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We provide a theoretical explanation for the optical modes observed in inelastic neutron scattering on the
bcc solid phase of helium 4 [T. Markovich et al., Phys. Rev. Lett. 88, 195301 (2002)]. We argue that these
excitations are amplitude (Higgs) modes associated with fluctuations of the crystal order parameter within
the unit cell. We present an analysis of the modes based on an effective Ginzburg-Landau model, classify
them according to their symmetry properties, and compute their signature in inelastic neutron scattering
experiments. In addition, we calculate the dynamical structure factor by means of an ab intio quantum
Monte Carlo simulation and find a finite frequency excitation at zero relative momentum.
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Introduction.—The harmonic theory of solids predicts
that the excitation spectrum of a monoatomic Bravais
lattice crystal should consist solely of acoustic phonons.
It is therefore quite surprising that inelastic neutron
scattering (INS) measurements have detected gapped
opticlike modes in the bcc phase of solid helium 4 [1–3].
These gapped excitations include a dispersing longitudinal
mode [1] and a nondispersing transverse mode [2–4].
Similar measurements carried out in the hcp phase of 4He
have tentatively identified opticlike modes beyond those
expected for the hcp structure [5]. Previous theories
associated these excitations with nonphononic dipolar
[6–8] and delocalized vacancy modes [5]. These scenarios,
while plausible, do not account for the existence of multiple
gapped modes. Hence, a basic understanding of this
phenomenon is still lacking.
In this Letter, we identify these optical excitations as

amplitude modes of the solid order parameter. Amplitude
(“Higgs”) modes appear in many condensed matter systems
and have recently been the focus of intense experimental
and theoretical research. Some notable examples are super-
conductors [9–11], cold atoms in optical lattices [12,13],
and antiferromagnets [14]. However, such modes are not
generally expected in solids. Here we argue that the large
zero-point fluctuations in solid 4He allow it to be treated
as a three-dimensional charge-density wave (CDW) that
supports, in addition to the usual acoustic phonons, gapped
amplitude modes.
The phonon spectrum of bcc 4He depends strongly on

quantum effects, and for two reasons. First, the classical bcc
structure is difficult to stabilize with power law potentials,
and for Lennard-Jones systems, the only equilibrium states
are either hcp or fcc [15], at all molar volumes. Second, the
small helium mass leads to large zero-point fluctuations on
the order of 30% of the interatomic distance [16], well in
excess of the Lindemann criterion. Although this does not

guarantee a melting transition [17], it provides an indication
for the relatively strong density fluctuations in the bcc phase.
This invalidates the use of real space atomic displacements as
small expansion parameters, and entails significant nonlinear
contributions to the equations of motion. To account for
quantum fluctuations, Hartree [18] and self-consistent har-
monic theories [19–22] have been used with general success
to describe the experimentally observed acoustic phonon
spectra [23,24]. If strong enough, the nonlinear quantum
lattice dynamics can, in principle, support excitations beyond
the acoustic phonons [25]. Physically, the large zero-point
motionmayallow for density fluctuationswithin the unit cell,
which are likely responsible for the optical modes seen in
neutron scattering.
A natural question is then how to construct a linear

theory for the excitations of bcc 4He. To address this
problem, we note that the large spread of the atomic density
profile within the unit cell leads to suppression of high
lattice harmonics. This is in sharp contrast to the classical
picture of a crystal with well-localized atoms, for which all
lattice harmonics are sizable. It may therefore be justified
to neglect high harmonics and consider only the Fourier
weight corresponding to the primary Bragg vectors. The
resulting description of the solid is then in terms of a CDW,
whose spectrum naturally contains both acoustic phonons
and amplitude modes (see Fig. 1).
Ginzburg-Landau (GL) theory.—In constructing the phe-

nomenological Ginzburg-Landau theory we make two main
assumptions. First, the gapped modes are presumed to result
from density fluctuations (and not, e.g., from fluctuations
related to nearby superfluid order). Second, we assume the
density dynamics is dominated by a small number of primary
Bragg vectors. Our results follow from these assumptions
combined with symmetry considerations. Hence, we expect
them to be robust and apply beyond the specific choice of the
phenomenological model used.
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For a solid with large density fluctuations, the GL free-
energy functional can be written as an expansion in powers
of the deviation of the particle density from its average
value, δρðrÞ ¼ ρðrÞ − ρ0 [26,27],

FGL½δρðrÞ� ¼
Z

d3r d3r0 δρðr0Þ χ−1 ðr − r0Þ δρðrÞ

− B
Z

d3r½δρðrÞ�3 þ C
Z

d3r½δρðrÞ�4: ð1Þ

The charge susceptibility kernel χðr − r0Þ must respect the
underlying rotational symmetry and support an instability
towards a CDW at a Bragg vector of magnitude G. These
considerations are fulfilled by taking

