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Using a generalized reciprocity relation between charge and vortex conductivities at complex
frequencies in two space dimensions, we identify the capacitance in the insulating phase as a measure
of vortex condensate stiffness. We compute the ratio of boson superfluid stiffness to vortex condensate
stiffness at mirror points to be 0.21(1) for the relativistic O(2) model. The product of dynamical
conductivities at mirror points is used as a quantitative measure of deviations from self-duality between
charge and vortex theories. We propose the finite wave vector compressibility as an experimental measure
of the vortex condensate stiffness for neutral lattice bosons.
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Two dimensional superfluid-to-insulator transitions
(SIT) have been observed in diverse systems, e.g.,
Josephson junction arrays [1], cold atoms trapped in optical
lattices [2–4], and disordered superconducting films [5].
Recent experiments have uncovered important dynamical
properties near the quantum critical point: a softening
amplitude (Higgs) mode observed in the optical lattice
[4], and a critically suppressed threshold frequency seen by
terahertz conductivity in superconducting films [6]. These
have motivated numerical studies of real-time correlations
near criticality [7–9], and novel ideas from holography
[10–12].
Three decades ago, Fisher and Lee [13] showed that the

SIT can be described as the Bose condensation of quantum
vortices. Despite the appeal of this description, ρv, the
vortex condensate stiffness, has remained an elusive
observable, for which no experimental probe has yet
been proposed. Also, to our knowledge, ρv has not been
calculated near the critical point, for any micro-
scopic model.
In this Letter, we address this problem, by using an exact

reciprocity relation between complex dynamical conduc-
tivities of bosons (σ) and vortices (σv)

σðωÞ × σvðωÞ ¼ q2=h2; ð1Þ

where q is the boson charge (¼ 2e in superconductors)
[14]. At low frequencies, this equation is dominated by the
reactive (imaginary) conductivities. The superfluid stiffness
ρs in the superfluid (sf) phase can be measured by the low
frequency inductance Lsf , ρs ¼ ℏ=ð2πσqLsfÞ, where σq ¼
q2=h is the quantum of conductance. Equation (1) allows
us to identify the elusive vortex condensate stiffness with
the capacitance per square in the insulating phase,
Cins ¼ ℏσq=ð2πρvÞ.
The charge-vortex duality (CVD) is an exact mapping

between boson and vortex degrees of freedom near the SIT.

In the presence of particle hole symmetry, the CVD is
mathematically equivalent to the well known classical
statistical mechanics duality mapping between the XY
model and a lattice superconductor in three space dimen-
sions [15,16]. A related, but distinct, concept to CVD is
self-duality, a property of certain physical systems in which
the original and dual degrees of freedom satisfy identical
dynamics. If the CVD mapping were self-dual then the
universal critical conductivity at the SIT would equal
exactly σq [13]. Experiments, however, have measured
nonuniversal values of the critical conductivity [5], indicat-
ing that the boson and vortex theories are not self-dual. This
is attributed mainly to the different interaction ranges of
bosons (in the superfluid) and vortices (in the insulator).
Moreover, in real experiments, several additional factors

FIG. 1 (color online). Critical energy scales near the SIT
computed by QMC calculations.The superfluid is characterized
by the mass of the amplitude mode, mH, and the superfluid
stiffness, ρs, the insulator by the single particle gap, Δ, and
the vortex condensate stiffness, ρv. The amplitude ratios
mHð−δgÞ=ΔðδgÞ ¼ 2.1ð3Þ[17], ρsð−δgÞ=ΔðδgÞ ¼ 0.44ð1Þ [7],
and ρvðδgÞ=ΔðδgÞ ¼ 2.1ð1Þ are universal.
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can spoil self-duality: (i) potential energy (both confining
and disordered), which couples differently to charges and
vortices and (ii) fermionic (Bogoliubov) quasiparticles in
superconductors produce dissipation, which can alter the
phase diagram from the purely bosonic theory.
In a self-dual theory, one expects ρsð−δgÞ ¼ ρvðδgÞ,

where �δg are mirror points on either side of the SIT.
Figure 1 depicts all the critical energy scales of the
relativistic O(2) field theory, obtained by large-scale
Monte Carlo simulation. In addition to the Higgs mass
mH and the charge gapΔ, which vanish at the critical point,
we compare the energy scales ρs and ρv which are also
critical, but have different relative amplitudes. The ratio
ρsð−δgÞ=ρvðδgÞ ¼ 0.21ð1Þ differs from unity and, hence,
quantifies the deviation from self-duality.
It is interesting to ask whether self-duality is better

satisfied at finite frequencies. To address this, we propose
the product function

