2
1
[ - [+s
2
X
1 1
m *T—- —-m=+ —
2 2
1
[ = Il+s
2
X 1 Y_112 15, m=1/2(€2)
0 —— _
2 2

[¥m+1

2+ 1 Y—1/2,1—1/2,m+1/2(9)>, (A9)

1 [=m+1
=N E( \/:Y—uz,zn/z,mﬂ/z(ﬂ)
+

where the last expression comes from writing the 3j symbols
explicitly.®
Substituting Egs. (A1), (A7), and (A9) into Eq. (7) yield
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M
A, M>-M!
A(Q,Q)=2———— > (A - A},
R™ i1 1)
2 lp+
2
I
X X (= D™ i1 mme12(2)
m=—[-1
XY 12 11/2.me12(82")
A M+1/2 i
=_g > DX (- D" 2Y 1 1 n(€2)
R Zin el
XY _1)21-m(), (A10)
with
M?*-M!
Dy=——F—%
2M+1<IF+ 5)
. M-1-1/2 1 |
X)B; + E -
n=0,2,... 1 21+2+n
A\ M-=-1l+<-n
L 2
I n 1 -1
X[ 2" S M=-1-—=ntQl+n)!t| |,
i 2 2
(A11)

where B} ={2!2M-HU2[L(M— [+ 1)1 (M+1+3) !} only
for /-3 =M(mod 2).

Alternatively, substituting k+ik,— (I+ %)/R in the planar
Ay [Eq. (3)] yields an excellent approximation for D,

[+ —

D, ~ _2 o+ 1/2)2(.5])/R)2’ (A12)

lp+—
)

which is valid for R>5§,. For [, [;>1 we obtain Eq. (14).
For short-range pairing §, <R, the vorticity of the center
of mass can be approximated by

FUQ) = 5[FUQ) + F(Q)]. (A13)
Fy is expanded in spherical harmonics,
F(Q)= 2 fiYn(@), (A14)
L=135.,...

which defines f;.
Substituting Eqs. (A10) and (A14) into Eq. (6) and using
Eq. (A8) yield
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I LT

A ! 1
AV(Q,Q’)legE (- DM +LD,~fZ\/E(2l+ DRIU+1DCL+ D] 1 1
Im -

I'L

_0_
2 2

L (1L ,
X Y 1 um( )Y 120 s () = Y 100 me1 ()Y 11 ()
-m 1 m-1 m 1 -m-1

I
R

Iml"m'

The last line defines A;/m ;1,i- Finally, by using™?

(l I lrr)_(lu l lr)
m m' m' - m" m om'

- l// l/ l
=(=1 1+ +1 ( )
D

m' m

T I
=(_ 1)l+l + ( ”>’

-m —-m' -m

(A16)
we obtain
14 1 )
At = Ot —mr1Bo E(21+ D2 +1)
X 2 2L+ 1f][Dy = (= DD,
L
I I L
l " L
x{1 1 . (A17)
- == 0f\-m m-1 1
2 2
Since L is odd, we obtain Eq. (13). Note that A;,/m,l’,—m+1:

—AIV,,_m +1.m as expected by the antisymmetry.

APPENDIX B: THE DISORDER POTENTIAL

The white-noise potential is defined as a series of inde-
pendently identically distributed complex elements w;,,, with

both real and imaginary parts uniformly distributed in the
oW, YomW,
O

interval [— ] for every [=1,. Therefore

<W7mwl’m’> = 511’5mm’<|wlm|2>
= 511’6mm’2<|Re(wlm)|2>
41

= 511’ 5mm’TW%’
lA

Vi<i,. (B1)

In real space

1%
> A i Y=120m (Y _y 21y ().

(A15)

In

<W2(ﬂ)>= E <W;kmwl’m’>Y7m(Q)Yl’m’(ﬂ)
lm
U'm'

4_ /

In
o
= WS 12 2 |Ylm(ﬂ)|2'
A Im

(B2)

In particular for the north pole

N
4
(W2 (0=00)= Wi 2 [Yio(6=0)
A =0

A 2y + 1

~ W;.
0 l?\ 1=0 477 0

(B3)

In order to calculate the matrix element W, /., we use
the identities?

Yo(Q) = (= DY, (Q), (B4)
and
f dQqum(Q)Yq’l’m/(Q)Yq"]"m"(ﬂ)
1+1"+1 1 ! "
=(-1) — QI+ DI+ 1)2I"+1)
41
l l/ l’/ l l’ l"
X ( ! " ) ( ! " ) ° (BS)
qg ¢ ¢")J\m m' m
Hence
Wimirm = j dQY” (W)Y, (Q)
= (=112 Wl"m"f dQY;_(L2)
l”,m”
X Y—l/2,l’,m’(Q)Y()l”m"(ﬂ)9 (B6)
which yields Eq. (31). Note that W,,m,Jm=W7mJ,m,, as ex-

pected from a real potential.
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APPENDIX C: MATRIX ELEMENTS OF EDGE
OPERATORS

Both the edge potential operator Wy [Eq. (32)] and order
parameter Ay [Eq. (33)] have the following matrix elements:

1
Wi it = Ot (= 1)"7172 \/E(ZH DRI +1)

[ I' L
[re— [ ' L
X2 2L+ 1wk 1 1 ( )
L - -—— 0 m —m 0O
2 2
(C1)
E 1 ,
Alm,l’m’ = (5m’,—mAO E(ZI + 1)(21 + l)
X D \2L+ 1ff[Dy — (- )*'+Lp)]
L
[ ' L )
[ I" L
x{1 1 . (C2)
— == 0|\m -m O
2 2
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an’l,m, is obtained by substituting m=m' in Eq. (31) [due to
Eq. (32)]. Afn ;1 is essentially Eq. (A17). But since Fg [Eq.

(34)] replaces Fy [Eq. (A14)], m is coupled to —m, and
fE+#0 for both odd and even L’s.

For the case of an edge with a vortex, the matrix elements
of the order parameter Ay [Eq. (36)] are

AVE

1 ’
Im,0"m' = 5rn’,—m+lA() \/E(zl‘k 1)(2l + 1)
X E V2L + 1fZE[Dl_ (_ 1)l+l'+LDlr]
L
' L

l ' L
N
—50 -m m-1 1

=~

which are exactly Eq. (A17), with ZEi 0 for both odd and
even L’s.
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