χ−1ðr − r0Þ ¼ 1

2
½Rþ v2ð∇2 þ G2Þ2�δðr − r0Þ; ð2Þ

for which the quadratic term in Eq. (1) is minimized for
all wave vectors Q of length G. For R < 0, any Fourier
component of the density with jQj ¼ G contributes a
negative free energy, thus leading to a CDW instability.
The wave vector pattern fQig selected is then determined
by higher order terms in FGL.
As shown in Refs. [26,27], the cubic term in FGL prefers

structures that maximize the number of equilateral triangles
which can be formed from the fQig. For three-dimensional
crystals, this selects fcc in reciprocal space, hence bcc
in real space. The density profile of the CDW is then
δρCDWðrÞ ¼

P
GρGe

iG·r, where the sum runs over the 12
primary Bragg vectors of the bcc lattice. Since ρðrÞ is real,
we must have ρG ¼ ρ�−G; hence, the total number of real
degrees of freedom is 12, as opposed to three in the
harmonic lattice theory. For the minimum energy configu-
ration, ρG can be chosen to take a uniform (G-independent)
mean-field value ρG ¼ δρ̄. Excitations are then obtained by
studying dynamical fluctuations of the density about the
mean-field solution.
Excitation spectrum.—In order to study excitations, we

consider the time-dependent GL Lagrangian density

L ¼ 1

γ

�∂δρðr; tÞ
∂t

�
2

− FGL½δρðr; tÞ�; ð3Þ

where FGL is the free energy defined in Eq. (1). Note that
since the density is real, ð∂tρÞ2 is the lowest order
dynamical term that can be constructed. In principle,
dissipative terms involving first order time derivatives
are also allowed. These terms originate from processes
in which gapped modes decay to acoustic phonons and
lead to broadening of the line shapes. Experimentally, the
modes are found to be sharp and hence we will neglect this
effect in our phenomenological approach.
The excitation spectrum is obtained by linearizing the

Euler-Lagrange equations with respect to the fluctuations
ηGðq;ωÞ ¼ ρðGþ q;ωÞ − δρ̄. Diagonalizing the resulting
bilinear form yields the linear mode eigenfrequencies ωα

and eigenvectors ξα, as discussed in the Supplemental
Material (SM) [28]. The longitudinal and transverse exci-
tation spectrum in the vicinity of a principal Bragg vector
is shown in Figs. 2(a) and 2(b). In addition to the three
acoustic phonon branches, the spectrum also contains nine
gapped optical modes.
Symmetry classification.—At zero relative momentum,

q ¼ 0, the normal modes can be classified according to
irreducible representations (irreps) of the octohedral group
Oh. In Fig. 2(a) we label the different modes according
to their irreps. We find that the two lowest gapped modes
are one s-wave and three d-wave T2g modes. When the GL
parameter R is below a critical value R�, the d-wave mode
is lower in energy than the s-wave modes; this order is
exchanged for R > R�. This is the only qualitative feature
of our analysis that depends on the precise value of the GL
parameters.
Interestingly, the dxy mode is approximately dispersion-

less in the transverse direction, q ¼ qẑ, as seen in
Fig. 2(b). This behavior, seen experimentally [2,3], can
be traced back to the reciprocal space structure of the

(a) (b)

FIG. 2. Excitation spectrum for the GL theory of bcc 4He. GL
parameters are chosen as R ¼ 0.05, B ¼ C ¼ 1, and v ¼ 1.5.
The momentum transfer q is chosen relative to the principal
Bragg vector G ¼ f1; 1; 0g in the (a) longitudinal q ¼ ðq; q; 0Þ
and (b) transverse q ¼ ð0; 0; qÞ directions. Solid (dashed) lines
correspond to INS active (inactive) modes. Modes labeled in
(a) by their irreps and mode degeneracies at q ¼ 0.

(a)

(b) (c)

FIG. 1. (a) A one-dimensional CDW is modulated at primary
Bragg vectors �Q, with Fourier amplitudes ρ�. Higher harmon-
ics are strongly suppressed. Real space oscillations of (b) the
acoustic phonon and (c) the amplitude mode.
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mode depicted in Fig. 3, which has nonvanishing amplitude
ηG only for G in the z ¼ 0 plane. As a result, G · q ¼ 0,
and the charge susceptibility kernel ~χ−1ðGþqÞ¼
1
2
Rþ1

