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We study hard-core lattice bosons in a magnetic field near half filling. The bare vortex hopping rate is

extracted from exact diagonalizations of square clusters. We deduce a quantum melting of the vortex

lattice above vortex density of 6:5� 10�3 per lattice site. The Hall conductivity reverses sign abruptly as

the density crosses half filling, where its characteristic temperature scale vanishes. We prove that at

precisely half filling, each vortex carries a spin-1=2 quantum number (‘‘v spin’’). Experimental

implications of these results are discussed.
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Properties of two dimensional lattice bosons are relevant
to diverse systems of current interest, e.g., cold atoms on
optical lattices, arrays of Josephson junctions, and under-
doped cuprate superconductors. Particularly interesting are
vortices in such systems, which can be introduced by a
rotation, or a magnetic field (if the bosons carry charge).
The periodic potential scatters the vortices by units of
reciprocal lattice momenta, enhancing their mobility and
modifying their effective Magnus field.

When many vortices are introduced into the system, they
tend to localize in a lattice configuration which coexists
with superfluidity [1–3]. In two dimensions a vortex lattice
can melt by quantum fluctuations resulting in a nonsuper-
fluid quantum vortex liquid (QVL). Present microscopic
understanding of vortex dynamics of lattice bosons is
insufficient to predict the actual melting density. A missing
energy scale, which is difficult to obtain perturbatively or
semiclassically, is the ‘‘bare’’ vortex hopping rate tv on the
dual lattice. Another puzzle is the temperature-dependent
Hall conductivity �HðTÞ, which reflects the effective vor-
tex Magnus dynamics in the QVL phase.

In this Letter we compute tv and �HðTÞ by exact diag-
onalization of finite clusters near half filling. We find tv to
be similar to the boson hopping rate. Mapping our effective
vortex Hamiltonian to the boson Coulomb liquid simulated
in Ref. [4], we expect a QVL above a melting density of
6:5� 10�3 vortices per lattice site. The Hall conductivity
near half filling reverses sign in a sharp transition. The
energy scale governing the transition at finite temperatures
vanishes at the transition point. Furthermore, we show that
at this point vortices carry spin-1=2 degrees of freedom
(‘‘v spins’’), as a consequence of local noncommuting
SU(2) symmetries.

Model.—We consider Nb hard-core bosons (HCB) hop-
ping on a square lattice of unit lattice constant and size
N ¼ LxLy. The filling fraction is nb ¼ Nb=N. An external
vector potential A modulates the hopping amplitude
(Josephson energy) t. The system is placed on a torus
with periodic boundary conditions, as shown in Fig. 1. A

describes a uniform magnetic field of total N� flux quanta,

which penetrates the torus surface. In addition,A describes
two Aharonov-Bohm (AB) fluxes which thread the two
holes of the torus. We define �x and �y as the fluxes
through contours which encircle the torus at x ¼ 0 and y ¼
0, respectively.
In the spin-1=2 representation of HCB, the angular

momentum raising and lowering operators S�r create and
annihilate bosons; the occupation number is nr ¼ Szr þ 1

2 .

The Hamiltonian we study is a gauged XXZ model,

H ¼ � t

4

X
r;�

ðeiAr;�Sþr S�rþ� þ H:c:Þ þ V

2

X
r;�

SzrS
z
rþ�: (1)

Here � ¼ �x̂;�ŷ is the link direction on which the lattice
gauge field Ar;� is defined. Here we only consider the

superfluid regime of weak nearest neighbor repulsion 0<
V � t.
In the absence of external magnetic field, the classical

ground state of H is a ferromagnet in the XY plane. The

FIG. 1 (color online). The gauged torus. Geometry of HCB
Hamiltonian Eq. (1) which serves to extract its vortex mass and
Hall conductivity. The torus surface is penetrated by a uniform
magnetic field, and threaded by two Aharonov-Bohm fluxes
� ¼ ð�x;�yÞ. For one flux quantum there is no translational
symmetry on the torus. Red circles denote cycles of zero flux,
and the vortex center Rvð�Þ is localized on the antipodal point
to their intersection, the null point.
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mean field superfluid stiffness is given by �mf
s ¼ tnbð1�

nbÞ. Consequently, the superfluid transition temperature,
which is proportional to �s, is maximal at half filling [5].

