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Directly observing a zero energy Majorana state in the vortex core of a chiral superconductor by

tunneling spectroscopy requires energy resolution better than the spacing between core states �2
0=�F. We

show that, nevertheless, its existence can be decisively tested by comparing the temperature-broadened

tunneling conductance of a vortex with that of an antivortex even at temperatures T � �2
0=�F.
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Driven partially by the dream of building naturally error-
resistant quantum computers, the study of topological
phases of matter has become an important topic of research
[1]. The simplest class of topological phases of matter that
could be useful in this respect are the chiral px þ ipy BCS

paired systems [2]. There are several physical systems
where px þ ipy pairing is believed to be realized, includ-

ing the A phase of superfluid 3He [3] (3He-A), the exotic
superconductor Sr2RuO4 [4], and the � ¼ 5=2 quantum
Hall state [5,6]. In addition, there have been recent pro-
posals to realize px þ ipy pairing in cold fermion gases

[7]. In these (weak) px þ ipy systems, certain types of

vortices (quasiparticles in the quantum Hall context [8])
are believed to carry zero energy Majorana fermions [8,9]
which are the topologically protected degrees of freedom.

In Sr2RuO4 and 3He-A, the vortices that carry the
Majorana fermions are the so-called half-quantum vorti-
ces, which can be thought of as a vortex in the order
parameter of one spin species without a vortex in the order
parameter of the opposite species [10]. (Note that, in spin-
polarized px þ ipy systems, including proposed atomic

gas realizations or the 5=2 state, there is no half-quantum
vortex and the full-quantum vortex carries the Majorana
fermion.)

Let us suppose that, in one of these systems, the relevant
Majorana-fermion-carrying vortex has been observed [11].
The next important step would be to design an experiment
to observe the Majorana fermion in such a vortex [12]. In
the case of Sr2RuO4, one obvious experiment would be an
energy-resolved tunneling experiment, which measures the
local density of states (LDOS) [13]. An observation of a
localized mode at precisely zero energy would be direct
evidence of the Majorana mode. For cold atoms, an analo-
gous experiment for observing the LDOS would be an
energy-resolved local particle annihilation experiment.
For the other realizations of px þ ipy order, it is not as

clear how such an experiment would be performed [14].

In principle, such tunneling experiments could provide
definitive evidence for the Majorana mode. However, in
practice they may be prohibitively difficult. In the vortex,
there will exist subgap bound states in the core known as
Caroli–de Gennes–Matricon (CdGM) states [15,16]. The
spacing between these bound states is typically of order
�c ¼ �2

0=�F, where�0 is the gap (presumably on the order

of the critical temperature) and �F is the Fermi energy.
Since the experimentally observed tunneling spectrum will
be smeared by the temperature, this tunneling experiment
would naively only have a clear signature for T < �c.
Unfortunately, such low temperatures could potentially
be unattainable in any of the proposed realizations (�c �
7 �K in 3He-A, <0:1 mK in Sr2RuO4). The purpose of
this Letter is to demonstrate that the tunneling spectrum
retains an unambiguous signature of the Majorana fermion
at much higher temperatures. The signature is found by
comparing the tunneling conductance peaks of a vortex
with an antivortex, the direction of vorticity being defined
relative to the angular momentum of the chiral order
parameter.
Bogoliubov-de Gennes (BdG) theory.—We consider a

two-dimensional uniform px þ ipy superconductor of

spinless fermions. The BdG excitations are given by [17]

T̂ � �F �
�y �ðT̂ � �FÞ

 !
un
vn

� �
¼ En

un
vn

� �
; (1)

where T̂ is the kinetic energy operator and �F is the Fermi
energy.
We implement the BdG equation on a sphere of radius R,

parametrized by the unit vector � ¼ ð�;�Þ. The spherical
geometry has two important advantages: (i) It has no
boundaries, which strongly affect the low energy spectrum.
(ii) In the absence of disorder, the azimuthal angular
momentum is conserved, which greatly reduces the com-
putational difficulty of the BdG diagonalization.

PRL 101, 267002 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2008

0031-9007=08=101(26)=267002(4) 267002-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.267002


The order parameter field on the sphere is taken to be of
the following form [8,18]:

�v �v ¼ �pð�;�0ÞFv �vð ��Þ
¼ X

lml0m0
�lml0m0Y�ð1=2Þ;l0;m0 ð�ÞY�ð1=2Þ;l;�mð�0Þ;

�pð�;�0Þ ¼ �0

ð4��2
pÞðlF þ 1

2Þ
ð	
0 � 
	0Þ

� j		0� þ 

0�j2ðR=�pÞ2 ; (2)

which defines �lml0m0 . �0 is the pairing amplitude, the
pairing range is �p, and lF is the Fermi angular momentum,

given by �F ¼ lFðlF þ 1Þ=ð2mR2Þ. The functions 	 ¼
cosð�=2Þ and 
 ¼ sinð�=2Þe�i� are spinor functions.
Yqlm are monopole harmonics [19], where q, l, and m are

half odd integers. The order parameter �pð�;�0Þ acquires
a 2� phase when � encircles �0, which describes px þ
ipy pairing. j�pj keeps the particles within the pairing

range j���0j � �p.