2
v2½ðGþqÞ2−G2�2¼ 1

2
ðRþv2q4Þ has a weak depend-

ence on the relative momentum q, leading to an excitation
that disperses only as q4.
In Fig. 3(c) we plot the real space density profile

corresponding to the dxy mode at q ¼ 0. The images are
projected onto the z ¼ 0 plane and track the time evolution
at quarter and half of the oscillation period T. Note that the
oscillations are quadrupolar deformations of the density
within the unit cell such that the mode can support a finite
frequency oscillation at zero momentum. This behavior is
analogous to optical phonons in polyatomic crystals, which
involve relative motion of the atoms within a unit cell.
Dynamical structure factor (DSF).—In order to compare

with the experimental INS data, we compute the dynamical
structure factor, SGðq;ωÞ ¼ ImhδρGðq;ωÞδρ−Gð−q;−ωÞi.
This is readily computed via canonical quantization of the
normal modes (see SM [28]), yielding

SðGþ q;ωÞ ¼
X
α

γMG;αðqÞ
2ωαðqÞ

fnðωαÞδ(ωþ ωαðqÞ)

þ ½1þ nðωαÞ�δ(ω − ωαðqÞ)g; ð4Þ
where nðϵÞ ¼ 1=½expðβϵÞ − 1� is the Bose function, and
the matrix element MG;αðqÞ expresses the overlap squared
between normal mode α and the density operator. For a
given wave vector, only certain normal modes are INS
active, while the remaining modes have vanishingMG;αðqÞ.
This is illustrated in Fig. 2, where INS active (inactive)
modes are plotted with solid (dashed) lines. As a check, the
DSF analysis predicts that the longitudinal (transverse)
acoustic phonon are INS inactive for q vector which are
orthogonal (parallel) to the Bragg vector G. This

reproduces well-known selection rules of the classical
harmonic theory of solids [29]. In addition, our analysis
uncovers new selection rules that apply to the
gapped modes.
The DSF in Eq. (4) satisfies the sum rule [30]:

Z∞

−∞

dωω SðGþ q;ωÞ ¼ γ: ð5Þ

Hence, although our model contains more phonon modes
than predicted by the harmonic theory of solids, their total
spectral weight is constrained. In particular, the distinction
between a crystal and a CDW is qualitative in nature and,
as such, there must be a smooth mechanism by which the
amplitude modes disappear as the solid becomes more
classical. Indeed, in this limit, the amplitude modes become
increasingly energetic, and their spectral weight is accord-
ingly reduced to satisfy the sum rule. As a related
observation, if our GL formalism were enlarged to include
nonprimary Bragg vectors, more optical modes would
appear, but of very high energy and small spectral weight.
Quantum Monte Carlo (QMC) simulation.—We comple-

ment the phenomenological GL analysis with an ab initio
path integral QMC simulation. We model the 4He atoms
with the following Hamiltonian:

H ¼ −λ
XN
i¼1

~∇2
i þ

X
i<j

Vðri − rjÞ; ð6Þ

where λ ¼ 6.0596 Å2 K for 4He and VðrÞ is the Aziz
potential, which is believed to accurately capture the
interatomic potential energy of 4He atoms [31]. We set
the simulation parameters to lie within the bcc region of
the 4He phase diagram. Explicitly, the temperature is set to
T ¼ 1.6 K and we consider N ¼ 2000 4He atoms at atomic
density n0 ¼ 0.02854 Å−3 (molar volume v0 ¼ 21.1 cm3).
The bosonic worldlines configurations are sampled
employing the continuous space worm algorithm [32] in
the canonical ensemble. Our main observable is the
charge susceptibility structure factor evaluated at
Matsubara frequency ωm,

χðq; iωmÞ ¼
1

Nβ

�����
Z

β

0

dτ eiωmτ
XN
i¼1

eiq·riðτÞ
����
2�

; ð7Þ

where riðτÞ denotes the position of the ith particle at
imaginary time τ.
At finite relative momentum the spectrum is gapped up

to the energy scale of the acoustic phonon and hence
the dispersion relation can be extracted by fitting the
DSF to the asymptotic form χðq; τ ≫ 1=ΔÞ ∼ fðq; τÞ,
where fðq; τÞ ¼ AðqÞðe−τΔðqÞ þ e−ðβ−τÞΔðqÞÞ. In addition,
we compute the excitation spectrum by performing a
numerical analytic continuation on the imaginary time
QMC data using the MaxEnt method [33]. We find good

(a) (b)

(c)

FIG. 3. Reciprocal space structure of the (a) s-wave and
(b) d-wave normal modes at the primitive Bragg vector.
Red (blue) dots correspond to positive (negative) amplitudes ηG.
(c) Real space evolution of the density for the dxy mode at q ¼ 0,
at different instants in time.
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agreement between the excitation spectra computed via
these two methods.
We focus on the longitudinal mode along the line

connecting the Brillouin zone origin to a primitive
Bragg vector. The resulting dispersion relation is depicted
in the inset of Fig. 4. For comparison, we also display the
experimental INS data [1] and find good agreement with
the numerical computation. We were unable to resolve any
gapped modes at finite relative momentum. This is likely
due to the small spectral weight of the optical mode relative
to the acoustic phonons. Experimentally, the ratio is about
1=10. A previous QMC study [34] computed the acoustic
dispersion at finite wave vectors, and thus did not detect the
optical modes.
To overcome this problem we compute the DSF at a