RðzÞ≡ σðz;−δgÞ × σðz; δgÞ=σ2q; ð2Þ
as a measure of self-duality between mirror points. Here, z
denotes either a real or a Matsubara frequency.
The high frequency conductivity [18] (after removal of

cutoff dependent corrections) reaches a universal value
σ� ¼ 0.355ð5Þσq [10,11]. We compute the function
RðiωmÞ and address its implications to CVD. We conclude
by proposing an experimental measure of the vortex
condensate stiffness ρv for neutral bosons in an optical
lattice.
Vortex transport theory.—Boson charge current ~j is

driven by an electrochemical field ~E. Vortices are point
particles in two dimensions. The vorticity current ~jvðtÞ is
driven by the Magnus field ~Ev. Hydrodynamics dictate
simple relations between electrochemical field and vortex
number current, and between boson charge current and
Magnus field [19]

Eα
v ¼

h
q
ϵαβjβ; Eα ¼ h

q
ϵαβjβv; ð3Þ

where ϵ ¼ iσy is the two dimensional antisymmetric tensor.
We note that Eqs. (3) are instantaneous. Conductivity
relates currents to their driving fields

jαðvÞðtÞ ¼
Z

t

−∞
dt0σαβðvÞðt − t0ÞEβ

ðvÞðt0Þ: ð4Þ

By Fourier transformation, the complex dynamical con-
ductivities obey a reciprocity relation ε⊤σvε ¼ ðq2=h2Þσ−1.
For the case of an isotropic longitudinal conductivity
σxx ¼ σyy ¼ σ, one obtains the reciprocity Eq. (1), which
can be analytically continued to Matsubara space ω → iωn.
Model and observables.—For numerical simula-

tions, we study the discretized partition function

Z¼R
DφDφ�e−S½φ;φ��, where the real action S on

Euclidean space-time is

S ¼
X
hi;ji

φiφ
�
j þ c:c:þ 2μ

X
i

jφij2 þ 4g
X
i

jφij4: ð5Þ

Here, φi are complex variables defined on a cubic lattice of
size L × L × β. We take β ¼ L throughout. For μ < 0, this
model undergoes a continuous zero temperature quantum
phase transition (QCP) between a superfluid with hφi ≠ 0
for g < gc and an insulator with hφi ¼ 0 for g > gc. We
define the quantum detuning parameter δg ¼ ðg − gcÞ=gc.
The critical energy scales near the SIT, as shown in Fig 1,

in the superfluid phase are the amplitude mode mass mH
and the superfluid stiffness ρs [17,20]. In the insulating
phase, excitations are gapped, with single-particle gap Δ.
The lattice current field is Ji;η ¼ −ðδS=δAi;iþηÞ, where

we have introduced a Uð1Þ lattice gauge field by Peierls
substitution φiφ

�
iþη → φiφ

�
je

iAi;iþη . The dynamical conduc-
tivity is given by the current-current correlation function

~σðωmÞ ¼ −
ΠxxðωmÞ

ωm
;

ΠxxðωmÞ ¼
1

L2β

X
i;j

eiωmτij
δhJi;xi
δAj;x

; ð6Þ

where ωm ¼ 2πmT is a Matsubara frequency and τij is the
discrete imaginary time interval between points i; j.
Remarkably, in 2þ 1 dimensions, the conductivity has
zero scaling dimension [14], such that it is given by a
universal amplitude with scaling form

~σðωmÞ ¼ σqΣ�ðωm=ΔÞ; ð7Þ

where Σþ (Σ−) belongs to the insulating (superfluid) phase.
Real frequency dynamics can be obtained by analytic
continuation σðωÞ ¼ ~σðωm → −iωþ 0þÞ.
In the superfluid phase, the reactive conductivity

diverges as Im½σsfðωÞ� ¼ 2πσqρsð−δgÞ=ðℏωÞ. Previous
calculations [21] show that the dissipative component
has a small subgap contribution below the Higgs mass, 0 <
ω ≪ mHð−δgÞ which goes as Re½σsfðωÞ� ∼ ω5. This is
negligible as ω → 0 and the analytic continuation to
Matsubara frequency yields

~σsfðωmÞ ∼
2πσqρs
ℏωm

; ðfor ωm ≪ mHÞ: ð8Þ

In the insulator (ins), the dissipative conductivity van-
ishes identically below the charge gap ΔðδgÞ [7,22]. The
reactive conductivity vanishes linearly with frequency
Im½σinsðωÞ� ¼ −Cinsω, where Cins is the capacitance per
square. As a result, the conductivity, as a function of the
complex frequency z, has a radius of convergence of 2Δ
about z ¼ 0 and in the low frequency limit, it is given by
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σins ¼ −iCz. This can be analytically continued to
Matsubara space by setting z ¼ iωm, which yields