The order parameter field Fv �vð ��Þ describes the vorticity
of the pair center of mass �� ¼ ð�þ�0Þ=2. We choose
Fv �v to describe an antivortex on the north pole and a vortex
on the south pole, with the direction of vorticity defined
relative to the chirality of the px þ ipy order parameter,

depicted in Fig. 1. For the vortex pair field, we use the
analytical form (without self-consistency) [20]

Fv �vð�Þ ¼ ðsin�ÞR=�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ðsin�ÞR=��2p ei� ¼ X

L¼1;3;5;...

fLYL1ð�Þ;

(3)

which defines fL. YLM are spherical harmonics, and � ¼
2�F=ð��0kFÞ is Pippard’s coherence length. We take �p <

� for simplicity.
The BdG equation is represented as a matrix in terms of

3j symbols as

Tlm;l0m0 ¼ �F
lðlþ 1Þ � 1

4
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4
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Diagonalizing Eq. (1) produces a set of energies En and
corresponding eigenvectors ulmn , vlm

n . By azimuthal sym-
metry, m is a good quantum number. The BdG wave
functions on the sphere are

unð�Þ ¼ X
l

ulmn Y�ð1=2Þ;l;mð�Þ; (4)

vnð�Þ ¼ X
l

vlm
n Y�

�ð1=2Þ;l;�mþ1ð�Þ: (5)

In Fig. 2, we depict the BdG spectrum of the vortex pair as
a function of m. The continuum states above the gap
jEnj> �0 are extended, while the branch that approaches
zero is the px þ ipy version of the CdGM core states. Their

number is of order �F=�0, and their spacing is of order �c

[16].
As seen in the inset in Fig. 2, each CdGM state is almost

doubly degenerate. The splitting represents weak tunneling
between the north and south pole core states. Indeed, we
find that the tunnel splittings decrease exponentially with

the radius of the sphere �En � e�R=� for R � �.

The lowest positive energy approaches zero as E0 �
e�R=�. In the large sphere limit, the wave functions
u0ð�Þ � v0ð�Þ are equally split between the north and
south poles. The corresponding BdG fermion is con-
structed out of two well separated Majorana operators in

FIG. 1 (color online). A vortex pair of the px þ ipy supercon-
ductor on the sphere, described by Eq. (2). Thin white lines
represent the current flow. Wide arrows represent the pair
relative angular momentum. �p is the pairing range. � is the

coherence length which determines the vortex core size.

FIG. 2 (color online). BdG spectrum EnðmÞ, of the vortex pair
on the sphere, depicting the CdGM core states. The inset shows
that their double degeneracies are split by weak tunneling
between the poles. The state nearest zero energy is the
Majorana mode of both the vortex and the antivortex.
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the north and south poles. We have also verified that E0 is
insensitive to the addition of moderate potential disorder
[21]. This agrees with previous asymptotic calculations in
the plane which have shown that the Majorana excitations
are ‘‘topologically protected’’ against perturbations [8,9].

The asymptotic predictions for the wave functions u0ðrÞ
for coreless vortices in the plane [7] are

u0ðxÞ �
�
J0ðkFrÞe�r=�� antivortex;
J1ðkFrÞei�e�r=�� vortex;

(6)

which are valid for both r � � and r � �. Numerically,
we confirmed that these predictions hold even in finite core
sizes.

The physical reason behind the difference in Eq. (6) is
that the Majorana wave functions are sensitive to the sum
of vorticity and relative angular momentum. J0 is obtained
only when that sum vanishes, and this is important for the
experimental signature we discuss below.

Local density of states (LDOS).—At zero temperature
the LDOS is defined as [13]

T ðE;rÞ¼X
n

junðrÞj2�ðE�EnÞþjvnðrÞj2�ðEþEnÞ;

(7)

where r is the distance from the vortex (or antivortex)
center.

Figure 3 shows the LDOS near the cores of the vortex
and the antivortex for displacements r � � and energies
jEj 	 �0. The Majorana state can be easily discerned as
the zero energy peak in both vortex and antivortex cores.