Bragg momentum, where the weight of the acoustic
phonons is expected to vanish. To extract the energy scale
of the amplitude mode, we fit the imaginary time QMC data
to the following form: χðG; τ ≫ 1=ΔÞ ∼ χ0 þ fðG; τÞ. The
extensive constant χ0 takes into account the crystal order
parameter. A typical fit of this type is shown in the SM [28].
As before, we also perform numerical analytic continuation
of the QMC data and obtain consistent results.
The results of the numerical analytical continuation

are presented in the main panel of Fig. 4. We find the
spectrum is composed of a gapped resonance peaked at
ωH ¼ 0.5ð1Þ meV; see also SM [28]. This central result
demonstrates numerically the presence of a gapped mode at
zero relative momentum in a monoatomic Bravais lattice.
Interestingly, this value is smaller than the experimentally

measured frequency ωexpt
H ¼ 1.2 meV. Our numerical

calculation, therefore, predicts an additional and lower
energy gapped mode, beyond those found experimentally.
Such a mode would have gone undetected, since the
experimental setup for the vast majority of existing mea-
surements was not designed to detect phonons with
energies below 1 meV [35,36].
Could the experimentally observed optical mode be due

to a two-phonon process [37]? To assess this possibility,
we have analyzed a harmonic lattice model with up to
third-neighbor interactions whose parameters are adjusted
to match the experimentally observed phonon frequencies
at high symmetry points (P,N, andH) in the Brillouin zone
[23], and to be stable in the vicinity of the zone center. We
thereby obtain a dynamical matrix,

Φ̂αβðkÞ ¼
X
R≠0

ð1 − cos k · RÞ ∂
2vðRÞ

∂Rα∂Rβ ; ð8Þ

with ∂α∂βvðRÞ¼ ðδαβ− R̂αR̂βÞR−1v0ðRÞþ R̂αR̂βv00ðRÞ. Our
model is specified by six parameters, which may be taken
to be the values of v0ðRÞ and v00ðRÞ at each of the first three
nearest-neighbor distances. We computed the phonon band
structure and the dynamic structure factor within this
harmonic theory (see SM for details [28]). We find that
the peak in the two-phonon contribution to SðG;ωÞ lies at a
frequency of ω2-ph ≃ 4.3 meV, and furthermore, the peak
amplitude of this two-phonon contribution is 0.6% of the
peak value in Fig. 4. We therefore reject this possibility.
Discussion.—Our results motivate future experimental

studies of the excitation spectrum of solid 4He. Specifically,
it would be interesting to determine the symmetry proper-
ties of the gapped modes. Breaking a subgroup of the Oh
crystal symmetry group, e.g., by shearing or compressing
the lattice, would lift the symmetry enforced degeneracy.
The resulting splitting of the phonon branches could be
detected in INS experiments.
More broadly, beyond 4He, our analysis may be relevant

to other examples of strongly fluctuating quantum solids. In
that regard, one promising future theoretical and exper-
imental research direction would be to explore the effect of
reduced dimensionally on the amplitude modes such as in
the solid phase of two-dimensional dipolar Bose gases [38].
As a concrete prediction, the Lindemann parameter for bcc
solid 3He is even larger than that of 4He [16], and therefore
we predict that lower energy optical modes should be seen
in solid 3He. This would also serve as an experimental
confirmation that the optical modes in 4He are strictly due
to charge fluctuations and not to gapped fluctuations of the
nearby superfluid.
Summarizing, we have identified the gapped modes

observed in INS experiments on the bcc phase of solid
4He with amplitude fluctuations of the crystal order. The
properties of the gapped modes were analyzed through an
effective GL theory and an ab inito QMC simulation. In
addition, we propose experimental tests for our predictions
in solid 4He and quantum solids in general.

FIG. 4. Dynamical structure factor at the primitive Bragg vector
G ¼ f1; 1; 0g. The spectral function displays a clear resonance
at ω ¼ 0.5ð1Þ meV that we attribute to fluctuation of the CDW
order parameter. The first moment, I1 ¼

R
dωω Sðω;GÞ, obeys

the f-sum rule Ie1 ¼ G2=2m ¼ 2.43 meV. The numerical value,
In1 ¼ 2.6 meV, deviates by 7% from the exact result. Inset:
Dispersion of lowest energy longitudinal excitation computed
with QMC simulations (blue), compared to longitudinal acoustic
phonon measured in INS experiments (red) [1]. The arrow
indicates the optical mode.
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