An important distinction between lattice hard-core
bosons and continuum models is the existence of a charge
conjugation operator C � expði�PrS

x
rÞ on the lattice. C

transforms boson ’’particles’’ into ’’holes’’ ni ! ð1� niÞ,
and the Hamiltonian into

CyH ½A; nb�C ¼ H ½�A; 1� nb�: (2)

A consequence of (2) is that the Hall conductivity is
antisymmetric in nb � 1=2:

�Hðnb; TÞ ¼ ��Hð1� nb; TÞ: (3)

In terms of vortex motion, this relation implies that below
and above half filling vortices drift in opposite directions
relative to the particle current. Sign reversal of Hall con-
ductivity is familiar from tight binding electrons at half
filling on bipartite lattices. Here, however, the mechanism
of sign reversal is different: it arises from the hard-core
interactions of bosons and occurs for any lattice structure.

Single vortex Harper Hamiltonian.—Let us consider the
case of N� ¼ 1, which introduces a single vortex on the

surface of the torus. The vortex center R is treated as a
quantum point particle, which hops between dual lattice
sites (centers of plaquettes). Its hopping amplitude is
modulated by a dual gauge field a, whose circulation yields

a flux of
Pplaq

R;� aR;� ¼ 2�nb per dual plaquette. This con-

struction results in a Harper hopping model, which imple-
ments the well-known hydrodynamical Magnus action on
the vortex motion [6,7].

On the torus, translational symmetry is broken by the
magnetic fluxes [8], and the vortex feels an effective
confining potential of the form UNðRÞ ¼ 1

2KjR�
Rvj2=ðLxLyÞ. The constant K is calculated variationally

from Eq. (1) using spin coherent states. By minimizing the
variational energy with respect to the position of the vortex
centered atR, we calculate the force constant K, which for
V ¼ 0 fits the value K ’ 39:2tnbð1� nbÞ.

The minimum of the confining potential Rvð�x;�yÞ
depends on the values of the AB fluxes as follows [8–10]:

R�
v ¼ L�

�
1

2
þ ���

��

2�

�
modL�; (4)

where ��� is the antisymmetric tensor and indices �;� ¼
x; y are not summed.

Thus we arrive at the low energy Harper Hamiltonian of
the single vortex, which is given by

Hv
R;R0 ¼ � tv

2

X
�

eiaR;��R0;Rþ� þUNðRÞ�R;R0 : (5)

Here we ignore coupling of the vortex to the superfluid
phonons [11–13], which are gapped on the finite lattice by
the energy scale 2�t=L.

For a quantitative quantum theory of vortices we need to
evaluate the effective hopping tv. Since vortex tunneling
between lattice sites depends on short-range many-body
correlations, we extract tv from exact numerical diagonal-
izations of H on 16–20 sites clusters, in the presence of a
single flux quantum. By tuning tv, we fit the lowest three
eigenenergies En of H to those of the effective Harper
Hamiltonian (5).
Our results for tvðnb; V=tÞ, for N ¼ 20, fit the analytical

approximations,

tvðnb; 0Þ ¼ t� 12:6

�
nb � 1

2

�
2 þ 1264

�
nb � 1

2

�
4
;

tv

�
1

2
; V

�
¼ tþ 1:5V þ 2:7

V2

t
:

(6)

The system parameters were varied in the range jnb � 1
2 j �

0:2, and V=t < 0:5. We find that at half filling, tv varies
very little between the N ¼ 16 and N ¼ 20 lattices.
We have argued that the low energy eigenstates j�ni of