The other CdGM core states also appear as oscillatory
peaks, with energy spacing �c. The difference between the
vortex and antivortex excitations is apparent: In Eq. (6) the
antivortex Majorana state is peaked at r ¼ 0, while the
other CdGM states have nodes at r ¼ 0. In contrast, the
vortex Majorana state is peaked at half a Fermi wavelength

away from the origin, while two CdGM states are peaked at
r ¼ 0. Notice that, in the vortex, the Majorana state has a
significantly lower peak than in the antivortex.
In a tunneling spectroscopy experiment (e.g., Ref. [22]),

the discrete LDOS spectrum is smeared by temperature
broadening. The tunneling conductance [23] is defined as

dI

dV
ðE; rÞ � T

Z
dE0

�
@fðE� E0Þ

@E0

�
T ðE0; rÞ; (8)

where fðEÞ is the Fermi-Dirac distribution at zero chemical
potential and temperature T.
In the BCS weak coupling regime, kF� � 1, and there-

fore �c could be a very small temperature scale. At mod-
erate temperatures �c < T <�0, the peaks of Fig. 3 are
smeared on the energy axis (but not on the r axis), and
therefore an asymmetry effect can be observed.
A typical tunneling conductance is depicted in Fig. 4,

which shows a central peak at r ¼ 0, E ¼ 0, with low
broad ridges dispersing away to larger r and E. We see
that the central peak of the vortex is twice the height of that
of the antivortex.
This effect is a direct consequence of Eq. (6). Under

temperature smearing the two CdGM peaks at r ¼ 0 of the
vortex merge into one large central peak. In contrast, only a
single Majorana state is responsible for the central peak of
the antivortex. Since the relevant maximas in the LDOS are
nearly identical, a ratio of 2 is obtained at elevated
temperatures.
Our effect requires having spatial resolution in tunneling

conductance better than a Fermi wavelength. If dI=
dVðr; EÞ is convoluted with an areal resolution of ð�rÞ2 >
�2
F, the ratio between the vortex and antivortex peak

heights rapidly approaches unity as �r > �F. The ratio is
weakly temperature-dependent in the regime �c<T<�0.
In real three-dimensional samples, zero bias peaks are

somewhat suppressed by bulk states and surface imperfec-
tions (Ref. [22] reports a 15% enhancement above the high
voltage background). Nevertheless, it is the ratio of 2
between the vortex and an antivortex enhancement which

FIG. 3 (color online). Zero temperature local density of states
of Eq. (7) near the vortex and the antivortex centers. The peaks
belong to the CdGM states. Notice that the zero energy Majorana
mode is removed from the origin in the vortex, while it is
maximized at the origin in the antivortex.

FIG. 4 (color online). Tunneling conductance of Eq. (8), in
arbitrary units. �F is the Fermi wavelength. The temperature
T ¼ 0:15�0 is about 10 times larger than the CdGM level
spacing.

PRL 101, 267002 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2008

267002-3



would signal the Majorana state. To avoid changes in the
background, we suggest to leave the tip at the same posi-
tion while reversing the magnetic field. The field should be
localized and weak enough so as not to overturn the chiral
order parameter.

General cases.—Some difference between vortex and
antivortex excitations is expected for any chiral symmetry
breaking (CSB) superconductor. The important questions
are whether this difference is observable at T > �c and
whether it is sensitive to the existence of Majorana
fermions.

For a CSB superconductor with relative angular momen-
tum M ¼ 1; 2; . . . (px þ ipy, dx þ idy; . . . ), there is a

Majorana state in the vortex core, provided the vorticity
N obeys N þM ¼ 0;
2;
4; . . . [9]. However, in most
cases these Majorana states vanish at the origin. The only
exceptions are cores of antivortices which satisfy N ¼
�M. Our factor of 2 effect will be observable only for
this subset of cases. Notice that px þ ipy is the only case

where the effect occurs for vorticity jNj ¼ 1.
Since the core states are sensitive only to large poten-

tial gradients, moderate disorder does not destroy the
Majorana states. We have explicitly confirmed this
expectation numerically [21], by solving the BdG equation
with a white noise potential. For disorder potential fluctua-
tions up to order �F, the Majorana tunneling energy decays
with R, and u0ðrÞ with r, with the same exponents as the
clean system, and the peak height doubling signature of the
Majorana states is essentially unaffected.

Summary.—We solved the BdG spectrum of pxþ ipy

vortex pair state in the spherical geometry. We showed that,
even at high temperatures compared to the CdGM state
spacing, a signature of the Majorana state remains when
one compares the LDOS of the vortex to that of the
antivortex.
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