~σinsðωmÞ ∼ Cinsωm; ðfor ωm ≪ ΔÞ: ð9Þ

Equation (7) implies that the capacitance Cins diverges near
the QCP as Cins ∼ 1=Δ. The capacitance measures the
dielectric response of the insulator. Its divergence reflects
the large particle-hole fluctuations near the transition.
In the vortex description, the insulator is a bose con-

densate of vortices, with a low frequency vortex conduc-
tivity ~σvðωmÞ ¼ ρv=ðℏ2ωmÞ. As a consequence, ρv can be
defined in terms of the capacitance by applying Eq. (1)

ρv ≡ ℏσq
2πCins

: ð10Þ

We shall use this important relation to test for self-duality in
the 2þ 1 dimensional O(2) field theory.
Methods.—A large scale quantum Monte Carlo (QMC)

simulation of Eq. (5) is used to evaluate Eq. (6). To
suppress the effect of critical slowing down near the phase
transition we use the classical worm algorithm [23]. This
method samples closed loop configurations of a dual
integer current representation of the partition function.
This enables us to consider large systems, of linear size
up to L ¼ 512, which is crucial for obtaining universal
properties. To validate the universality of our results, we
performed our analysis on two distinct crossing points of
the SIT, by choosing μ ¼ −0.5 and μ ¼ −5.89391 and
tuning g across the transition. We found excellent agree-
ment within the error bars. Henceforth, we will only present
results for μ ¼ −5.89391, a value which has been argued to
reduce finite size corrections to scaling [24].
First, we locate the critical coupling gcðμÞ with

high accuracy. This can be achieved by a finite size
scaling analysis of the superfluid stiffness ρs ¼
ð1=LÞð∂ZðφÞ=∂φÞjφ¼0 [25], where ZðφÞ is the partition
function in the presence of a uniform phase twist φ. In this
work, we find gc ¼ 7.0284ð3Þ.
We extract the gap Δ in the insulator by analyzing the

asymptotic large imaginary time decay of the two point
Green’s function. In a gapped phase, this has an exponential
decay of the form GðτÞ ∼ e−Δτ þ e−Δðβ−τÞ, where β ¼ 1=T.
We compute Δ by a fit to this form. Near criticality, the gap
is expected to scale as a power law Δ ¼ Δ0jδgjν, where ν is
the correlation length exponent. We use ν ¼ 0.6717ð3Þ, as
obtained by previous high accuracy Monte Carlo studies of
the 3D XY model [26]. Our results for ΔðδgÞ are in
excellent agreement with the expected scaling, with the
nonuniversal prefactor Δ0 ¼ 2.09ð5Þ.
Results.—In Fig. 2, we present the dynamical conduc-

tivity σðωmÞ as a function of Matsubara frequency, both in
the insulator and in the superfluid, for a range of detuning
parameters δg near the critical point. To suppress finite size

effects in the insulator, we used an improved estimator, in
which we consider only loop configurations with zero
winding number [10,11]. We find that the dynamical
conductivity as a function of ωm in Fig. 2, follows the
form of the low frequency reactive conductivity both in the
superfluid, Eq. (8), and in the insulator, Eq. (9).
Next, we calculate ρs and ρv in their respective phases.

The superfluid stiffness ρs was calculated using the
standard method of winding number fluctuations [27]. In
order to extract ρv, we use the relation in Eq. (10). As a
concrete Monte Carlo observable for the capacitance, we
use the conductivity evaluated at the first nonzero
Matsubara frequency

CðδgÞ ¼ lim
L→∞

σðωm ¼ 2π
L ; δgÞ

2π
L

: ð11Þ

Both the vortex condensate stiffness ρv and the super-
fluid stiffness ρs near the critical point follow a power law
behavior ρfs;vg ∼ ρ0fs;vgjδgjν. The nonuniversal prefactors ρ0v
and ρ0s are extracted by a numerical fit. We find
ρs=ρv ¼ 0.21ð1Þ. Finite size scaling effects are discussed
in the Supplemental Material [28]. Surprisingly, this value
is close to the value ρs=ρv ¼ 0.23 obtained by a simple one
loop weak coupling calculation [7].
The universal scaling function of the dynamical con-

ductivity is obtained by rescaling the Matsubara frequency
axis by the single particle gap Δ. Curves for different
detuning parameters δg collapse into a single universal
curve at low frequencies. On the other hand, at high
frequencies, ωm need not be a negligible fraction of the
UV cutoff scale Λ. This leads to nonuniversal corrections in
the conductivity that depend on powers of ωm=Λ. We take
these into account by fitting the numerical QMC data to the
following scaling form:

FIG. 2 (color online). The conductivity as a function Matsubara
frequency. The curves differ by the detuning parameter δg. In the
insulator, the low frequency conductivity is linear, σins ∼ ωm
indicating capacitive behavior. In the superfluid, the conductivity
diverges as σsf ∼ 1=ωm indicating inductive response.
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σ�ðωm; δg;ΛÞ ¼ σqΣ�

�
ωm

Δ

�
þ A

ωm

Λ
þ B

�
ωm

Λ

�
2

: ð12Þ

Here, A and B are expected to depend smoothly on the
detuning parameter δg. Since we consider a narrow range of
values of δg, we approximate A and B as constants. This
enables us to extract the universal functions Σ� on both
phases by using only two fitting parameters. For further
details, see the Supplemental Material [28].
The result of this analysis is shown in Fig. 3(a), where we

subtract the nonuniversal part of the conductivity using
Eq. (12). The conductivity curves, on each side of the phase
transition, collapse, with high accuracy, to the universal
conductivity functions Σ�ðωm=ΔÞ.
At high frequencies, the universal conductivity curves

saturate to a plateau, with σðω ≫ ΔÞ ¼ 0.354ð5Þσq in the
insulating phase and σðω ≫ ΔÞ ¼ 0.355ð5Þσq in the super-
fluid phase. As a result, we conclude that the high
frequency universal conductivity, σ�, is a robust quantity
across the phase transition. Our scaling correction analysis
differs significantly from that of Refs. [10–12], yet the
value of the high-frequency conductivity is in agreement
with their results.
Finally, we study deviations from self-duality as a

function of Matsubara frequency. In Fig. 3(b), we depict
the product of the Matsubara frequency conductivity
evaluated at mirror points across the critical point,
RðωmÞ ¼ σðωm; δgÞσðωm;−δgÞ=σ2q. In order to study the
critical properties, we subtract the nonuniversal cutoff
corrections. Note that, for ωm ≫ Δ, R → ðσ�=σqÞ2,
whereas for ωm ≪ Δ, R approaches the product of
reactive conductivities in the two phases. In both limits,
the Matsubara and real frequency results coincide,
RðωÞ ¼ RðωmÞ. By contrast, at intermediate frequencies,
determination of RðωÞ requires analytical continuation. If
the CVD were self-dual, then Eq. (1) would imply that
this product is frequency independent and equal to 1. Our
results display a nontrivial frequency dependence and
deviate from the predicted self-dual value. We attribute
this deviation to the different interaction range of charges
and vortices.
Discussion and summary.—The universal ratio of the

reactive conductivities Cins=Lsf motivates future experi-
ments as it provides a direct probe of the charge-vortex
duality.
Recent THz spectroscopy measured the complex ac

conductivity near the SIT in superconducting InO and
NbN thin films [6]. In these systems, the superfluid stiffness
in the superconducting phase can be measured from the low
frequency reactive response [32,33].Detecting the diverging
capacitance in the insulating side may require careful
subtraction of substrate signal background [34].
Another experimental realization of the SIT is the Mott

insulator-to-superfluid transition of cold atoms trapped in
an optical lattice. At integer filling, the transition has an

emergent Lorentz invariance [35], and hence, its critical
properties are captured by the Oð2Þ relativistic model in
Eq. (5). We propose a direct approach to extract the
capacitance of the Mott insulator using static measure-
ments. In the insulator, the current and charge response
functions are related by the continuity equation,
Πxxðk;ωÞ ¼ −ðω2=k2Þχρðk;ωÞ, where χρðk;ωÞ is the
charge susceptibility. Hence,

Cins ¼ lim
ω→0

lim
k→0

Πxxðk;ωÞ
−ω2

¼ lim
k→0

χρðk;ω ¼ 0Þ
k2

; ð13Þ

where the ω → 0 and k → 0 limits commute since the
insulator is gapped [36]. Thus, the capacitance is simply
related to the finite k compressibility of the Mott insulator.
This can be measured, e.g., by applying an optical potential
at small wave vector k and probing the rearrangement of
boson density using in situ imaging [37]. Temperature
effects are discussed in the Supplemental Material [28].
Alternatively σ0ðωÞ, for which experimental protocols

were proposed, [11,38] can be used to compute σ00ðωÞ by
means of the Kramers-Kronig integral.
In summary, we computed the vortex condensate stiff-

ness ρv, the high frequency universal conductivity, and
provided a quantitative measure for deviation from self-
duality as a function of Matsubara frequency. In addition,
we suggest concrete experiments that test our predictions in
THz spectroscopy of thin superconducting films and in
cold atom systems.
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FIG. 3 (color online). (a) Scaling function of the dynamical
conductivity in the superfluid (δg < 0) and insulator (δg > 0).
Data for different values of the detuning δg collapse to two
universal curves. (b) Measure of charge vortex duality of theOð2Þ
model. Universal scaling function for RðωmÞ defined in Eq. (2).
Deviation of this function from unity quantifies the difference
between charge and vortex matter.
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