H describe fluctuations of the vortex positions. We expect
the low energy vortex wave functions to be localized by the
confining potential nearRv. To test these expectations, we
compare the vorticity density hr � ji of the states j�ni to
the probability density of the eigenstates of Hv. As shown
in Fig. 2, using the fitted value of tv we obtain similar
distributions for both sets of wave functions.
Vortex tunneling.—In (6) we find that near half filling,

vortices are as light as bosons, tv � t. This implies that the
vortex tunneling rate between two localized pinning po-
tentials of strength V, which are separated by distance d,

decays exponentially as �	 Ve�d=	. The localization

length 	 / ffiffiffiffiffiffiffiffi
t=V

p
diverges at weak pinning. This result is

to be contrasted with weakly interacting continuum Bose
gas. There, the vortex tunneling rate between pinning sites

FIG. 2 (color online). (a) The vorticity hr � ji for the first
three doublets of the HCB model, Eq. (1), with N� ¼ 1 and� ¼
0 on a 4� 4 lattice. The uniform background vorticity has been
subtracted. (b) Single particle probability density of the lowest
three excitations of Hv, Eq. (5) with tv ¼ t.
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is much smaller, and decays as a Gaussian �	 e�ð�=2Þnbd2

[14,15]. From this comparison, we conclude that at half
filling nb ¼ 1=2 the lattice and the interactions enhance
vortex mobility considerably.

Quantum melting transition.—Having calculated tv, we
can write down the effective multivortex Hamiltonian in
the thermodynamic limit. We dropUN at largeN. By (5), at
half filling there is dual magnetic flux � per plaquette. In
the magnetic Brillouin zone, there is a twofold degenerate
dispersion Ek;s, s ¼"; # . We later return to explain the

origin of this v-spin degeneracy. The vortex effective
mass is M�1

v ¼ @2Ek=@k
2 ¼ tva

2=@2. Integrating out the
phonon fluctuations produces an instantaneous logarithmic
(2D Coulomb) interaction between vortices, plus retarded
(frequency-dependent) interactions [12,13]. Since we are
interested in the short wavelength fluctuations which are
responsible for quantum melting of the vortex lattice, we
ignore these retardation effects.

Thus, for half filled bosons and a vortex density nv we
arrive at the multivortex Hamiltonian

H mv¼ X
i;s¼"#

p2
i

2Mv

þ�t

4

X
i�j

logðjri�rjjÞ�nv�
2t

4

X
i

jrij2:

(7)

The single spin version of H mv is the boson Coulomb
liquid studied by Magro and Ceperley (MC) [4] by diffu-
sion Monte Carlo simulation. Their dimensionless parame-
ter which governs the phase diagram is r�2

s ¼ �nva
2
0. We

set their a0 ¼ ð @
2

�tMv
Þ1=2 as the microscopic length which

matches between their model and H mv. MC found that
below rs � 12 the boson lattice undergoes quantum melt-
ing. Using our values of tv in Eq. (6), the critical rs ¼ 12
translates into a vortex melting density of

ncrv �
�
6:5� 7:9

V

t

�
� 10�3 vortices per site: (8)

This is a surprisingly low vortex density, which implies
that a QVL can be created at manageable rotation frequen-
cies for cold atoms, and moderate magnetic fields for
Josephson junction arrays and cuprate superconductors.

Hall conductance.—The temperature-dependent Hall
conductance of the finite cluster is given by the thermally
averaged Chern numbers [16]:

�Hðnb;TÞ¼ 1

�

X1
n¼0

Z 2�

0

Z 2�

0
d2�

e�En=T

Z
Im

�
@�n

@�x

��������
@�n

@�y

�
:

(9)

Enð�Þ and j�nð�Þi are the exact spectrum and eigenstates
of (1). The results are matched at high temperatures with
the ones obtained by the Kubo formula [8]. A typical Hall
conductance as a function of filling forN� ¼ 1 is plotted in

Fig. 3. At zero temperature, �H ¼ Nb below half filling,
reminiscent of the behavior in the continuum �H / Nb=Nv

which holds irrespective of temperatures. However, for

HCB, �HðT; nbÞ decreases with temperature. Moreover,
�H reverses sign at half filling, as expected by (3).
Our results show a striking general feature. We find that

�H undergoes a sharp transition between�H > 0 (�H < 0)
just below (above) half filling. As the temperature is low-
ered, the sign reversal of the Hall conductance happens
across a narrower region around half filling. This suggests
a singularity in the thermodynamic system with a vanish-
ing energy scale. We define THðnbÞ by �HðTHÞ ¼ 1

2�Hð0Þ.
In the inset of Fig. 3, we show that TH seems to vanish with
jnb � 1

2 j, although we cannot yet investigate this behavior

further in larger systems.
Spin-1=2 vortices.—Half filling is a special density for

H . First, the Hall coefficient vanishes by (3), which
implies that the vortices see no static Magnus field.
Second, the external magnetic field creates a multitude of
doublet degeneracies. To be precise, for any odd number
N� of flux quanta, there are N (the system size) distinct

values of AB fluxes �i where all eigenstates are twofold
degenerate. We have found that these degeneracies are
associated with noncommuting local symmetry operators

�� ¼ 1

2
U�CP�½Rv�; � ¼ x; y: (10)

C is the charge conjugation [see Eq. (3)], and U� is a pure

gauge transformation. PxðyÞ is a lattice reflection about the
xðyÞ axis passing through the vorticity center Rv. For N
discrete AB fluxes, Rv can be placed on each one of the
lattice positions, where ½H ;��� ¼ 0. These symmetries
follow from the fact that CP� preserves the magnetic field
and the AB fluxes. If�i are tuned by (4) to positionRv on

FIG. 3 (color online). Hall conductance as a function of boson
number Nb for hard-core bosons, Eq. (1) on the torus. Tempera-
tures, in units of t, vary in intervals of �T ¼ 0:05t. The jump
of the zero temperature conductance at half filling is smoothened
at finite temperatures. Inset: Hall temperature scale as a func-
tion of density deviation from half filling. TH is defined by
�HðTHÞ ¼ 1

2�Hð0Þ.
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a lattice site, CP� sends H to itself up to a pure gauge
transformation ðU�Þy.

A straightforward, though cumbersome, calculation [8]
yields the commutation rule

�y�x ¼ ð�1ÞN��x�y: (11)

We define the vector � ¼ ð�x;�y;�zÞ, where �z ¼
2i�x�y. For any odd number N� of vortices it is easy to

show using (11) that each of the energy eigenstates is at
least twofold degenerate.

Since �2 ¼ 3=4, they obey the algebra of spin-1=2
operators. Thus the doublets reflect the Kramers degener-
acy expected for an odd number of interacting spin-1=2
degrees of freedom which we label v spins. As shown
by the form of ��, the v spins are attached to the vor-
tex positions. The z-direction polarization corresponds to a
boson charge density wave (CDW)modulation. Variational
calculation shows the CDW to be exponentially localized
in the vortex core [17]. Thus v-spin interactions between
different vortices decay exponentially, and are very weak
in the vortex lattice regime.

Nature of the QVL.—Theoretical treatments of lattice
bosons have found a myriad of vortex-antivortex conden-
sate (VC) phases at all rational boson filling fractions,
nb ¼ p=q, due to q-fold degeneracies of the Harper
Hamiltonian on an infinite lattice [18–21]. VCs are, in
effect, insulating phases where the dual Anderson-Higgs
mechanism produces a Mott gap [11]. However, the QVL
we study, which contains a net density of vortices, differs
from the proposed VC phases in two important respects.

(i) MC [4] have found that the liquid phase of H mv (7)
has vanishing condensate fraction. Although in a strictly
Galilean invariant model one expects a dual superfluid
density �v

s / nv [22], superfluidity does not necessarily
persist in the presence of weak impurity potentials.
Furthermore, retardation effects act to suppress superflu-
idity [23]. The QVL can therefore differ from the charge-
gapped insulator. Whether it is a metal is an open possi-
bility. Away from half filling, our results for �H show that
the vortices are subject to a strong magnetic field, which
further suppresses their condensation. At low boson fillings
and large vortex density, nb=n� < 1, there is evidence for

fractional quantum Hall phases [24,25].
(ii) Away from the commensurate filling VC phases at

nb ¼ p=q, the Hall conductivity is expected to cross zero
and be proportional to the excess density from p=q. We
found that the Hall conductance has a very different be-

havior: it has only one abrupt jump between a positive
value below, and is negative above half filling.
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